Proof of Lemma 1. The result follows since Q is i) nonempty, ii) bounded above, and iii) closed. i) Choose any $\overline{K} > 0$. If $s(t) = F(\overline{K}, t, \alpha)/2$, for t = 1, ..., T, then p(t) > 0, for all t = 0, ..., T, and, whereas y(0) < 0, y(t) > 0, for t = 1, ..., T. If $r \in (-\infty, \infty)$ is sufficiently small, it follows that $\sum_{i=0}^{T} p(t)y(t)e^{-rt} \ge 0$, so that $r \in Q$.

ii) The assumptions on *C* and *F* in the first two paragraphs of 'The Set Up' imply that there exist constants B > 0 and C > 0 such that $C(K) \ge BK + C$, for all $K \ge 0$, and a function A(t) > 0 such that $F(K,t,\alpha) \le A(t)K$ for all $K \ge 0$, $\alpha \in A$, and t = 1,...,T. Consider any $r \in Q$, so that $\sum_{t=0}^{T} p(t)y(t)e^{-rt} \ge 0$, for some $(p, y) = (p(s), y(K, s)) \in M$. Since $p(t) \le 1$ and

$$y(t) = F(K, t, \alpha) - s(t) \le A(t)K$$
, for $t = 1, ..., T$, it follows that $K\left(-B + \sum_{t=1}^{T} A(t)e^{-rt}\right) - C \ge 0$.

Hence $r < \overline{r}$ where \overline{r} is the unique solution of $-B + \sum_{t=1}^{T} A(t)e^{-\overline{r}t} = 0$, and \overline{r} is an upper bound for Q, as required.

iii) Consider any sequence $r_n \to \overline{r}$ where $r_n \in Q$ for all n. It must be shown that $\overline{r} \in Q$. Suppose the sequences K_n and s_n generate r_n . Take N such that n > N implies $r_n \ge \overline{r} - \Delta$, for any fixed $\Delta > 0$. Since $-C(K_n) + \sum_{t=1}^{T} F(K_n, t, \alpha) e^{-(\overline{r} - \Delta)t} \ge 0$, there can be no subsequence of $K_n \to \infty$, given the conditions on C and F. Hence there is a convergent subsequence of $K_n \to \overline{K} \in [0, \infty)$, say. Now define N such that n > N implies $r_n \in (\overline{r} - \Delta, \overline{r} + \Delta)$ and $K_n \in (\overline{K} - \Delta, \overline{K} + \Delta)$, for some $\Delta > 0$. Since

$$-B(\overline{K}-\Delta) - C + \sum_{t=1}^{T} \left(A(t)(\overline{K}+\Delta)e^{-(\overline{r}-\Delta)t} - s_n(t)e^{-(\overline{r}+\Delta)t} \right) \ge 0, \text{ there can be no subsequence of the}$$

 $s_n(t) \to \infty$, for any t = 1, ..., T. Hence there is a convergent subsequence $s_n \to \overline{s} \in [0, \infty)^T$, say. It follows from continuity of the functions p(s) and y(K,s) that \overline{K} and \overline{s} generate \overline{r} , so that $\overline{r} \in Q$, as required. *Proof of Lemma* 2. Consider backwards induction on *t* for the results in the first sentence. These results clearly hold at t = T. Suppose then, as the induction hypothesis, that they hold at t + 1. It follows that $V(K,t,\alpha) \ge 0$ is continuous in $K \ge 0$, since $V(K,t+1,\alpha) \ge 0$ and $F(K,t,\alpha) \ge 0$ are continuous, and $V(K,t,\alpha) = \max_{s(t)} \left\{ F(K,t,\alpha) - s(t) + e^{-r}\sigma(s(t))V(K,t+1,\alpha) \right\}$. Indeed, the implicit function theorem implies the optimal s(t) satisfying $\sigma'(s(t))V(K,t+1,\alpha)e^{-r} = 1$ is a continuously differentiable function of K > 0, for any $\alpha \in A$. Using the 'envelope theorem,' it follows that $V_K(K,t,\alpha) = F_K(K,t,\alpha) + e^{-r}\sigma(s(t))V_K(K,t+1,\alpha)$, t = 1,...,T-1. That is, although s(t) is a function of K, this does not affect this expression because s(t) is chosen optimally. Clearly, $V_K(K,t,\alpha) > 0$ since $F_K(K,t,\alpha) > 0$ and $V_K(K,t+1,\alpha) > 0$. Further, $V_K(K,t,\alpha)$ can be differentiated to yield $V_{KK}(K,t,\alpha)$ as a continuous function of K > 0, completing the induction argument.

Consider now choice of *K* to maximize $\overline{p}V(K,1,\alpha)e^{-r} - C(K)$. The assumptions on *F* and *C* imply that $\overline{p}V_K(K,1,\alpha)e^{-r} - C'(K) > 0$, for all small enough K > 0, and that $\overline{p}V_K(K,1,\alpha)e^{-r} - C'(K) < 0$ for all large enough *K*. Hence there must exist an optimal K > 0 satisfying the first-order and second-order necessary conditions as stated.

Proof of Proposition 2. The dependence of variables on *r* is noted. For any K > 0, the envelope theorem implies $V_r(K, t, \alpha, r) = -e^{-r}\sigma(s(t))V(K, t+1, \alpha, r) + e^{-r}\sigma(s(t))V_r(K, t+1, \alpha, r)$, t = 1, ..., T - 1. Since $V_r(K, T, \alpha, r) = 0$, it follows that $V_r(K, t, \alpha, r) < 0$, for t = 1, ..., T - 1. Given $\overline{p}V(K^*(r^*), 1, \alpha, r^*)e^{-r^*} = C(K^*(r^*))$ and $\overline{p}V_K(K^*(r), 1, \alpha, r)e^{-r} = C'(K^*(r))$, it follows that $\frac{d}{dr}(\overline{p}V(K^*(r), 1, \alpha, r)e^{-r^*} - C(K^*(r))) = \overline{p}V_r(K^*(r), 1, \alpha, r) < 0$, so that $\overline{p}V(K^*(r), 1, \alpha, r)e^{-r^*} < C(K^*(r))$, for all $r > r^*$. That is, $L(r^*, p^*, y^*) = 0$, so that the growth rate r^* is feasible, but max $_{p,y} L(r, p, y) < 0$, for all $r > r^*$, so no growth rate strictly greater than r^* is feasible.

Proof of Lemma 3. The optimal K^* and s^* solve the following problem

$$\max_{K,s(1),\dots,s(T-1)} \left[-C(K) + \sum_{t=1}^{T} \overline{p} \left(\prod_{\tau=1}^{t-1} \sigma(s(t)) \right) (F(K,t,\alpha) - s(t)) e^{-r^*t} \right].$$
 The dynamic programming

approach in Lemma 2 can be extended to prove that such $K^* > 0$ and $s^* > 0$ are continuously differentiable functions of r^* and α . Since, in addition,

$$\left[-C(K^*) + \sum_{t=1}^{T} \overline{p}\left(\prod_{\tau=1}^{t-1} \sigma(s^*(\tau))\right) (F(K^*, t, \alpha) - s^*(t))e^{-r^*t}\right] = 0, \text{ the implicit function theorem}$$

then implies that the maximum growth rate, $r^*(\alpha)$, say, is a continuously differentiable function of $\alpha \in A$. However, as another example of the envelope theorem, the derivatives of K^* and s^*

play no direct role here. That is,
$$\frac{dr^*(\overline{\alpha})}{d\alpha} = \frac{\sum_{t=1}^T p^*(t)F_{\alpha}(K^*, 1, \overline{\alpha})}{\sum_{t=1}^T tp^*(t)(F(K^*, t, \overline{\alpha}) - s^*(t))} = 0, \text{ as required,}$$
given also that
$$\sum_{t=1}^T tp^*(t)(F(K^*, t, \overline{\alpha}) - s^*(t)) = \sum_{t=1}^T p^*(t)V(K^*, t, \overline{\alpha}) > 0, \text{ by Lemma 2.}$$

Proof of Theorem 1. Note that $r^*(\overline{\alpha}) = 0$ and $\frac{dr^*(\overline{\alpha})}{d\alpha} = 0$ throughout. Consider first:

Lemma A. (i) $V_{\alpha}(K, t, \overline{\alpha}) > 0$, for all K > 0, and t = 2, ..., T. (ii) $V_{K\alpha}(K, 1, \overline{\alpha}) > 0$, for all K > 0.

Proof of Lemma A. (i) By the envelope theorem, $V_{\alpha}(K,t,\overline{\alpha}) = F_{\alpha}(K,t,\overline{\alpha}) + \sigma(s(t))V_{\alpha}(K,t+1,\overline{\alpha})$, for all K > 0, t = 1,...,T-1. Recall that $F_{\alpha}(K,t,\overline{\alpha}) < 0$, for all $t < \overline{t}$, but $F_{\alpha}(K,t,\overline{\alpha}) > 0$, for all $t \ge \overline{t}$. Hence backwards recursion from T implies that $V_{\alpha}(K,t,\overline{\alpha}) > 0$, for $t = \overline{t},...,T$. Moreover, if $V_{\alpha}(K,t,\overline{\alpha}) \le 0$, for some $t < \overline{t}$, then $V_{\alpha}(K,t-1,\overline{\alpha}) < 0$. But, since $V_{\alpha}(K,1,\overline{\alpha}) = \sum_{t=1}^{T} p^*(t)F_{\alpha}(K,t,\overline{\alpha})/\overline{p} = 0$, it must then be that $V_{\alpha}(K,t,\overline{\alpha}) > 0$, for any K > 0, and t = 2,...,T.

(ii) Differentiating $\sigma'(s(t))V(K, t+1, \alpha)e^{-r^*} = 1$ with respect to α , at $\alpha = \overline{\alpha}$, holding

K > 0 constant, yields $\frac{\partial s(t)}{\partial \alpha} = -\frac{\sigma'(s(t))V_{\alpha}(K, t+1, \overline{\alpha})}{\sigma''(s(t))V(K, t+1, \overline{\alpha})} > 0$, for $t = 1, \dots, T-1$. The envelope

theorem implies that $V_K(K,1,\alpha) = \sum_{t=1}^{T} e^{-r^*(t-1)} \sigma(s(1)) \dots \sigma(s(t-1)) F_K(K,t,\alpha) > 0$, for all $K \ge 0$.

Since $F_{K\alpha}(K,t,\alpha) \ge 0$, differentiation of $V_K(K,1,\alpha)$ with respect to α , at $\alpha = \overline{\alpha}$, with K > 0 constant, then yields $V_{K\alpha}(K,1,\overline{\alpha}) > 0$.

Now Lemmas 2 and A imply the results of Theorem 1:

(I) Since $\overline{p}V_{KK}(K^*,1,\alpha) - C''(K^*) < 0$, it follows from differentiating

 $\overline{p}V_{K}(K^{*},1,\alpha)e^{-r^{*}} = C'(K^{*})$ with respect to α , at $\alpha = \overline{\alpha}$, that

$$\frac{dK^*}{d\alpha} = \frac{\overline{p}V_{\kappa\alpha}(K^*, \mathbf{1}, \overline{\alpha})}{C^{\prime\prime}(K^*) - \overline{p}V_{\kappa\kappa}(K^*, \mathbf{1}, \overline{\alpha})} > 0.$$

(II) Differentiating $\sigma'(s^*(t))V(K^*, t+1, \alpha)e^{-t^*} = 1$ with respect to α , at $\alpha = \overline{\alpha}$, where K

can vary, finally yields
$$\frac{ds^*(t)}{d\alpha} = -\frac{\sigma'(s^*(t))\left[V_{\alpha}(K^*, t+1, \overline{\alpha}) + V_{\kappa}(K^*, t+1, \overline{\alpha})\frac{dK^*}{d\alpha}\right]}{\sigma''(s^*(t))V(K^*, t+1, \overline{\alpha})} > 0, \text{ for}$$

t = 1, ..., T - 1.