
11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

11 Logistic Regression - Interpreting Parameters

Let us expand on the material in the last section, trying to make sure we understand the logistic
regression model and can interpret Stata output. Consider first the case of a single binary predictor,
where

x =

{
1 if exposed to factor
0 if not

, and y =

{
1 if develops disease
0 does not

.

Results can be summarized in a simple 2 X 2 contingency table as

Exposure
Disease 1 0

1 (+) a b
0 (– ) c d

where ÔR = ad
bc (why?) and we interpret ÔR > 1 as indicating a risk factor, and ÔR < 1 as

indicating a protective factor.
Recall the logistic model: p(x) is the probability of disease for a given value of x, and

logit(p(x)) = log
(

p(x)
1− p(x)

)
= α + βx.

Then for x = 0 (unexposed), logit(p(x)) = logit(p(0)) = α + β(0) = α
x = 1 (exposed), logit(p(x)) = logit(p(1)) = α + β(1) = α + β

Also,
odds of disease among unexposed: p(0)/(1− p(0))

exposed: p(1)/(1− p(1))
Now

OR =
odds of disease among exposed

odds of disease among unexposed
=

p(1)/(1− p(1))
p(0)/(1− p(0))

and
β = logit(p(1))− logit(p(0))

= log
(

p(1)
(1−p(1))

)
− log

(
p(0)

(1−p(0))

)

= log
(

p(1)/(1−p(1))
p(0)/(1−p(0))

)

= log(OR)

The regression coefficient in the population model is the log(OR), hence the OR is obtained by
exponentiating β,

eβ = elog(OR) = OR

Remark: If we fit this simple logistic model to a 2 X 2 table, the estimated unadjusted OR (above)
and the regression coefficient for x have the same relationship.

Example: Leukemia Survival Data (Section 10 p. 108). We can find the counts in the following
table from the tabulate live iag command:

Surv ≥ 1 yr? Ag+ (x=1) Ag- (x=0)
Yes 9 2
No 8 14

and (unadjusted) ÔR = 9(14)
2(8) = 7.875 .

Before proceeding with the Stata output, let me comment about coding of the outcome variable.
Some packages are less rigid, but Stata enforces the (reasonable) convention that 0 indicates a
negative outcome and all other values indicate a positive outcome. If you try to code something
like 2 for survive a year or more and 1 for not survive a year or more, Stata coaches you with the
error message
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11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

outcome does not vary; remember:
0 = negative outcome,

all other nonmissing values = positive outcome

This data set uses 0 and 1 codes for the live variable; 0 and -100 would work, but not 1 and 2.
Let’s look at both regression estimates and direct estimates of unadjusted odds ratios from Stata.

. logit live iag
Logit estimates Number of obs = 33

LR chi2(1) = 6.45
Prob > chi2 = 0.0111

Log likelihood = -17.782396 Pseudo R2 = 0.1534
------------------------------------------------------------------------------

live | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 2.063693 .8986321 2.30 0.022 .3024066 3.82498
_cons | -1.94591 .7559289 -2.57 0.010 -3.427504 -.4643167

------------------------------------------------------------------------------
. logistic live iag
Logistic regression Number of obs = 33

LR chi2(1) = 6.45
Prob > chi2 = 0.0111

Log likelihood = -17.782396 Pseudo R2 = 0.1534
------------------------------------------------------------------------------

live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 7.875 7.076728 2.30 0.022 1.353111 45.83187
------------------------------------------------------------------------------

Stata has fit logit(p̂(x)) = log
(

p̂(x)
1−p̂(x)

)
= α̂ + β̂x = −1.946 + 2.064 IAG, with

ÔR = e2.064 = 7.875. This is identical to the “hand calculation” above. A 95% Confidence Interval
for β (IAG coefficient) is .3024066 ≤ β ≤ 3.82498. This logit scale is where the real work and
theory is done. To get a Confidence Interval for the odds ratio, just exponentiate everything

e.3024066 ≤ eβ ≤ e3.82498

1.353111 ≤ OR ≤ 45.83187

What do you conclude?

A More Complex Model

log
(

p
1−p

)
= α + β1x1 + β2x2, where x1 is binary (as before) and x2 is a continuous predictor. The

regression coefficients are adjusted log-odds ratios.

To interpret β1, fix the value of x2:
For x1 = 0

log odds of disease = α + β1(0) + β2x2 = α + β2x2

odds of disease = eα+β2x2

For x1 = 1
log odds of disease = α + β1(1) + β2x2 = α + β1 + β2x2

odds of disease = eα+β1+β2x2

Thus the odds ratio (going from x1 = 0 to x1 = 1 is

OR =
odds when x1 = 1
odds when x1 = 0

=
eα+β1+β2x2

eα+β2x2
= eβ1

(remember ea+b = eaeb, so ea+b

ea = eb), i.e. β1 = log(OR). Hence eβ1 is the relative increase in the
odds of disease, going from x1 = 0 to x1 = 1 holding x2 fixed (or adjusting for x2).
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11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

To interpret β2, fix the value of x1:
For x2 = k (any given value k)

log odds of disease = α + β1x1 + β2k
odds of disease = eα+β1x1+β2k

For x2 = k + 1
log odds of disease = α + β1x1 + β2(k + 1)

= α + β1x1 + β2k + β2

odds of disease = eα+β1x1+β2k+β2

Thus the odds ratio (going from x2 = k to x2 = k + 1 is

OR =
odds when x2 = k + 1

odds when x2 = k
=

eα+β1x1+β2k+β2

eα+β1x1+β2k
= eβ2

i.e. β2 = log(OR). Hence eβ2 is the relative increase in the odds of disease, going from x2 = k to
x2 = k + 1 holding x1 fixed (or adjusting for x1). Put another way, for every increase of 1 in x2

the odds of disease increases by a factor of eβ2 . More generally, if you increase x2 from k to k + ∆
then

OR =
odds when x2 = k + ∆

odds when x2 = k
= eβ2∆ =

(
eβ2

)∆

The Leukemia Data

log
(

p

1− p

)
= α + β1 IAG + β2 LWBC

where IAG is a binary variable and LWBC is a continuous predictor. Stata output seen earlier

------------------------------------------------------------------------------
live | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
iag | 2.519562 1.090681 2.31 0.021 .3818672 4.657257

lwbc | -1.108759 .4609479 -2.41 0.016 -2.0122 -.2053178
_cons | 5.543349 3.022416 1.83 0.067 -.380477 11.46718

------------------------------------------------------------------------------

shows a fitted model of

log
(

p̂

1− p̂

)
= 5.54 + 2.52 IAG− 1.11 LWBC

The estimated (adjusted) OR for IAG is e2.52 = 12.42, which of course we saw earlier in the Stata
output

------------------------------------------------------------------------------
live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
iag | 12.42316 13.5497 2.31 0.021 1.465017 105.3468

lwbc | .3299682 .1520981 -2.41 0.016 .1336942 .8143885
------------------------------------------------------------------------------

The estimated odds that an Ag+ individual (IAG=1) survives at least one year is 12.42 greater
than the corresponding odds for an Ag- individual (IAG=0), regardless of the LWBC (although
the LWBC must be the same for both individuals).

The estimated OR for LWBC is e−1.11 = .33 (≈ 1
3). For each increase in 1 unit of LWBC, the

estimated odds of surviving at least a year decreases by roughly a factor of 3, regardless of ones
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11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

IAG. Stated differently, if two individuals have the same Ag factor (either + or -) but differ on
their values of LWBC by one unit, then the individual with the higher value of LWBC has about
1/3 the estimated odds of survival for a year as the individual with the lower LWBC value.

Confidence intervals for coefficients and ORs are related as before. For IAG the 95% CI for β1

yields the 95% CI for the adjusted IAG OR as follows:

.382 ≤ β1 ≤ 4.657
e.382 ≤ eβ1 ≤ e4.657

1.465 ≤ OR ≤ 105.35

We estimate that the odds of an Ag+ individual (IAG=1) surviving at least a year to be 12.42
times the odds of an Ag- individual surviving at least one year. We are 95% confident the odds
ratio is between 1.465 and 105.35. How does this compare with the unadjusted odds ratio?

Similarly for LWBC, the 95% CI for β2 yields the 95% CI for the adjusted LWBC OR as follows:

−2.012 ≤ β2 ≤ −.205
e−2.012 ≤ eβ2 ≤ e−.205

.134 ≤ OR ≤ .814

We estimate the odds of surviving at least a year is reduced by a factor of 3 (i.e. 1/3) for each
increase of 1 LWBC unit. We are 95% confindent the reduction in odds is between .134 and .814.

Note that while this is the usual way of defining the OR for a continuous predictor variable,
software may try to trick you. JMP IN for instance would report

ÔR = e−1.11(max(LWBC)−min(LWBC)) = .33max(LWBC)−min(LWBC),

the change from the smallest to the largest LWBC. That is a lot smaller number. You just have to
be careful and check what is being done by knowing these relationships.

General Model

We can have a lot more than complicated models than we have been analyzing, but the principles
remain the same. Suppose we have k predictor variables where k can be considerably more than 2
and the variables are a mix of binary and continuous. then we write

log
(

p

1− p

)
= log odds of disease = α + β1x1 + β2x2 + . . . + βkxk

which is a logistic multiple regression model. Now fix values of x2, x3, . . . , xk, and we get

odds of disease for x1 = c : eα+β1c+β2x2+...+βkxk

x1 = c + 1 : eα+β1(c+1)+β2x2+...+βkxk

The odds ratio, increasing x1 by 1 and holding x2, x3, . . . , xk fixed at any values is

OR =
eα+β1(c+1)+β2x2+...+βkxk

eα+β1c+β2x2+...+βkxk
= eβ1

That is, eβ1 is the increase in odds of disease obtained by increasing x1 by 1 unit, holding
x2, x3, . . . , xk fixed (i.e. adjusting for levels of x2, x3, . . . , xk). For this to make sense

• x1 needs to be binary or continuous

• None of the remaining effects x2, x3, . . . , xk can be an interaction (product) effect with
x1. I will say more about this later! The essential problem is that if one or more of
x2, x3, . . . , xk depends upon x1 then you cannot mathematically increase x1 and simulta-
neously hold x2, x3, . . . , xk fixed.
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11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

Example: The UNM Trauma Data

The data to be analyzed here were collected on 3132 patients admitted to The University of New
Mexico Trauma Center between the years 1991 and 1994. For each patient, the attending physician
recorded their age, their revised trauma score (RTS), their injury severity score (ISS), whether
their injuries were blunt (i.e. the result of a car crash: BP=0) or penetrating (i.e. gunshot wounds:
BP=1), and whether they eventually survived their injuries (DEATH = 1 if died, DEATH = 0 if
survived). Approximately 9% of patients admitted to the UNM Trauma Center eventually die from
their injuries.

The ISS is an overall index of a patient’s injuries, based on the approximately 1300 injuries
cataloged in the Abbreviated Injury Scale. The ISS can take on values from 0 for a patient with no
injuries to 75 for a patient with 3 or more life threatening injuries. The ISS is the standard injury
index used by trauma centers throughout the U.S. The RTS is an index of physiologic injury, and
is constructed as a weighted average of an incoming patient’s systolic blood pressure, respiratory
rate, and Glasgow Coma Scale. The RTS can take on values from 0 for a patient with no vital
signs to 7.84 for a patient with normal vital signs.

Champion et al. (1981) proposed a logistic regression model to estimate the probability of a
patient’s survival as a function of RTS, the injury severity score ISS, and the patient’s age, which is
used as a surrogate for physiologic reserve. Subsequent survival models included the binary effect
BP as a means to differentiate between blunt and penetrating injuries. We will develop a logistic
model for predicting death from ISS, AGE, BP, and RTS.

Figure 1 shows side-by-side boxplots of the distributions of ISS, AGE, and RTS for the survivors
and non-survivors, and a bar chart showing proportion penetrating injuries for survivors and non-
survivors. Survivors tend to have lower ISS scores, tend to be slightly younger, and tend to
have higher RTS scores, than non-survivors. The importance of the effects individually towards
predicting survival is directly related to the separation between the survivors and non-survivors
scores. There are no dramatic differences in injury type (BP) between survivors and non-survivors.

Figure 1 was generated with the following Stata code. Earlier in the semester I was avoiding
using the relabel option; it is much better to do things this way, but note the 1 and 2 refer to
alphabetic order of values, not to the actual values. Bar graphs in Stata are a little tricky – this
one worked, but had there been several values of BP or had they been coded other than 0 and 1
this would not have worked. In the latter case one needs to create separate indicator variables of
categories (as an option to tabulate): See
http://www.stata.com/support/faqs/graphics/piechart.html for a discussion.

graph box iss, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(ISS) title(ISS by Death) name(iss)

graph box rts, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(RTS) title(RTS by Death) name(rts)

graph box age, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(Age) title(Age by Death) name(age)

graph bar bp,over(death,relabel(1 "Survived" 2 "Died") descending) ///
ytitle("Proportion Penetrating") title("Penetrating by Death") name(bp)

graph combine iss rts age bp
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Figure 1: Relationship of predictor variables to death

Stata Analysis of Trauma Data

. logistic death iss bp rts age,coef
Logistic regression Number of obs = 3132

LR chi2(4) = 933.34
Prob > chi2 = 0.0000

Log likelihood = -446.01414 Pseudo R2 = 0.5113
------------------------------------------------------------------------------

death | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | .0651794 .0071603 9.10 0.000 .0511455 .0792134
bp | 1.001637 .227546 4.40 0.000 .5556555 1.447619
rts | -.8126968 .0537066 -15.13 0.000 -.9179597 -.7074339
age | .048616 .0052318 9.29 0.000 .0383619 .05887

_cons | -.5956074 .4344001 -1.37 0.170 -1.447016 .2558011
------------------------------------------------------------------------------
. logistic death iss bp rts age
Logistic regression Number of obs = 3132

LR chi2(4) = 933.34
Prob > chi2 = 0.0000

Log likelihood = -446.01414 Pseudo R2 = 0.5113
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.067351 .0076426 9.10 0.000 1.052476 1.082435
bp | 2.722737 .6195478 4.40 0.000 1.743083 4.252978
rts | .44366 .0238275 -15.13 0.000 .399333 .4929074
age | 1.049817 .0054924 9.29 0.000 1.039107 1.060637

------------------------------------------------------------------------------
. estat gof
Logistic model for death, goodness-of-fit test

number of observations = 3132
number of covariate patterns = 2096
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Pearson chi2(2091) = 2039.73
Prob > chi2 = 0.7849

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10

Hosmer-Lemeshow chi2(8) = 10.90
Prob > chi2 = 0.2072

There are four effects in our model: ISS, BP (a binary variable), RTS, and AGE. Looking at the
goodness of fit tests, there is no evidence of gross deficiencies with the model. The small p-value
(< .0001) for the LR chi-squared statistic implies that one or more of the 4 effects in the model is
important for predicting the probability of death. The tests for parameters suggest that each of
the effects in the model is significant at the .001 level (p-values < .001).

The fitted logistic model is

log
(

p̂

1− p̂

)
= −.596 + .065ISS + 1.002BP− .813RTS + .049AGE,

where p̂ is the estimated probability of death.
The table below is in a form similar to Fisher et al’s AJPH article (with this lecture). The

estimated odds ratio was obtained by exponentiating the regression estimate. The CI endpoints
for the ORs were obtained by exponentiating the CI endpoints for the corresponding regression
parameter. JMP-IN (and some authors) would report different ORs for the continuous variables,
for instance 124.37 for ISS (instead of the 1.067 we are reporting). (Why?). Everybody will agree
on the coefficient, but you need to be very careful what OR is being reported and how you interpret
it.

The p-value for each regression effect is smaller than .05, so the 95% CI for each OR excludes
1 (i.e. each regression coefficient is significantly different from zero so each OR is significantly
different from 1). Thus, for example, the odds of dying from a penetrating injury (BP=1) is 2.72
times greater than the odds of dying from a blunt trauma (BP=0). We are 95% confident that the
population odds ratio is between 1.74 and 4.25.

Do the signs of the estimated regression coefficients make sense? That is, which coefficients
would you expect to be positive (leading to an OR greater than 1).

Effect Estimate Std Error P-value Odds Ratio 95% CI
ISS .065 .007 < .001 1.067 (1.052 , 1.082)
BP 1.002 .228 < .001 2.723 (1.743 , 4.253)
RTS -.813 .054 < .001 0.444 (0.399 , 0.493)
AGE .049 .005 < .001 1.050 (1.039 , 1.061)

Logistic Models with Interactions

Consider the hypothetical problem with two binary predictors x1 and x2

x2 = 0 x2 = 1
x1 x1

Disease 1 0 1 0
+ 1 9 9 1
– 45 45 45 45
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The OR for x1 = 1 versus x1 = 0 when x2 = 0: ÔR = 1(45)
9(45) = 1

9

The OR for x1 = 1 versus x1 = 0 when x2 = 1: ÔR = 9(45)
1(45) = 9

A simple logistic model for these data is logit(p) = α + β1x1 + β2x2. For this model, OR for
x1 = 1 versus x1 = 0 for fixed x2 is eβ1 . That is, the adjusted OR for x1 is independent of the value
of x2. This model would appear to be inappropriate for the data set above where the OR of x1 is
very different for x2 = 0 than it is for x2 = 1.

A simple way to allow for the odds ratio to depend on the level of x2 is through the interaction
model

logit(p) = α + β1x1 + β2x2 + β3 x1 ∗ x2

where the interaction term x1 ∗ x2 is the product (in this case) of x1 and x2. In some statistical
packages the interaction variable must be created in the spreadsheet (that always works), and in
others it can (much more conveniently) be added to the model directly. Stata is in the former
category, although the xi structure allows interaction terms to be generated automatically. That
becomes much more important with multi-level (3 or more) factors.

To interpret the model, let us consider the 4 possible combinations of the binary variables:

Group x1 x2 x1 ∗ x2

A 0 0 0
B 0 1 0
C 1 0 0
D 1 1 1

Group Log Odds of Disease Odds of Disease
A α + β1(0) + β2(0) + β3(0) = α eα

B α + β1(0) + β2(1) + β3(0) = α + β2 eα+β2

C α + β1(1) + β2(0) + β3(0) = α + β1 eα+β1

D α + β1(1) + β2(1) + β3(1) = α + β1 + β2 + β3 eα+β1+β2+β3

Group A is the baseline or reference group. The parameters α, β1, and β2 are easily interpreted.
The odds of disease for the baseline group (x1 = x2 = 0) is eα – the same interpretation applies
when interaction is absent. To interpret β1 note OR for Group C vs. Group A is eα+β1

eα = eβ1 . This
is OR for x1 = 1 vs. x1 = 0 when x2 = 0. Similarly OR for Group B vs. Group A is eα+β2

eα = eβ2 .
This is OR for x2 = 1 vs. x2 = 0 when x1 = 0.

In an interaction model, the OR for x1 = 1 vs. x1 = 0 depends on the level of x2. Similarly the
OR for x2 = 1 vs. x2 = 0 depends on the level of x1. For example,

OR for group D vs. B =
eα+β1+β2+β3

eα+β2
= eβ1+β3

This is OR for x1 = 1 vs. x1 = 0 when x2 = 1. Recalling that eβ1 is OR for x1 = 1 vs. x1 = 0
when x2 = 0, we have

OR(x1 = 1 vs. x1 = 0 when x2 = 1) = OR(x1 = 1 vs. x1 = 0 when x2 = 0) ∗ eβ3

eβ1+β3 = eβ1 ∗ eβ3

Thus eβ3 is the factor that relates the OR for x1 = 1 vs. x1 = 0 when x2 = 0 to the OR when
x2 = 1. If β3 = 0 the two OR are identical, i.e. x1 and x2 do not interact. Similarly,

OR(x2 = 1 vs. x2 = 0 when x1 = 1) = OR(x2 = 1 vs. x2 = 0 when x1 = 0) ∗ eβ3

eβ2+β3 = eβ2 ∗ eβ3
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so eβ3 is also the factor that relates the OR for x2 = 1 vs. x2 = 0 at the two levels of x1. An im-
portant and no doubt fairly obvious point to take away from this is that the regression coefficients
are harder to interpret in models with interactions!

Stata Analysis: Let’s fit this interaction example (data from page 118) using Stata. We could
actually do this particular example easily without using xi, but we won’t be so lucky in the future.
. list,clean

x2 x1 Disease Count
1. 0 1 1 1
2. 0 1 0 45
3. 0 0 1 9
4. 0 0 0 45
5. 1 1 1 9
6. 1 1 0 45
7. 1 0 1 1
8. 1 0 0 45

. xi: logistic Disease i.x1 i.x2 i.x1*i.x2 [fw=Count],coef
i.x1 _Ix1_0-1 (naturally coded; _Ix1_0 omitted)
i.x2 _Ix2_0-1 (naturally coded; _Ix2_0 omitted)
i.x1*i.x2 _Ix1Xx2_#_# (coded as above)
note: _Ix1_1 dropped due to collinearity
note: _Ix2_1 dropped due to collinearity
Logistic regression Number of obs = 200

LR chi2(3) = 13.44
Prob > chi2 = 0.0038

Log likelihood = -58.295995 Pseudo R2 = 0.1034
------------------------------------------------------------------------------

Disease | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ix1_1 | -2.197225 1.074892 -2.04 0.041 -4.303975 -.090474
_Ix2_1 | -2.197225 1.074892 -2.04 0.041 -4.303975 -.090474

_Ix1Xx2_1_1 | 4.394449 1.520128 2.89 0.004 1.415054 7.373844
_cons | -1.609438 .3651484 -4.41 0.000 -2.325116 -.8937603

------------------------------------------------------------------------------
. xi: logistic Disease i.x1 i.x2 i.x1*i.x2 [fw=Count]
i.x1 _Ix1_0-1 (naturally coded; _Ix1_0 omitted)
i.x2 _Ix2_0-1 (naturally coded; _Ix2_0 omitted)
i.x1*i.x2 _Ix1Xx2_#_# (coded as above)
note: _Ix1_1 dropped due to collinearity
note: _Ix2_1 dropped due to collinearity
Logistic regression Number of obs = 200

LR chi2(3) = 13.44
Prob > chi2 = 0.0038

Log likelihood = -58.295995 Pseudo R2 = 0.1034
------------------------------------------------------------------------------

Disease | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ix1_1 | .1111111 .1194325 -2.04 0.041 .0135147 .913498
_Ix2_1 | .1111111 .1194325 -2.04 0.041 .0135147 .913498

_Ix1Xx2_1_1 | 81 123.1303 2.89 0.004 4.116709 1593.749
------------------------------------------------------------------------------

The fitted model is

logit(p) = α + β1x1 + β2x2 + β3 x1 ∗ x2 = −1.61− 2.20x1 − 2.20x2 + 4.39x1 ∗ x2

Note that eβ̂1 = e−2.20 = 1
9 = estimated OR for x1 = 1 vs. x1 = 0 when x2 = 0. Also,

eβ̂1+β̂3 = e−2.20+4.39 = e2.19 = 9 = estimated OR for x1 = 1 vs. x1 = 0 when x2 = 1

Note that

eβ̂3 = e4.39 = 81 = mult. factor that relates OR for x1 = 1 vs. x1 = 0 at the 2 levels of x2

Make sure you see how Stata agrees with these calculations.
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A More Complex Interaction Model

The treatment regime to be adopted for patients who have been diagnosed as having prostate
cancer is crucially dependent on whether the cancer has spread to the surrounding lymph nodes. A
laparatomy (a surgical incision into the abdominal cavity) may be performed to ascertain the extent
of this nodal involvement. There are a number of variables that are indicative of nodal involvement
which can be measured without surgery. The aim of the study for which the data were collected
was to determine if a combination of 5 variables could be used to predict whether cancer has spread
to the lymph nodes. The 5 variables are: age of patient at diagnosis (years), level of serum acid
phosphatase (in King-Armstrong units), result of X-ray examination (0=negative, 1=positive), size
of tumor by rectal examination (0=small, 1=large), and a summary of pathological grade of tumor
from biopsy (0=less serious, 1=serious). The response variable is involvement of lymph node (0=no,
1=yes). Fifty-three patients were enrolled in the study.

A published analysis suggested the following model for the probability p of nodal involvement

log
(

p
1−p

)
= α + β1 Xray + β2 size + β3 grade + β4 log(acid)

+ β5 size*grade + β6 log(acid)*grade

The model contains 3 binary variables (Xray, size, and grade), 1 continuous variable (log(acid)),
and 2 interactions, or product effects (size*grade) and log(acid)*grade). the size*grade interaction
involves two binary variables, as considered in the previous example, whereas the log(acid)*grade
interaction term involves a binary and a continuous variable. for each case in the data set

log(acid)*grade =

{
0 if grade = 0

log(acid) if grade = 1

Note that the model excludes age.

Interpreting the Regression Coefficients

For any regression variable that is not included in an interaction, the regression coefficient is an
adjusted log OR, and is independent of levels of the other factors in the model. For example, for
fixed size, grade, and acid levels

(OR for Xray = 1 vs. Xray = 0) =
eα+β1(1)+β2 size + ···

eα+β1(0)+β2 size + ··· = eβ1

The size*grade interaction means that the adjusted OR for size = 1 vs. size = 0 depends on
grade. The log(acid)*grade interaction means that the adjusted OR for log(acid) depends on grade.
To see this, let LA = log(acid). Then odds of nodal involvement = eα+β1Xray+β2size+β3grade+β4LA+β5size∗grade+β6LA∗grade,
so for fixed Xray, size, and grade

odds of nodal involvment at LA + 1
odds of nodal involvment at LA = exp(α+β1Xray+β2size+β3grade+β4(LA+1)+β5size∗grade+β6(LA+1)∗grade)

exp(α+β1Xray+β2size+β3grade+β4LA+β5size∗grade+β6LA∗grade)

= eβ4+β6grade

=

{
eβ4 grade = 0

eβ4+β6 grade = 1

This adjusted OR depends on grade (because LA and grade interact), but not on size or Xray
(because LA does not interact with either). We can interpret β6, the LA*grade coefficient, as a
measure of how the adjusted OR for LA changes with grade.
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11 LOGISTIC REGRESSION - INTERPRETING PARAMETERS

Given that the model contains a size*grade and a log(acid)*grade interaction, the adjusted OR
for grade depends on the size and log(acid) levels. I’ll note, but you can easily show,

odds for nodal involvement for grade = 1
odds for nodal involvement for grade = 0

= eβ3+β5size+β6log(acid)

where β5 is the grade*size coefficient and β6 is the log(acid)*grade coefficient.
In summary, interactions among variables make interpretations of effects of individual variables

on OR harder (OK, lots harder!) The ideal world has no interactions — but we don’t live in such
a world.

Stata Analysis

Raw data are available on the web page. Output from fitting the model in Stata follows:

. gen logacid=log(acid)

. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid
i.xray _Ixray_0-1 (naturally coded; _Ixray_0 omitted)
i.size _Isize_0-1 (naturally coded; _Isize_0 omitted)
i.grade _Igrade_0-1 (naturally coded; _Igrade_0 omitted)
i.size*i.grade _IsizXgra_#_# (coded as above)
i.grade*logacid _IgraXlogac_# (coded as above)
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
Logistic regression Number of obs = 53

LR chi2(6) = 33.97
Prob > chi2 = 0.0000

Log likelihood = -18.143573 Pseudo R2 = 0.4835
------------------------------------------------------------------------------

nodal | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ixray_1 | 10.38589 11.26382 2.16 0.031 1.239622 87.01579
_Isize_1 | 23.05661 26.99148 2.68 0.007 2.324485 228.6989
_Igrade_1 | 21187.36 98875.09 2.13 0.033 2.258257 1.99e+08

logacid | 5.520827 7.841721 1.20 0.229 .3411671 89.33903
_IsizXgra_~1 | .0035255 .0085831 -2.32 0.020 .0000298 .4164339
_IgraXloga~1 | 33724.72 223942.7 1.57 0.116 .0751111 1.51e+10
------------------------------------------------------------------------------
. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid,coef
i.xray _Ixray_0-1 (naturally coded; _Ixray_0 omitted)
i.size _Isize_0-1 (naturally coded; _Isize_0 omitted)
i.grade _Igrade_0-1 (naturally coded; _Igrade_0 omitted)
i.size*i.grade _IsizXgra_#_# (coded as above)
i.grade*logacid _IgraXlogac_# (coded as above)
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
Logistic regression Number of obs = 53

LR chi2(6) = 33.97
Prob > chi2 = 0.0000

Log likelihood = -18.143573 Pseudo R2 = 0.4835
------------------------------------------------------------------------------

nodal | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ixray_1 | 2.340448 1.084531 2.16 0.031 .2148063 4.46609
_Isize_1 | 3.137952 1.170661 2.68 0.007 .8434986 5.432406
_Igrade_1 | 9.96116 4.666701 2.13 0.033 .8145935 19.10773

logacid | 1.708528 1.420389 1.20 0.229 -1.075383 4.492438
_IsizXgra_~1 | -5.647741 2.434592 -2.32 0.020 -10.41945 -.8760275
_IgraXloga~1 | 10.42599 6.640313 1.57 0.116 -2.588787 23.44076

_cons | -2.552712 1.039703 -2.46 0.014 -4.590494 -.5149311
------------------------------------------------------------------------------
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***************** Make sure you understand what variables are being fit!
------------------------------------
variable name variable label
------------------------------------
_Ixray_1 xray==1
_Isize_1 size==1
_Igrade_1 grade==1
_IsizXgra_1_1 size==1 & grade==1
_IgraXlogac_1 (grade==1)*logacid
-------------------------------------

Note that I did not actually need to use xi here since the variables were already binary and coded
as 0 and 1, but this is the safe way to do things. The fitted model is

log
(

p̂

1− p̂

)
= −2.55 + 2.34 Xray + 3.14 size + 9.96 grade + 1.71 log(acid)

−5.65 size ∗ grade + 10.43 log(acid) ∗ grade

If a primary question was the impact of a positive Xray, we can conclude that for fixed levels of
size, grade, and log(acid)

ÔR for Xray = 1 vs. Xray = 0 is e2.34 = 10.39

i.e. the odds of nodal involvement are 10.39 times higher for patients with positive X-rays than for
patients with a negative X-rays (adjusting for size, grade, and log(acid)). The lack of interaction
makes this a clean interpretation.

If a primary question was the impact of log(acid) (LA) level, then for fixed size tumor and X-ray
result, recalling 1.709 is the LA coefficient and 10.43 is the grade coefficient,

ÔR for LA + 1 vs. LA is e1.709+10.43∗grade

=

{
e1.709 = 5.52 if grade = 0
e1.709+10.43 = 186, 838 if grade = 1

For less serious tumors (grade = 0) the odds of nodal involvement increase by 5.52 for each increase
in 1 LA unit. For more serious tumors (grade=1) the odds increase by 186,838.

Remark: The log(acid)*grade interaction is not significant at the 10% level (p-value = .116).
An implication is that the estimated adjusted OR for log(acid) when grade = 1 (i.e. 186,838) is
not statistically different from the adjusted OR for log(acid) when grade = 0 (i.e. 5.52) — why?
Because in a model without the log(acid)*grade interaction, those estimated ORs would be equal.

A sensible strategy would be to refit the model without this interaction. We will discuss such
strategies later.
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