
Proof of Lemma 1. The result follows since Q is i) nonempty, ii) bounded above, and iii) closed. 
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It follows from continuity of the functions p(s) and y(K,s) that K  and s  generate r , so that 

Qr ∈ , as required. 

 



Proof of Lemma 2.  Consider backwards induction on t for the results in the first sentence.  These 

results clearly hold at t = T.  Suppose then, as the induction hypothesis, that they hold at t + 1.  It 

follows that 0),,( ≥αtKV  is continuous in 0≥K , since 0),1,( ≥+ αtKV  and 0),,( ≥αtKF  
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Proof of Proposition 2. The dependence of variables on r is noted. For any K > 0, the envelope 
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Proof of Lemma 3. The optimal K* and s* solve the following problem 
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then implies that the maximum growth rate, )(* αr , say, is a continuously differentiable function 
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Proof of Theorem 1.  Note that 0)(* =αr  and 0
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Lemma A. (i) 0),,( >αα tKV , for all K > 0, and Tt ,...,2= .  (ii) 0),1,( >αα KVK , for all 

K > 0. 

Proof of Lemma A.  (i) By the envelope theorem, 
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Now Lemmas 2 and A imply the results of Theorem 1: 
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