11 Logistic Regression - Interpreting Parameters

Let us expand on the material in the last section, trying to make sure we understand the logistic regression model and can interpret **Stata** output. Consider first the case of a single binary predictor, where

J	1	if exposed to factor	and	<u> </u>	1	if develops disease	
$x = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0	if not	, and	$y = \begin{cases} \\ \end{pmatrix}$	0	does not	•

Results can be summarized in a simple 2 X 2 contingency table as

	Exposure				
Disease	1	0			
1(+)	a	b			
0 (-)	с	d			

where $\widehat{OR} = \frac{ad}{bc}$ (why?) and we interpret $\widehat{OR} > 1$ as indicating a risk factor, and $\widehat{OR} < 1$ as indicating a protective factor.

Recall the logistic model: p(x) is the probability of disease for a given value of x, and

$$\operatorname{logit}(p(x)) = \log\left(\frac{p(x)}{1-p(x)}\right) = \alpha + \beta x.$$

Then for x = 0 (unexposed), $logit(p(x)) = logit(p(0)) = \alpha + \beta(0) = \alpha$ x = 1 (exposed), $logit(p(x)) = logit(p(1)) = \alpha + \beta(1) = \alpha + \beta$

Also,

odds of disease among unexposed: p(0)/(1-p(0))exposed: p(1)/(1-p(1))

Now

$$OR = \frac{\text{odds of disease among exposed}}{\text{odds of disease among unexposed}} = \frac{p(1)/(1-p(1))}{p(0)/(1-p(0))}$$

and

$$\beta = \operatorname{logit}(p(1)) - \operatorname{logit}(p(0)) = \log\left(\frac{p(1)}{(1-p(1))}\right) - \log\left(\frac{p(0)}{(1-p(0))}\right) = \log\left(\frac{p(1)/(1-p(1))}{p(0)/(1-p(0))}\right) = \log(OR)$$

The regression coefficient in the population model is the $\log(OR)$, hence the OR is obtained by exponentiating β ,

$$e^{\beta} = e^{\log(OR)} = OR$$

Remark: If we fit this simple logistic model to a 2 X 2 table, the estimated unadjusted OR (above) and the regression coefficient for x have the same relationship.

Example: Leukemia Survival Data (Section 10 p. 108). We can find the counts in the following table from the tabulate live iag command:

Surv ≥ 1 yr?	Ag+(x=1)	Ag- (x=0)
Yes	9	2
No	8	14

and (unadjusted) $\widehat{OR} = \frac{9(14)}{2(8)} = 7.875$.

Before proceeding with the **Stata** output, let me comment about coding of the outcome variable. Some packages are less rigid, but **Stata** enforces the (reasonable) convention that 0 indicates a negative outcome and all other values indicate a positive outcome. If you try to code something like 2 for survive a year or more and 1 for not survive a year or more, **Stata** coaches you with the error message

This data set uses 0 and 1 codes for the live variable; 0 and -100 would work, but not 1 and 2. Let's look at both regression estimates and direct estimates of unadjusted odds ratios from **Stata**.

. logit live i Logit estimate	LR ch	I OI ODD	=	$33 \\ 6.45 \\ 0.0111$			
Log likelihood	1 = -17.782396	3		Pseud	o R2	=	Ŏ.Ĭ534
live	Coef.	Std. Err.	Z	P> z	[95% Con	ıf.	Interval]
iag _cons	2.063693 -1.94591	.8986321 .7559289	2.30 -2.57	0.022 0.010	.3024066 -3.427504		3.82498 4643167
. logistic liv Logistic regre	LR ch	i2(1) > chi2	= = =	$\begin{array}{r} 33 \\ 6.45 \\ 0.0111 \\ 0.1534 \end{array}$			
live	Odds Ratio	Std. Err.	Z	P> z	[95% Con	ıf.	Interval]
iag	7.875	7.076728	2.30	0.022	1.353111		45.83187

Stata has fit $logit(\hat{p}(x)) = log\left(\frac{\hat{p}(x)}{1-\hat{p}(x)}\right) = \hat{\alpha} + \hat{\beta}x = -1.946 + 2.064 IAG$, with $\widehat{OR} = e^{2.064} = 7.875$. This is identical to the "hand calculation" above. A 95% Confidence Interval for β (IAG coefficient) is .3024066 $\leq \beta \leq 3.82498$. This logit scale is where the real work and

theory is done. To get a Confidence Interval for the odds ratio, just exponentiate everything

 $e^{.3024066} \leq e^{\beta} \leq e^{3.82498}$ 1.353111 $\leq OR \leq 45.83187$

What do you conclude?

.. . .

A More Complex Model

 $\log\left(\frac{p}{1-p}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2$, where x_1 is binary (as before) and x_2 is a continuous predictor. The regression coefficients are *adjusted log-odds ratios*.

To interpret β_1 , fix the value of x_2 :

For $x_1 = 0$

 $\begin{array}{rcl} \log \mbox{ odds of disease } &= & \alpha + \beta_1(0) + \beta_2 x_2 = \alpha + \beta_2 x_2 \\ \mbox{ odds of disease } &= & e^{\alpha + \beta_2 x_2} \end{array}$

For $x_1 = 1$

log odds of disease =
$$\alpha + \beta_1(1) + \beta_2 x_2 = \alpha + \beta_1 + \beta_2 x_2$$

odds of disease = $e^{\alpha + \beta_1 + \beta_2 x_2}$

Thus the odds ratio (going from $x_1 = 0$ to $x_1 = 1$ is

$$OR = \frac{\text{odds when } x_1 = 1}{\text{odds when } x_1 = 0} = \frac{e^{\alpha + \beta_1 + \beta_2 x_2}}{e^{\alpha + \beta_2 x_2}} = e^{\beta_1}$$

(remember $e^{a+b} = e^a e^b$, so $\frac{e^{a+b}}{e^a} = e^b$), i.e. $\beta_1 = \log(OR)$. Hence e^{β_1} is the relative increase in the odds of disease, going from $x_1 = 0$ to $x_1 = 1$ holding x_2 fixed (or *adjusting for* x_2).

To interpret β_2 , fix the value of x_1 :

For $x_2 = k$ (any given value k)

 $\begin{array}{rcl} \log \mbox{ odds of disease } = & \alpha + \beta_1 x_1 + \beta_2 k \\ \mbox{ odds of disease } = & e^{\alpha + \beta_1 x_1 + \beta_2 k} \end{array}$

For $x_2 = k + 1$

log odds of disease =
$$\alpha + \beta_1 x_1 + \beta_2 (k+1)$$

= $\alpha + \beta_1 x_1 + \beta_2 k + \beta_2$
odds of disease = $e^{\alpha + \beta_1 x_1 + \beta_2 k + \beta_2}$

Thus the odds ratio (going from $x_2 = k$ to $x_2 = k + 1$ is

$$OR = \frac{\text{odds when } x_2 = k+1}{\text{odds when } x_2 = k} = \frac{e^{\alpha + \beta_1 x_1 + \beta_2 k + \beta_2}}{e^{\alpha + \beta_1 x_1 + \beta_2 k}} = e^{\beta_2}$$

i.e. $\beta_2 = \log(OR)$. Hence e^{β_2} is the relative increase in the odds of disease, going from $x_2 = k$ to $x_2 = k + 1$ holding x_1 fixed (or *adjusting for* x_1). Put another way, for every increase of 1 in x_2 the odds of disease increases by a factor of e^{β_2} . More generally, if you increase x_2 from k to $k + \Delta$ then

$$OR = \frac{\text{odds when } x_2 = k + \Delta}{\text{odds when } x_2 = k} = e^{\beta_2 \Delta} = \left(e^{\beta_2}\right)^{\Delta}$$

The Leukemia Data

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta_1 \text{ IAG} + \beta_2 \text{ LWBC}$$

where IAG is a binary variable and LWBC is a continuous predictor. Stata output seen earlier

live	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
iag	2.519562	1.090681	2.31	0.021	.3818672	4.657257
lwbc	-1.108759	.4609479	-2.41	0.016	-2.0122	2053178
_cons	5.543349	3.022416	1.83	0.067	380477	11.46718

shows a fitted model of

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = 5.54 + 2.52 \text{ IAG} - 1.11 \text{ LWBC}$$

The estimated (adjusted) OR for IAG is $e^{2.52} = 12.42$, which of course we saw earlier in the **Stata** output

live	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
iag	12.42316	13.5497	2.31	0.021	1.465017	105.3468
lwbc	.3299682	.1520981	-2.41	0.016	.1336942	.8143885

The estimated odds that an Ag+ individual (IAG=1) survives at least one year is 12.42 greater than the corresponding odds for an Ag- individual (IAG=0), regardless of the LWBC (although the LWBC must be the same for both individuals).

The estimated OR for LWBC is $e^{-1.11} = .33$ ($\approx \frac{1}{3}$). For each increase in 1 unit of LWBC, the estimated odds of surviving at least a year decreases by roughly a factor of 3, regardless of ones

IAG. Stated differently, if two individuals have the same Ag factor (either + or -) but differ on their values of LWBC by one unit, then the individual with the higher value of LWBC has about 1/3 the estimated odds of survival for a year as the individual with the lower LWBC value.

Confidence intervals for coefficients and ORs are related as before. For IAG the 95% CI for β_1 yields the 95% CI for the adjusted IAG OR as follows:

We estimate that the odds of an Ag+ individual (IAG=1) surviving at least a year to be 12.42 times the odds of an Ag- individual surviving at least one year. We are 95% confident the odds ratio is between 1.465 and 105.35. How does this compare with the unadjusted odds ratio?

Similarly for LWBC, the 95% CI for β_2 yields the 95% CI for the adjusted LWBC OR as follows:

$$\begin{array}{rcrcrcc} -2.012 &\leq & \beta_2 &\leq & -.205 \\ e^{-2.012} &\leq & e^{\beta_2} &\leq & e^{-.205} \\ .134 &\leq & OR &\leq & .814 \end{array}$$

We estimate the odds of surviving at least a year is reduced by a factor of 3 (i.e. 1/3) for each increase of 1 LWBC unit. We are 95% confindent the reduction in odds is between .134 and .814.

Note that while this is the usual way of defining the OR for a continuous predictor variable, software may try to trick you. JMP IN for instance would report

$$\widehat{OR} = e^{-1.11(\max(LWBC) - \min(LWBC))} = .33^{\max(LWBC) - \min(LWBC)}.$$

the change from the smallest to the largest LWBC. That is a lot smaller number. You just have to be careful and check what is being done by knowing these relationships.

General Model

We can have a lot more than complicated models than we have been analyzing, but the principles remain the same. Suppose we have k predictor variables where k can be considerably more than 2 and the variables are a mix of binary and continuous. then we write

$$\log\left(\frac{p}{1-p}\right) = \log \text{ odds of disease} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$$

which is a logistic multiple regression model. Now fix values of x_2, x_3, \ldots, x_k , and we get

odds of disease for
$$x_1 = c$$
: $e^{\alpha + \beta_1 c + \beta_2 x_2 + \dots + \beta_k x_k}$
 $x_1 = c + 1$: $e^{\alpha + \beta_1 (c+1) + \beta_2 x_2 + \dots + \beta_k x_k}$

The odds ratio, increasing x_1 by 1 and holding x_2, x_3, \ldots, x_k fixed at any values is

$$OR = \frac{e^{\alpha + \beta_1(c+1) + \beta_2 x_2 + \dots + \beta_k x_k}}{e^{\alpha + \beta_1 c + \beta_2 x_2 + \dots + \beta_k x_k}} = e^{\beta_1}$$

That is, e^{β_1} is the increase in odds of disease obtained by increasing x_1 by 1 unit, holding x_2, x_3, \ldots, x_k fixed (i.e. adjusting for levels of x_2, x_3, \ldots, x_k). For this to make sense

- x_1 needs to be binary or continuous
- None of the remaining effects x_2, x_3, \ldots, x_k can be an interaction (product) effect with x_1 . I will say more about this later! The essential problem is that if one or more of x_2, x_3, \ldots, x_k depends upon x_1 then you cannot mathematically increase x_1 and simultaneously hold x_2, x_3, \ldots, x_k fixed.

Example: The UNM Trauma Data

The data to be analyzed here were collected on 3132 patients admitted to The University of New Mexico Trauma Center between the years 1991 and 1994. For each patient, the attending physician recorded their age, their revised trauma score (RTS), their injury severity score (ISS), whether their injuries were blunt (i.e. the result of a car crash: BP=0) or penetrating (i.e. gunshot wounds: BP=1), and whether they eventually survived their injuries (DEATH = 1 if died, DEATH = 0 if survived). Approximately 9% of patients admitted to the UNM Trauma Center eventually die from their injuries.

The ISS is an overall index of a patient's injuries, based on the approximately 1300 injuries cataloged in the Abbreviated Injury Scale. The ISS can take on values from 0 for a patient with no injuries to 75 for a patient with 3 or more life threatening injuries. The ISS is the standard injury index used by trauma centers throughout the U.S. The RTS is an index of physiologic injury, and is constructed as a weighted average of an incoming patient's systolic blood pressure, respiratory rate, and Glasgow Coma Scale. The RTS can take on values from 0 for a patient with no vital signs to 7.84 for a patient with normal vital signs.

Champion et al. (1981) proposed a logistic regression model to estimate the probability of a patient's survival as a function of RTS, the injury severity score ISS, and the patient's age, which is used as a surrogate for physiologic reserve. Subsequent survival models included the binary effect BP as a means to differentiate between blunt and penetrating injuries. We will develop a logistic model for predicting *death* from ISS, AGE, BP, and RTS.

Figure 1 shows side-by-side boxplots of the distributions of ISS, AGE, and RTS for the survivors and non-survivors, and a bar chart showing proportion penetrating injuries for survivors and nonsurvivors. Survivors tend to have lower ISS scores, tend to be slightly younger, and tend to have higher RTS scores, than non-survivors. The importance of the effects individually towards predicting survival is directly related to the separation between the survivors and non-survivors scores. There are no dramatic differences in injury type (BP) between survivors and non-survivors.

Figure 1 was generated with the following Stata code. Earlier in the semester I was avoiding using the **relabel** option; it is much better to do things this way, but note the 1 and 2 refer to alphabetic order of values, not to the actual values. Bar graphs in Stata are a little tricky – this one worked, but had there been several values of BP or had they been coded other than 0 and 1 this would not have worked. In the latter case one needs to create separate indicator variables of categories (as an option to tabulate): See

http://www.stata.com/support/faqs/graphics/piechart.html for a discussion.

```
graph box iss, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(ISS) title(ISS by Death) name(iss)
```

graph box rts, over(death, relabel(1 "Survived" 2 "Died") descending) ///
ytitle(RTS) title(RTS by Death) name(rts)

- graph box age, over(death, relabel(1 "Survived" 2 "Died") descending) ///
 ytitle(Age) title(Age by Death) name(age)
- graph bar bp, over(death, relabel(1 "Survived" 2 "Died") descending) ///

```
ytitle("Proportion Penetrating") title("Penetrating by Death") name(bp)
graph combine iss rts age bp
```

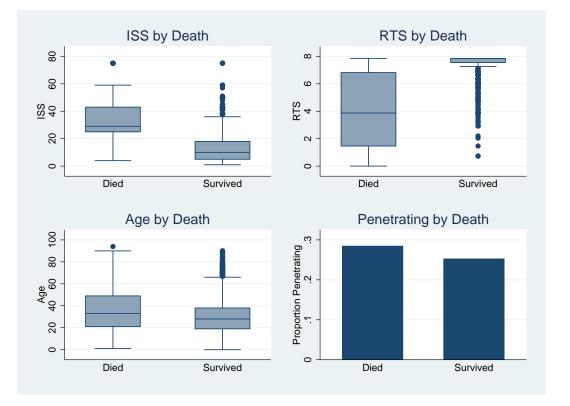


Figure 1: Relationship of predictor variables to death

Stata Analysis of Trauma Data

. logistic dea Logistic regre	ession	LR ch Prob	> chi2 =	3132 933.34 0.0000		
Log likelihood	1 = -446.01414			Pseud	.o R2 =	0.5113
death	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
iss bp rts age _cons	.0651794 1.001637 8126968 .048616 5956074	.0071603 .227546 .0537066 .0052318 .4344001	$9.10 \\ 4.40 \\ -15.13 \\ 9.29 \\ -1.37$	0.000 0.000 0.000 0.000 0.170	.0511455 .5556555 9179597 .0383619 -1.447016	.0792134 1.447619 7074339 .05887 .2558011
. logistic dea Logistic regre	LR ch	> chí2 =	3132 933.34 0.0000 0.5113			
death	Odds Ratio	Std. Err.	Z	P> z	[95% Conf.	Interval]
iss bp rts age	1.067351 2.722737 .44366 1.049817	.0076426 .6195478 .0238275 .0054924	9.10 4.40 -15.13 9.29	0.000 0.000 0.000 0.000	1.052476 1.743083 .399333 1.039107	1.082435 4.252978 .4929074 1.060637

. estat gof

Logistic model for death, goodness-of-fit test

number of observations = 3132 number of covariate patterns = 2096

2039.73
0.7849
of-fit test
estimated probabilities)
3132
10
10.90
0.2072

There are four effects in our model: ISS, BP (a binary variable), RTS, and AGE. Looking at the goodness of fit tests, there is no evidence of gross deficiencies with the model. The small p-value (<.0001) for the LR chi-squared statistic implies that one or more of the 4 effects in the model is important for predicting the probability of death. The tests for parameters suggest that each of the effects in the model is significant at the .001 level (p-values < .001).

The fitted logistic model is

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = -.596 + .065\text{ISS} + 1.002\text{BP} - .813\text{RTS} + .049\text{AGE},$$

where \hat{p} is the estimated probability of death.

The table below is in a form similar to Fisher et al's AJPH article (with this lecture). The estimated odds ratio was obtained by exponentiating the regression estimate. The CI endpoints for the ORs were obtained by exponentiating the CI endpoints for the corresponding regression parameter. JMP-IN (and some authors) would report different ORs for the continuous variables, for instance 124.37 for ISS (instead of the 1.067 we are reporting). (Why?). Everybody will agree on the coefficient, but you need to be very careful what OR is being reported and how you interpret it.

The p-value for each regression effect is smaller than .05, so the 95% CI for each OR excludes 1 (i.e. each regression coefficient is significantly different from zero so each OR is significantly different from 1). Thus, for example, the odds of dying from a penetrating injury (BP=1) is 2.72 times greater than the odds of dying from a blunt trauma (BP=0). We are 95% confident that the population odds ratio is between 1.74 and 4.25.

Do the signs of the estimated regression coefficients make sense? That is, which coefficients would you expect to be positive (leading to an OR greater than 1).

Effect	Estimate	Std Error	P-value	Odds Ratio	$95\%~{ m CI}$
ISS	.065	.007	< .001	1.067	(1.052, 1.082)
BP	1.002	.228	< .001	2.723	(1.743, 4.253)
RTS	813	.054	< .001	0.444	(0.399, 0.493)
AGE	.049	.005	< .001	1.050	(1.039, 1.061)

Logistic Models with Interactions

Consider the hypothetical problem with two binary predictors x_1 and x_2

	x_2	= 0	$x_2 = 1$		
	x	1	x_1		
Disease	1	0	1	0	
+	1	9	9	1	
_	45	45	45	45	

The *OR* for $x_1 = 1$ versus $x_1 = 0$ when $x_2 = 0$: $\widehat{OR} = \frac{1(45)}{9(45)} = \frac{1}{9}$ The *OR* for $x_1 = 1$ versus $x_1 = 0$ when $x_2 = 1$: $\widehat{OR} = \frac{9(45)}{1(45)} = 9$

A simple logistic model for these data is $logit(p) = \alpha + \beta_1 x_1 + \beta_2 x_2$. For this model, OR for $x_1 = 1$ versus $x_1 = 0$ for fixed x_2 is e^{β_1} . That is, the adjusted OR for x_1 is *independent of the value of* x_2 . This model would appear to be inappropriate for the data set above where the OR of x_1 is very different for $x_2 = 0$ than it is for $x_2 = 1$.

A simple way to allow for the odds ratio to depend on the level of x_2 is through the interaction model

 $\operatorname{logit}(p) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 * x_2$

where the *interaction* term $x_1 * x_2$ is the product (in this case) of x_1 and x_2 . In some statistical packages the interaction variable must be created in the spreadsheet (that always works), and in others it can (much more conveniently) be added to the model directly. **Stata** is in the former category, although the **xi** structure allows interaction terms to be generated automatically. That becomes much more important with multi-level (3 or more) factors.

To interpret the model, let us consider the 4 possible combinations of the binary variables:

		Group	x_1	x_2	$x_1 * x_2$	
		А	0	0	0	
		В	0	1	0	
		\mathbf{C}	1	0	0	
		D	1	1	1	
Group	Ι	Log Odds	of D	iseas	е	Odds of Disease
А	$\alpha + \beta$	$f_1(0) + \beta_2$	(0) +	$\cdot \beta_3(0$	$) = \alpha$	e^{lpha}
В	$\alpha + \beta_1(0)$	$) + \beta_2(1)$	$+\beta$	$_{3}(0) =$	= $\alpha + \beta_2$	$e^{lpha+eta_2}$
\mathbf{C}	$\alpha + \beta_1(1)$	$(1) + \beta_2(0)$	$+\beta$	$_{3}(0) =$	$= \alpha + \beta_1$	$e^{lpha+eta_1}$
D	$\alpha + \beta_1(1) + \beta_2(1) + \beta_2(1)$	$\beta_2(1) + \beta_3$	(1) =	= <i>a</i> +	$\beta_1 + \beta_2 + \beta_2 + \beta_3 + \beta_2 + \beta_3 $	$e^{\beta_3} e^{\alpha+\beta_1+\beta_2+\beta_3}$

Group A is the baseline or reference group. The parameters α , β_1 , and β_2 are easily interpreted. The odds of disease for the baseline group $(x_1 = x_2 = 0)$ is e^{α} – the same interpretation applies when interaction is absent. To interpret β_1 note OR for Group C vs. Group A is $\frac{e^{\alpha+\beta_1}}{e^{\alpha}} = e^{\beta_1}$. This is OR for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 0$. Similarly OR for Group B vs. Group A is $\frac{e^{\alpha+\beta_2}}{e^{\alpha}} = e^{\beta_2}$. This is OR for $x_2 = 1$ vs. $x_2 = 0$ when $x_1 = 0$.

In an interaction model, the OR for $x_1 = 1$ vs. $x_1 = 0$ depends on the level of x_2 . Similarly the OR for $x_2 = 1$ vs. $x_2 = 0$ depends on the level of x_1 . For example,

$$OR$$
 for group D vs. B = $\frac{e^{\alpha+\beta_1+\beta_2+\beta_3}}{e^{\alpha+\beta_2}} = e^{\beta_1+\beta_3}$

This is OR for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 1$. Recalling that e^{β_1} is OR for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 0$, we have

$$OR(x_1 = 1 \text{ vs. } x_1 = 0 \text{ when } x_2 = 1) = OR(x_1 = 1 \text{ vs. } x_1 = 0 \text{ when } x_2 = 0) * e^{\beta_3} \\ e^{\beta_1 + \beta_3} = e^{\beta_1} * e^{\beta_3}$$

Thus e^{β_3} is the factor that relates the OR for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 0$ to the OR when $x_2 = 1$. If $\beta_3 = 0$ the two OR are identical, i.e. x_1 and x_2 do not interact. Similarly,

$$OR(x_2 = 1 \text{ vs. } x_2 = 0 \text{ when } x_1 = 1) = OR(x_2 = 1 \text{ vs. } x_2 = 0 \text{ when } x_1 = 0) * e^{\beta_3}$$

 $e^{\beta_2 + \beta_3} = e^{\beta_2} * e^{\beta_3}$

so e^{β_3} is also the factor that relates the OR for $x_2 = 1$ vs. $x_2 = 0$ at the two levels of x_1 . An important and no doubt fairly obvious point to take away from this is that the regression coefficients are harder to interpret in models with interactions!

Stata Analysis: Let's fit this interaction example (data from page 118) using **Stata**. We could actually do this particular example easily without using **xi**, but we won't be so lucky in the future.

. list,clean				
•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
<pre>. xi: logistic Disease i.x1 i.x2 i.x i.x1 _Ix1_0-1 i.x2 _Ix2_0-1 i.x1*i.x2 _Ix1Xx2_#_# note: _Ix1_1 dropped due to collinear note: _Ix2_1 dropped due to collinear</pre>	(naturall (naturall (coded as ity	y coded; y coded;	coef _Ix1_0 omitt _Ix2_0 omitt	ed) ed)
Logistic regression	-		r of obs =	
Log likelihood = -58.295995		LR ch Prob Pseud	i2(3) = > chi2 = o R2 =	13.44 0.0038 0.1034
Disease Coef. Std. Err.	Z	P> z	[95% Conf.	Interval]
	-2.04 -2.04 2.89 -4.41	0.004	-4.303975 -4.303975 1.415054 -2.325116	7.373844
. xi: logistic Disease i.x1 i.x2 i.x i.x1Ix1_0-1 i.x2Ix2_0-1 i.x1*i.x2Ix1Xx2_#_# note: _Ix1_1 dropped due to collinear note: _Ix2_1 dropped due to collinear	(naturall (naturall (coded as ity	y coded; y coded;	_Ix1_0 omitt _Ix2_0 omitt	
Logistic regression	-	Numbe	r of obs =	
Log likelihood = -58.295995		LR ch Prob Pseud	i2(3) = > chi2 = o R2 =	13.44 0.0038 0.1034
Disease Odds Ratio Std. Err.	Z	P> z	[95% Conf.	Interval]
_Ix2_1 .1111111 .1194325	-2.04 -2.04 2.89	0.041		.913498

The fitted model is

 $logit(p) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 * x_2 = -1.61 - 2.20x_1 - 2.20x_2 + 4.39x_1 * x_2$

Note that $e^{\hat{\beta}_1} = e^{-2.20} = \frac{1}{9} =$ estimated *OR* for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 0$. Also,

$$e^{\beta_1+\beta_3} = e^{-2.20+4.39} = e^{2.19} = 9 =$$
 estimated *OR* for $x_1 = 1$ vs. $x_1 = 0$ when $x_2 = 1$

Note that

 $e^{\hat{\beta}_3} = e^{4.39} = 81 = \text{ mult. factor that relates } OR \text{ for } x_1 = 1 \text{ vs. } x_1 = 0 \text{ at the } 2 \text{ levels of } x_2$ Make sure you see how **Stata** agrees with these calculations.

A More Complex Interaction Model

The treatment regime to be adopted for patients who have been diagnosed as having prostate cancer is crucially dependent on whether the cancer has spread to the surrounding lymph nodes. A laparatomy (a surgical incision into the abdominal cavity) may be performed to ascertain the extent of this nodal involvement. There are a number of variables that are indicative of nodal involvement which can be measured without surgery. The aim of the study for which the data were collected was to determine if a combination of 5 variables could be used to predict whether cancer has spread to the lymph nodes. The 5 variables are: age of patient at diagnosis (years), level of serum acid phosphatase (in King-Armstrong units), result of X-ray examination (0=negative, 1=positive), size of tumor by rectal examination (0=small, 1=large), and a summary of pathological grade of tumor from biopsy (0=less serious, 1=serious). The response variable is involvement of lymph node (0=no, 1=yes). Fifty-three patients were enrolled in the study.

A published analysis suggested the following model for the probability p of nodal involvement

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta_1 \operatorname{Xray} + \beta_2 \operatorname{size} + \beta_3 \operatorname{grade} + \beta_4 \log(\operatorname{acid}) + \beta_5 \operatorname{size}^*\operatorname{grade} + \beta_6 \log(\operatorname{acid})^*\operatorname{grade}$$

The model contains **3** binary variables (Xray, size, and grade), **1** continuous variable (log(acid)), and **2** interactions, or product effects (size*grade) and log(acid)*grade). the size*grade interaction involves two binary variables, as considered in the previous example, whereas the log(acid)*grade interaction term involves a binary and a continuous variable. for each case in the data set

$$\log(acid)^*grade = \begin{cases} 0 & \text{if grade} = 0\\ \log(acid) & \text{if grade} = 1 \end{cases}$$

Note that the model excludes age.

Interpreting the Regression Coefficients

For any regression variable that is *not included* in an interaction, the regression coefficient is an adjusted log OR, and is independent of levels of the other factors in the model. For example, for fixed size, grade, and acid levels

(OR for Xray = 1 vs. Xray = 0) =
$$\frac{e^{\alpha+\beta_1(1)+\beta_2 \text{ size }+\cdots}}{e^{\alpha+\beta_1(0)+\beta_2 \text{ size }+\cdots}} = e^{\beta_1}$$

The size*grade interaction means that the adjusted OR for size = 1 vs. size = 0 depends on grade. The log(acid)*grade interaction means that the adjusted OR for log(acid) depends on grade. To see this, let LA = log(acid). Then odds of nodal involvement = $e^{\alpha + \beta_1 Xray + \beta_2 size + \beta_3 grade + \beta_4 LA + \beta_5 size*grade + \beta_6 LA*}$ so for fixed Xray, size, and grade

$$\frac{\text{odds of nodal involvment at } \text{LA} + 1}{\text{odds of nodal involvment at } \text{LA}} = \frac{exp(\alpha + \beta_1 \text{Xray} + \beta_2 \text{size} + \beta_3 \text{grade} + \beta_4 (\text{LA} + 1) + \beta_5 \text{size} * \text{grade} + \beta_6 (\text{LA} + 1) * \text{grade})}{exp(\alpha + \beta_1 \text{Xray} + \beta_2 \text{size} + \beta_3 \text{grade} + \beta_4 \text{LA} + \beta_5 \text{size} * \text{grade} + \beta_6 \text{LA} * \text{grade})}{e\beta_4 + \beta_6 \text{grade}} = \begin{cases} e^{\beta_4} & \text{grade} = 0\\ e^{\beta_4 + \beta_6} & \text{grade} = 1 \end{cases}$$

This adjusted OR depends on grade (because LA and grade interact), but not on size or Xray (because LA does not interact with either). We can interpret β_6 , the LA*grade coefficient, as a measure of how the adjusted OR for LA changes with grade.

Given that the model contains a size*grade and a log(acid)*grade interaction, the adjusted OR for grade depends on the size and log(acid) levels. I'll note, but you can easily show,

 $\frac{\text{odds for nodal involvement for grade} = 1}{\text{odds for nodal involvement for grade} = 0} = e^{\beta_3 + \beta_5 \text{size} + \beta_6 \log(\text{acid})}$

where β_5 is the grade*size coefficient and β_6 is the log(acid)*grade coefficient.

In summary, interactions among variables make interpretations of effects of individual variables on OR harder (OK, *lots* harder!) The ideal world has no interactions — but we don't live in such a world.

Stata Analysis

Raw data are available on the web page. Output from fitting the model in **Stata** follows:

```
. gen logacid=log(acid)
. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid
i.xray
                    _Ixray_0-1
                                           (naturally coded; _Ixray_0 omitted)
                                           (naturally coded; _Isize_0 omitted)
(naturally coded; _Igrade_0 omitted)
i.size
                     _Isize_0-1
                    _Igrade_0-1
i.grade
i.size*i.grade
                    _IsizXgra_#_#
                                           (coded as above)
i.grade*logacid
                    _IgraXlogac_#
                                           (coded as above)
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
                                                         Number of obs
Logistic regression
                                                                                      53
                                                                                   33.97
                                                         LR chi2(6)
                                                                           =
                                                         Prob > chi2
Pseudo R2
                                                                                  0.0000 \\ 0.4835
Log likelihood = -18.143573
        nodal
                 Odds Ratio
                                Std. Err.
                                                      P>|z|
                                                                  [95% Conf.
                                                                              Interval]
                                                 z
                   10.38589
                                11.26382
                                              2.16
                                                                  1.239622
     _Ixray_1 |
                                                      0.031
                                                                               87.01579
     _Isize_1
                   23.05661
                                26.99148
                                              2.68
                                                      0.007
                                                                  2.324485
                                                                               228.6989
    _Igrade_1
                   21187.36
                                98875.09
                                              2.13
                                                      0.033
                                                                  2.258257
                                                                               1.99e+08
     logacid
                   5.520827
                                                                               89.33903
                                7.841721
                                              1.20
                                                      0.229
                                                                  .3411671
_IsizXgra_~1
                   .0035255
                                .0085831
                                              -2.32
                                                      0.020
                                                                  .0000298
                                                                                .4164339
                   33724.72
                                223942.7
                                              1.57
                                                                  .0751111
_IgraXloga~1 |
                                                      0.116
                                                                               1.51e+10
. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid,coef
                    _Ixray_0-1
i.xray
                                           (naturally coded; _Ixray_0 omitted)
                                           (naturally coded; _Isize_0 omitted)
(naturally coded; _Igrade_0 omitted)
i.size
                     _Isize_0-1
                    _Igrade_0-1
i.grade
i.size*i.grade
                    _IsizXgra_#_#
                                           (coded as above)
                                           (coded as above)
i.grade*logacid
                    _IgraXlogac_#
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
Logistic regression
                                                         Number of obs
                                                                                      53
                                                                                  33.97
0.0000
0.4835
                                                         LR chi2(6)
                                                                           =
                                                        Prob > chi2
Pseudo R2
                                                                           =
Log likelihood = -18.143573
                                                                          =
        nodal
                      Coef.
                                Std. Err.
                                                 z
                                                      P>|z|
                                                                  [95% Conf. Interval]
    _Ixray_1 |
                   2.340448
                                1.084531
                                              2.16
                                                      0.031
                                                                  .2148063
                                                                                4,46609
                                                                  .8434986
                                1.170661
                                              2.68
                                                      0.007
                   3.137952
                                                                               5.432406
     Isize_1
   _Igrade_1
                    9.96116
                                4.666701
                                              2.13
                                                      0.033
                                                                  .8145935
                                                                               19.10773
     logacid
                   1.708528
                                1.420389
                                              1.20
                                                      0.229
                                                                 -1.075383
                                                                               4.492438
_IsizXgra_~1 |
                  -5.647741
                                2.434592
                                             -2.32
                                                      0.020
                                                                 -10.41945
                                                                              -.8760275
_IgraXloga~1 |
                   10.42599
                                6.640313
                                              1.57
                                                      0.116
                                                                 -2.588787
                                                                               23.44076
     _cons |
                                                                 -4.590494
                                                                              -.5149311
                  -2.552712
                                1.039703
                                              -2.46
                                                      0.014
```

variable name	variable label
_Ixray_1 Isize 1	xray==1 size==1
_Isize_1 _Igrade_1 _IsizXgra_1_1	grade==1 size==1 & grade==1
_IgraXlogac_1	(grade==1)*logacid

**************** Make sure you understand what variables are being fit!

Note that I did not actually need to use xi here since the variables were already binary and coded as 0 and 1, but this is the safe way to do things. The fitted model is

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = -2.55 + 2.34 \text{ Xray} + 3.14 \text{ size} + 9.96 \text{ grade} + 1.71 \log(\text{acid}) -5.65 \text{ size} * \text{grade} + 10.43 \log(\text{acid}) * \text{grade}$$

If a primary question was the impact of a positive Xray, we can conclude that for fixed levels of size, grade, and log(acid)

$$\widehat{OR}$$
 for Xray = 1 vs. Xray = 0 is $e^{2.34} = 10.39$

i.e. the odds of nodal involvement are 10.39 times higher for patients with positive X-rays than for patients with a negative X-rays (adjusting for size, grade, and log(acid)). The lack of interaction makes this a clean interpretation.

If a primary question was the impact of log(acid) (LA) level, then for fixed size tumor and X-ray result, recalling 1.709 is the LA coefficient and 10.43 is the grade coefficient,

$$\widehat{OR} \text{ for LA} + 1 \text{ vs. LA is } e^{1.709 + 10.43 \text{*grade}} \\ = \begin{cases} e^{1.709} &= 5.52 & \text{if grade} = 0 \\ e^{1.709 + 10.43} &= 186,838 & \text{if grade} = 1 \end{cases}$$

For less serious tumors (grade = 0) the odds of nodal involvement increase by 5.52 for each increase in 1 LA unit. For more serious tumors (grade=1) the odds increase by 186,838.

Remark: The $\log(\operatorname{acid})^*$ grade interaction is not significant at the 10% level (p-value = .116). An implication is that the estimated adjusted OR for $\log(\operatorname{acid})$ when $\operatorname{grade} = 1$ (i.e. 186,838) is not statistically different from the adjusted OR for $\log(\operatorname{acid})$ when $\operatorname{grade} = 0$ (i.e. 5.52) — why? Because in a model without the $\log(\operatorname{acid})^*$ grade interaction, those estimated ORs would be equal.

A sensible strategy would be to refit the model without this interaction. We will discuss such strategies later.