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Hotelling's Rule is the observation that the exploitation of a nonrenewable
resource can only be economically e�cient if the resource owner's marginal
pro�t increases at the prevailing discount rate. This has been a perennial topic
in the literature of resource economics since the 1970s, with some authors ex-
tending the theory and others analyzing empirical data. This paper reports on
the results from using agent-based modeling to assess the consequences of re-
laxing the optimality constraint to explore the ways in which the outcome space
converges on Hotelling's Rule in the limit. The agent-based model (ABM) in
this paper has one choice variable: increase, decrease, or maintain the current
production level - based on one rule: choose the change in production level
that maximizes estimated discounted pro�t. The results, based on a costless
technology and a stylized demand function from Hotelling, indicate that to-
tal discounted pro�t has low sensitivity to deviations from the optimum. In
extending the basic Hotelling model to stylized production technologies with
cost, the simple ABM falls short of the optimum by as much as ten percent,
depending on the magnitude and whether the cost is �xed, marginal, or based
on the resource stock level. The optimization errors of the ABM are similar to
the errors of a human production planner with incomplete information. The
ABM also exhibits emergent collusion-like and Cournot-like behaviors when
extended to a small oligopoly market.(JEL Q32)
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�They're more what you'd call guidelines than actual rules.�

-Hector Barbosa in Pirates of the Caribbean:

The Curse of the Black Pearl

With regard to Hotelling's Rule, Captain Barbosa might well have said �it's more what
you'd call an outcome than an actual rule.� Hotelling (1931) observes that the owner of
a �nite natural resource is indi�erent to either exploiting it or leaving it in situ when the
marginal pro�t increases at the prevailing interest rate. The rationale is that, if the return
is lower than this, the resource owner will shift assets to a better performing investment.
If the return is greater, the owner will leave the resource where it is as it appreciates faster
than other investments. In other words, the resource will not be produced at all unless it
can be produced at a rate that returns the prevailing interest rate.
Hotelling noted that this sets the upper limit on a monopoly producer's pro�t from pro-

duction. To explain this, it is necessary to appeal to the law of demand. For a downward-
sloping demand curve, the monopoly producer can only increase the price by decreasing the
production level. Hotelling's Rule says that if the producer decreases production at a rate
that makes the marginal pro�t change by the interest rate, total pro�t from the resource
will be maximized. If the production level is changed in any other way, total pro�t will be
less than the maximum.
Hotelling's Rule is often called the r-percent rule and paraphrased as �the price must

increase by r percent,� r referring to the interest rate.1 The producer pro�t, or scarcity
rent, is paid by the consumer, and is also called user cost. If pro�t is increasing by r-percent,
then user cost is also increasing by r-percent. Using dynamic optimization, Hotelling shows
that the r-percent rule is the outcome of the producer maximizing pro�t, rather than a
rule for the producer to follow.
The responsibility for naming it a rule may fall on Robert Solow, who �rst used the term

�Hotelling's rule� in his Ely Lecture presented to the 1973 conference of the American Eco-
nomic Association (Solow, 1974, p 12). In reference to this, Solow re�ects that �Hotelling's
concept is not a 'rule' at all in the appropriate sense. It doesn't enjoin anything. Phelps's
Golden Rule is and does. Hotelling's principle is a description of what a foresighted com-
petitive market would do, under simple conditions. Neither Phelps's nor Hartwick's rule
has that property. They have to be imposed.�2 Nonetheless, the term �Hotelling's Rule�
appears in countless texts and papers and is well-known - even beloved - to generations of
natural resource economists.

1Strictly speaking, price is not identical to marginal pro�t, particularly in a monopoly market.
2From a personal communication dated 25 May 2010.
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1 Background

Gaudet (2007) presents an excellent historical and contextual background for Hotelling's
1931 paper, from which the points in this paragraph are excerpted. The potential exhaus-
tion of natural resources was a politically charged topic in the early twentieth century. Early
economic models of exhaustible natural resources were based on static equilibrium, moti-
vating Hotelling to develop a dynamical model. The result was a �rst-order optimization,
with reference to speci�c cases requiring calculus of variations. Though straightforward by
modern standards, the approach was mathematically sophisticated for the time, so the key
�nding languished until interest in exhaustible resources reemerged in the 1970s.
Devarajan and Fisher (1981) review the �rst �fty years of theoretical developments based

on the Hotelling model. Much of that work is shown to pertain to issues that Hotelling
raised but did not pursue, such as the e�ects of cumulative production and uncertainty in
stock size. Krautkraemer (1998) adds another decade and a half and includes developments
in the econometric search for evidence of Hotelling's Rule. Another ten years are added to
the Hotelling time line by Livernois (2009). For the purposes of this paper, there are two
main themes of interest in the Hotelling's Rule literature: theoretical e�orts to broaden
the scope of Hotelling's Rule, and econometric e�orts to �nd evidence of the Hotelling's
Rule outcome.

1.1 The evolving theory of nonrenewable resources

Hotelling's Rule says that scarcity rents must be increasing by r-percent, which implies,
ceteras paribus, that price should be increasing by r-percent. There are, however, theoret-
ical bases for decoupling the trend in market price from the trend in scarcity rents. Solow
(1974, p. 3) suggests that if extraction costs fall by more than scarcity rents increase,
the trend in market price may be downward. He notes, however, that eventually scarcity
rent will dominate market price. Krautkraemer (1998) presents theoretical extensions to
the Hotelling model to take into account variable stock levels due to exploration, cost of
capital, capacity constraints, ore quality, and market imperfections.
Heal (1976) presents a model in which stock e�ects produce a declining resource value.

Levhari and Liviatan (1977) explore the conditions under which a resource becomes eco-
nomically nonviable but not physically depleted, a situation that arises with cumulative
production (stock) costs. Livernois and Martin (2001) illustrate circumstances in which
market prices rise while scarcity rents decline to zero because of resource degradation.
Pindyck (1978) and Livernois and Uhler (1987) suggest that bringing new deposits into

production as the result of exploration produces a U-shaped price path. Slade (1982)
proposes a U-shaped price trend due to technological advances early in production and
scarcity rents late in production. Similarly, Dasgupta and Heal (1980) and Arrow and
Chang (1982) propose models of exploration that produce a saw-tooth price curve. Cairns
and Van Quyen (1998) propose a model that combines exploration and stock e�ects in
which the price trend is downward for most of the stock lifetime, but rises to the choke
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price at the end.
Much of the preceding theoretical development is motivated by studies of various re-

source markets in which no long-term price increase is evidenced. Each represents a major
undertaking to explore a simple extension of the Hotelling model, with the exception of
Cairns and Van Quyen (1998), which incorporates two simple extensions.
Hotelling presents a perfectly competitive model and a monopoly model, then makes

suggestions as to what happens when it is a duopoly market. He describes what, in game
theory parlance, is called the cooperation-defection problem. Hotelling notes that with
an exhaustible resource, the defector has an incentive to raise the price, unlike in static
equilibrium in which the defector has cause to lower price (and increase sales). With an
exhaustible resource, the defector knows that if the competitor doesn't match the higher
price, the defector will be at an advantage later as the resource becomes more scarce.
Salant (1976) presents a highly notional model of prices in an oligopoly market for an

exhaustible resource. An intriguing outcome of this model is that, for a market where some
competitors form a cartel and the rest do not, a portion of the scarcity rents is transferred
away from the cartel to be shared by the competitive fringe.
Stiglitz (1976) observes that a monopoly in an exhaustible resource market has less

market power than in the market for a non-exhaustible resource. This point is supported
by Lewis et al. (1979) and con�rmed by Pindyck (1987). The result is challenged by
Gaudet and Lasserre (1988), however, who point out the Stiglitz non-exhaustible model
assumes in�nite input capacity, while inputs in the exhaustible models are, by de�nition,
limited. By treating the monopoly and competitive models as having the same input
capacity constraint, Gaudet and Lasserre show that the monopolist's market power is the
same whether the resource is exhaustible or not.
The principal barrier to theoretical expansion of the Hotelling model is that dynamic

optimization is di�cult to characterize in general terms. Hotelling found it necessary to
resort to speci�c demand functions in order to explore implications of the base, costless
model. (Livernois, 2009) notes that the Hotelling model becomes complex when extended
to include factors like resource degradation. Krautkraemer (1998) is able to make general
statements about the stock cost term by breaking the base case into a bene�t term and a
cost term, but does not carry the theoretical development into the extensions.
Agent-based modeling can be a laboratory for exploring and experimenting with pro-

posed extensions to the Hotelling model. Because agent-based modeling is a causal frame-
work, the researcher must express the behavior in terms of what an agent - a resource
producer, for example - would do under conditions that arise in simulation. For an explo-
ration model in which the resource deposits are discovered in decreasing quality (Pindyck,
1987, Livernois and Uhler, 1987), the new deposits come into existence sequentially: each
deposit is exploited until its costs equal those of the next most costly (lesser quality) de-
posit, then production shifts to that one. In other models the quality of newly discovered
deposits is random (Swierzbinski and Mendelsohn, 1989), which has the e�ect of �attening
the price curve. Agent-based modeling is well suited to comparing the outcomes of these
two models.
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1.2 Studies of the markets for nonrenewable resources

A decade before the birth of modern environmental and natural resource economics in the
1970s, Barnett and Morse (1963) �nds that, over the period 1870 to 1957, resource prices
show no discernible trend, despite continuous and often rapid increases in their production.
More then a decade and a half later, Smith (1979) con�rms these �ndings using more
sophisticated techniques on data from 1900 to 1973. Fisher (1981, p. 102-103) concurs
that there are no discernible trends in overall resource prices in the results of Barnett and
Morse (1963), but notes that factor costs fell more rapidly than resource prices during this
period, so there is evidence for some increase in rents during that time. Alternatively,
Brown and Field (1978) assert that Barnett and Morse neglected to include some factor
costs, notably transportation. Brown and Field point out that the �rst three-quarters of
the twentieth century - the period covered by the study - was a period of dramatic technical
and social change.
Halvorsen and Smith (1991) note that �the principle obstacle to empirical tests of the

theory of exhaustible resources has been data availability.� Since actual marginal cost and,
therefore, actual user cost, are not observable, many of the market studies are essentially
assessments of the suitability of proxies for these.
Nordhaus (1973, p. 566) observes that, on the average, scarcity rents on energy resources

were "quite modest," on the order of one dollar per barrel of petroleum.3 He notes that
the exception was petroleum itself, for which market prices were 2.4 times his calculated
optimal price, which includes scarcity rent. A year later, Nordhaus (1974) found no trend
in mineral prices between 1900 and 1970. Nordhaus is responsible for the term "backstop
technology," referring to nuclear power as the technology that would, ultimately, limit the
maximum price on petroleum and eliminate energy scarcity (Nordhaus, 1973, p. 532).
Some researchers have found evidence of U-shaped price curves, such as Slade (1982),

who postulated that the price trend was due to falling input costs early in production and
rising scarcity costs at the end of resource lifetime. Berck and Roberts (1996) examine
a larger data set that includes most of the data used by Slade. They �nd that price
predictions depend on whether prices are modeled as trend-stationary or as di�erence-
stationary. They also �nd that trend-stationary models predict rising resource prices while
di�erence-stationary models are ambiguous.
Heal and Barrow (1980) develop an arbitrage model which is an attempt to detect,

directly, the Hotelling outcome. They assert that, in an e�cient resource market, �there
will be a strong association between the rates of change of resource prices and the rates
of return on other assets.� They found, however, that changes in interest rates were the
relevant explanatory variables, not the interest rate levels. They conclude that simple
equilibrium theory is inadequate to the complexity of the problem.
Stollery (1983) estimates the cost function for the price-leader in the nickel market and

infers user cost by subtracting marginal cost from market price. User cost is found to be

3For the years 1970-1973, crude oil prices averaged less than three dollars per barrel in current dollars.
http://www.eia.doe.gov/aer/txt/ptb1107.html (accessed 14 April 2011)
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low initially, but to increase by 15 percent. Farrow (1985), using proprietary mine data,
presents a model to estimate the in situ value of the stock and compares that with the
price trend. He does not �nd evidence of Hotelling's Rule.
Halvorsen and Smith (1984) introduce duality to estimate in situ stock value for Cana-

dian metal mines and �nd that user cost decreased considerably. Chermak and Patrick
(2001) also appeal to duality to estimate in situ stock value and �nd that, for 29 natural
gas wells, the trend is consistent with Hotelling's Rule.
(Agostini, 2006) found no evidence of U.S. copper companies exercising oligopoly market

power before 1978, when U.S. copper went on the world market. He suggests a possible
explanation is that the copper �rms did exercise market power for brief periods, but limited
prices during periods of high demand as a barrier to new entrants.
The preceding studies are a sample of the variety of markets and methodologies applied

to this problem, and the results are often intriguing, but seldom conclusive. �However, the
ability of the theory of exhaustible resources to describe and predict the actual behavior
of resource markets remains an open question.�(Halvorsen and Smith, 1991)

1.3 Agent-based computational economics

In the social sciences, one early adopter of agent-based modeling is Robert Axelrod (1997),
whose models started out as an extension of earlier work on the Prisoner's Dilemma in game
theory (1987). Agent-based modeling �ourished as computation became faster, cheaper,
and widely available. Many of the behavioral models developed theoretically in the pre-
ceding decades, such as Axelrod's and those of Thomas Schelling (1978) were well suited
to agent-based modeling. Epstein and Axtell, both jointly and separately, develop agent-
based models including an adaptation of a cultural transmission model by Axelrod (Axtell
et al., 1996), the emergence of classes (Axtell et al., 1999) and civil violence (Epstein, 2002).
McFadzean et al. (2001) introduce agent-based modeling as a computational laboratory for
trade networks, and Tesfatsion (2001) applies the approach to an adaptive search model
of the labor market. The dynamic and emergent behaviors of agents in combat are exam-
ined in Reynolds and Dixon (2001) and Dixon and Reynolds (2003), while the latter also
models how a national bond market crisis spreads globally. Gilbert and Troitzsch (2005)
provide an overview of various topics in modeling and simulation of social systems, includ-
ing agent-based modeling. Tesfatsion (2006) provides examples of agent-based models that
correspond to and often extend traditional economic models.
A note about the initials ABM. They are used to refer to the methodology of agent-based

modeling, or to an agent-based model. That is �we will use ABM to explore Hotelling's
Rule by constructing multiple ABMs, each representing a di�erent cost structure.� In
this paper, agent-based modeling is referenced in its entirety, while the initials ABM are
reserved for the models.
Although many ABMs are ad hoc computer programs, groups within the agent-based

community have developed programs to automate the modeling and simulation process to
some extent. MASON, a project at George Mason University, is an example, and is used
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for the modeling and simulation presented in the following chapters. For more details on
MASON, see the website.4 The MASON code for this paper is available for download.5

2 Theory

"Problems of exhaustible assets cannot avoid the calculus of variations" noted Hotelling
(1931, p. 140), which may have been why his work languished until the 1970s (Gaudet,
2007, p. 1035). Since its advent, optimal control theory (Pontryagin, 1959, Pontryagin
et al., 1962) has become a standard tool for dynamic optimization in economics. Chiang
(1992) notes that, unlike calculus of variations, optimal control can be used with functions
that are piecewise continuous or that have corner solutions. The introductory optimal
control problem in Chiang (1992) is the Hotelling model. Caputo (2005) observes that
optimal control theory is more conducive to economic theory and intuition than calculus
of variations.
The following is an optimal control development of the Hotelling monopoly model. The

terminology and some notation derive from Kamien and Schwartz (1981), in particular, the
use of m(t) as the current value multiplier. The notation for partial derivatives is borrowed
from Caputo (2005), and the economic interpretations are in�uenced by Krautkraemer
(1998).
The Hotelling monopoly model begins with a known �xed stock x0 of a nonrenewable

resource. The problem for the resource owner is to determine a production path q(t) that
maximizes present value total net pro�t over the productive lifetime, T , of the resource. In
general, net pro�t π (q (t) , x (t) , t) is a function of production level, remaining stock level
x(t) and time. Assuming a constant discount rate r, the optimal control problem is

max
q
J (q (t) , x (t)) =

ˆ T

0

e−rtπ (q (t) , x (t) , t) dt (1)

subject to these constraints

ẋ (t) = −q (t)

x (0) = x0

x (t) ≥ 0 (2)

q (t) ≥ 0 (3)

x0 ≥
T̂

0

q (t) dt (4)

4http://www.cs.gmu.edu/~eclab/projects/mason/ (accessed 25 June 2010)
5http://www.unm.edu/~ddixon (accessed 28 June 2010)
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The �rst constraint is also the state equation and will be discussed subsequently. The
next two constraints are the initial and terminal boundary conditions on the stock variable.
The fourth constraint ensures that production is never negative, and the �fth ensures that
total production never exceeds total resource stock.
The current-value Hamiltonian to maximize (1) with resource stock costate variablem(t)

is de�ned as

H (q (t) , x (t) , t,m) ≡ π (q (t) , x (t) , t)−m (t) q (t) (5)

The current-value formulation has the advantage that, since the ABM will be making
decisions based on current state values, a direct comparison can be made between the
state of the ABM at time t and the optimal state of the Hamiltonian at time t. The
costate variable m(t) is interpreted as the current-value shadow price of the resource stock
at time t. This is the user cost of the next unit of remaining stock to be extracted.
The �rst order necessary conditions include the state equation

ẋ (t) = −q (t) (6)

which imposes the dynamical constraint that the remaining stock be reduced at the rate
of production, where ẋ (t) is the time derivative of x (t). The �rst order necessary costate
equation is

ṁ (t) = rm (t)− ∂H (q (t) , x (t) , t,m)

∂x (t)
(7)

where ṁ (t) is the time derivative of m (t). If the Hamiltonian has no stock e�ect (no
x (t) dependency), this equation requires that the shadow price increase at the rate of the
discounted shadow price, thus ending at some maximum value. Depending on its sign,
the stock e�ect may accelerate or decelerate the increase in the shadow price, or, for a
su�ciently positive stock e�ect, cause the shadow price to decrease over time.
The �rst order necessary optimality condition is

∂H (q (t) , x (t) , t,m)

∂q (t)
= 0 (8)

which is the condition for static optimum, requiring that the Hamiltonian be maximized
at all times. The transversality condition on the state variable is that

e−rTm (T ) = 0, x (T ) = 0, e−rTm (T )x (T ) = 0 (9)
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which constrains the ending shadow price to be non-negative and the ending stock level
to be non-negative, but requires that the shadow value (m× x) of the ending stock must
be zero. That is, either the stock is physically depleted and x (T ) = 0, or the present
value ending shadow price e−rTm (T ) is zero. The latter condition can arise irrespective of
the ending shadow price if the terminal time T can be in�nite. For nonzero ending stock
and �nite T , that the shadow price goes to zero is intuitive, since terminating while there
is remaining stock implies that it is not economic to extract the next unit of stock. If
the stock variable is constrained to end at some value, the transversality condition on the
Hamiltonian is that

e−rTH (T ) = 0 (10)

This ensures that the stock variable is stationary at the terminal time T (Chiang, 1992, p.
182).
The following relations are introduced for notational simplicity

πq (q (t) , x (t) , t) =
∂

∂q
π (q (t) , x (t) , t)

πx (q (t) , x (t) , t) =
∂

∂x
π (q (t) , x (t) , t)

Hq (q (T ) , x (T ) , T,m) =
∂H (q (t) , x (t) , t,m)

∂q

∣∣∣∣
t=T

Substituting for the Hamiltonian in (7)

ṁ (t) = rm (t)− πx (q (t) , x (t) , t) (11)

so that πx (q (t) , x (t) , t) is the Hamiltonian stock a�ect to which the previous remarks ap-
ply. That is, the rate at which the shadow price changes is either accelerated or decelerated
by the πx (q (t) , x (t) , t) depending on its sign and, if πx (q (t) , x (t) , t) = 0, shadow price
increases at the discount rate.
Substituting for the Hamiltonian in (8)

πq (q (t) , x (t) , t)−m (t) = 0

πq (q (t) , x (t) , t) = m (t) (12)

which establishes the link between marginal pro�t and shadow price. Substituting (12)
into (11) to eliminate ṁ (t), then dividing by πq (q (t) , x (t) , t)

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r − πx (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
(13)
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which is the general expression of Hotelling's Rule. For a production technology that has
no dependence on the stock level, this simpli�es to

π̇q (q (t) , x (t) , t)

πq (q (t) , x (t) , t)
= r (14)

which is the relation �rst articulated by Hotelling. It states that, on the optimal production
path, the percent change in marginal net pro�t is equal to the discount rate.

2.1 The Hotelling monopoly demand function

Hotelling's inverse demand function for the monopoly market Hotelling (1931, sec. 4) is

p =
(
1− e−Kq

)
/q (15)

This is a stylized demand not linked to any real market. It is not known why Hotelling
chose it, but it has two pedagogical strengths. First, it yields tractable expressions for
revenue and marginal pro�t and secondly, it has no �nite static maximum with respect to
q. That is, it can only be maximized in the dynamic context. Additionally, pro�t increases
monotonically with q, a characteristic that is exploited in the models for which pro�t must
be held above cost.
Equation (15) is the inverse demand function used throughout this paper, in the the-

oretical development and in the agent-based models. For Hotelling's costless production
technology, the optimal production path is easily solved in closed form. However, for the
nonzero-cost technologies, it is necessary to appeal to numerical solutions. In those cases,
and in the agent-based models, the parameter values used are

K = 5

r = (1 + 0.1)1/365.25 − 1 ≈ 2.16× 10−4

x0 = 100

These are all stylized and unitless values. K is the choke price and this value is chosen to
be consistent with the other models used by Hotelling. The discount rate is ten percent
per annum and is expressed in daily terms for use in and comparison with the agent-based
models. The initial stock x0 is chosen so that simulations of the agent-based models are
long enough to be instructive yet short enough to be repeated many times.

2.2 A costless monopoly model

Costless production technology means that there is no cost term, so that pro�t is equal to
revenue

10



π (q (t)) = p (q (t)) q (t) (16)

An optimizing costless monopoly producer, facing the full demand function, determines
the optimal production path q (t) based on the discount rate r, the extent of stock x0, and
any other boundary conditions. For the costless model, the stock is physically depleted at
time T . Given a speci�c inverse demand function, the procedure is:

1. Solve (12) for the production path q (t) in terms of m(t).

2. Solve (11) to get m(t).

3. Replace m(t) in q(t) and solve (10) to get q (T ) in terms of T .

4. Integrate (4) using the equality condition (because the stock is physically depleted)
to get T in terms of initial stock x0.

5. Solve q(0) to get the initial production level.

For any reasonable inverse demand function (or approximation thereof) the terminal time
T will be �nite.
With the inverse demand function in Section 2.1, from step 1

π (q (t)) = 1− e−Kq(t) (17)

πq (q (t)) = Ke−Kq(t) (18)

m (t) = Ke−Kq(t) (19)

q (t) =
ln (K/m (t))

K
(20)

Equation (19) indicates that shadow price varies inversely with production level and has a
maximum of K, the choke price.
Note that since there is no x(t) term in (17), πx = 0, so that from step 2

ṁ (t) = rm (t)

m (t) = m0e
rt (21)

where m0 is the initial shadow price. The shadow price increases over time, which is
intuitive, given that, under production, the resource becomes more scarce over time.
From step 3

q (t) =
1

K

(
ln
K

m0

− rt
)

(22)
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If the stock is to be physically depleted, the transversality condition (10)

H(T )e−rT = 0

applies. For a �nite lifetime T, this means that

H (T ) = 0 = 1− e−Kq(T ) −mT qT

for which q(T ) = 0 is the solution. Now (22) can be solved for T

0 =
1

K

(
ln
K

m0

− rT
)

T =
ln (K/m0)

r
(23)

Substituting this back into (22) gives the production path

q (t) =
r

K
(T − t) (24)

Equation (23) shows that higher discount rates promote more rapid depletion, which is
expected, as a higher discount rate reduces the value of the resource in the future. Equation
(24) shows that production follows a straight-line descending path that is increasingly
steep as the discount rate increases, as expected. The production level is also inversely
proportional to the choke price K. This is related to the inverse relationship of production
with shadow price: since shadow price is increasing toward K, production is decreasing
proportional to its inverse.
From step 4

x0 =

T̂

0

q (t) dt =

T̂

0

r

K
(T − t) dt =

r

2K
T 2 (25)

T =

√
2Kx0
r

(26)

Equation (26) makes explicit what was implied before: a higher discount results in a shorter
resource lifetime. Also, resource lifetime is proportional to the square root of its extent.
Finally, from step 5

q (0) = r
K

(T − 0) =

√
2rx0
K

(27)
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The initial production level is proportional to the lifetime of the resource, which is propor-
tional to the square root of its extent. The initial production level is proportional to the
square root of the discount rate, moving production earlier as the discount rate increases,
as expected. The inverse square root relation to choke price K is related to the inverse
relationship between production and shadow price, as discussed previously.
Since x(T ) = 0, the transversality condition (9) imposes no constraint on m(t), which is

m (t) = Ke−r(T−t) (28)

That is, the shadow price of the remaining stock increases to the choke price K as the
stock is physically depleted. Note also from (24) that

q̇ = − r

K
(29)

which is constant and negative. As mentioned previously, production follows a straight-line
descending path. Finally, note that

π̇q (q (t) , t)

πq (q (t) , t)
=
−K2q̇e−Kq(t)

Ke−Kq(t)
= r

which is Hotelling's Rule.
The production path given by (24) maximizes present-value net pro�t over the lifetime

of the resource. This is, by de�nition, the most pro�t a producer can ever get with this
production technology and this demand function. Integrating (17) over the stock lifetime
T , the theoretical maximum pro�t, therefore, is

Πmax =

ˆ T

0

(
1− e−Kq(t)

)
e−rtdt =

1

r

[
1− e−rT (1 + rT )

]
(30)

For purposes of comparison with other models that cannot be solved in closed form,
using the values from Section 2.1, the stock lifetime is 1958 days, and Πmax = 358.33.

2.3 A �xed cost model

Natural resource production often incurs �xed cost, including capital costs, leases or other
per-period fees or taxes. Extractive industries tend to require large capital investments,
and capital can be regarded as a quasi-�xed cost (Young, 1992). Hsiao and Chang (2002)
have a groundwater optimization model of in which well-drilling is a �xed cost.
Consider a �xed, per-period cost c0, so that net pro�t is
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π (p (q (t)) , q (t)) = p (q (t)) · q (t)− c0

Because the cost is not dependent on q (t) or x (t), this cost does not a�ect the dynamical
constraints, appearing only in the solutions to the boundary conditions.
In terms of the demand function in Section 2.1 this is

π (q (t)) = 1− e−Kq(t) − c0

One characteristic of the revenue part of this is that it is monotonically increasing with
q (t). It can be anticipated, therefore, that there is some minimum production level, qmin,
below which net pro�t is negative. Net pro�t is non-negative as long as

c0 ≤ 1− e−Kq(t)

so that

qmin =
1

K
ln

(
1

1− c0

)
(31)

Marginal pro�t is positive as long as production remains above this level. For nonzero c0,
terminal production q(T ) cannot be zero. Clearly, qmin is zero for c0 = 0.
If the stock is to be physically depleted, the transversality condition (10)

H(T )e−rT = 0

applies. For a �nite lifetime T, this means that

1− e−KqT − c0 −mT qT = 0

Using (19) to substitute mT

e−KqT (1−KqT ) = 1− c0

eKqT =
1 +KqT
1− c0

(32)

Equation (32) must be solved numerically.6 The solution is shown in Figure 1. The �gure
shows that qT > qmin for all costs, so that the qT > qmin constraint is non-binding. Figure
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Figure 1: Fixed cost model - numerical solutions for terminal production level qT .
The optimal production path starts at production level q(0) and decreases continuously
to the terminal production level, qT . The production level is, at all times, well above the
zero pro�t production level, qmin. Terminal time T , which decreases with increasing cost,
is also shown. The bottom graph shows total net pro�t, which is also user cost, as a
function of the �xed cost rate.
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1 also shows that terminal time T decreases sharply as cost increases, and that total net
pro�t (user cost) decreases steadily over the cost range.
Note, in Figure 1, that q(0) is slightly steeper than qmin, while qT is asymptotically

parallel to q(0). Thus, as the �xed cost increases, more of total production is pushed
toward the present.
Replacing m0 in (21) with mT e

−rT

m (t) = m0e
rt = mT e

−rT ert

then using (19)

m (t) = Ke−KqT e−r(T−t)

so that

q (t) =
1

K
ln

[
K

Ke−KqT e−r(T−t)

]
= qT +

r

K
(T − t) (33)

Thus, the initial production level is

q (0) = qT +
rT

K
(34)

which is also shown in Figure 1.
Stock lifetime T is calculated from

x0 =

T̂

0

q (t) dt

= qTT +
rT 2

2K

so that

T =
K

r

(√
q2T +

2rx0
K
− qT

)
(35)

6The GAUSS code for numerical solutions is available from http://www.unm.edu/~ddixon (last ac-
cessed 28 February 2010)
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which is shown in Figure 1. Substituting (35) back into (34)

q (0) =

√
q2T +

2rx0
K

(36)

Total pro�t is

ΠFC =

T̂

0

(
1− e−Kq(t) − c0

)
e−rtdt

=
1

r

[
1− c0 − e−rT

(
1− c0 + rTe−KqT

)]
(37)

which reduces to (30) for c0 = 0 (for which qT = 0). This is also shown in Figure 1.

2.4 A marginal cost model

Extractive technologies, like most production technologies, incur costs that are proportional
to the level of production. Scott (1967) uses a quarrying example to illustrate that economy
of scale considerations at low levels of production, and problems of marketing, delivery
and storage at high levels of production, lead to a U-shaped marginal cost curve. Cobb-
Douglas models in which production level appears are found in econometric models of
nickel (Stollery, 1983) and copper (Young, 1992), for example. Conrad and Clark (1987,
p. 165) give an example of a linear marginal cost associated with disposal of pollutants.
For simplicity, this model considers a stylized linear marginal cost with marginal cost c1,
so that the net pro�t function is

π (p (q (t)) , q (t) , t) = p (q (t)) · q (t)− c1 · q (t)

In terms of the demand function in Section 2.1 this is

π (q (t)) = 1− e−Kq(t) − c1q (t) (38)

The transversality condition depends on whether or not q(t) can go to zero when t = T .
There is no minimum production level qmin as long as the cost goes to zero faster than the
revenue. This is the case as long as

e−Kq(t) ≤ 1− c1q (t) (39)

Figure 2 shows graphs of the left-hand and right-hand sides of (39) for the parameter values
presented in Section 2.1. The graphs show that, for all marginal costs lower than the choke
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Figure 2: The marginal cost model - theoretical values for minimum and maximum pro-
duction for selected marginal costs.

Pro�t is positive whenever the dashed line is below the solid line for a given marginal
cost. For all costs less than 5 (the choke price), pro�t is non-negative in the vicinity of
q = 0. The point where the dashed line crosses the solid line is qmax for that marginal
cost. Thus, pro�t is non-negative over 0 ≤ q ≤ qmax for all marginal costs less than 5, and
pro�t is zero for all marginal costs greater than or equal to 5.

price (c1 < K), pro�t is non-negative as q(t) goes to zero. There is, however, a maximum
production level constraint, qmax, above which pro�t is negative. The locus of points at
which the dashed line intersects the solid lines de�nes the values of qmax. It will be shown
that this constraint is not binding, however.
The solution proceeds as for the costless monopoly model, with the same form for the

shadow price (19). Thus

q (t) =
1

K

(
ln

K

m0ert + c1

)
(40)

The transversality condition H (T ) = 0 is satis�ed when q(T ) = 0, so

0 =
1

K

(
ln

K

m0erT + c1

)
m0 = (K − c1) e−rT

q (t) =
1

K

(
ln

K

(K − c1) e−r(T−t) + c1

)
(41)
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Unlike the costless and �xed cost models, the rate of change in the production path is
not constant, since

e−Kq(t) =
(K − c1) e−r(T−t) + c1

K

−Kq̇e−Kq(t) =
r (K − c1) e−r(T−t)

K
(42)

q̇e−Kq(t) = − r

K

[
(K − c1) e−r(T−t) + c1

K
− c1
K

]
q̇ = − r

K

[
1− c1

K
eKq(t)

]
(43)

The terminal time T is found by integrating

x0 =

T̂

0

1

K
ln

K

(K − c1) e−r(T−t) + c1
dt (44)

Kx0 =

T̂

0

ln
K

(K − c1) e−r(T−t) + c1
dt

Equation (44) is solved numerically in GAUSS using the parameters from Section 2.1.7

The numerical solution for T as a function of marginal cost is shown in Figure 3. Once T
for a given marginal cost is known, the initial production level is determined from

q (0) =
1

K

(
ln

K

(K − c1) e−rT + c1

)
(45)

Values of q(0) corresponding to the numerical solutions for T are also shown in Figure 3.
Also shown in the �gure are the ranges of the rate of change in production, q̇(t), computed
from (43). Note that q̇(t) starts negative and becomes more negative over the course of
production, so that q(0) is the maximum production level. It is clear from this plot that
qmax is always above q(0), which is always above q(t), so that the maximum constraint
never holds. The GAUSS procedures for solving T and computing total pro�t, ΠMCare
included in the Appendices.
To compute percent change in marginal net pro�t, substitute for the exponential on the

left-hand side of (42) and simplify

7The GAUSS code for numerical solutions is available from http://www.unm.edu/~ddixon (last ac-
cessed 28 February 2010)
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Figure 3: Marginal cost model - numerical solutions for terminal time T.
T is solved numerically from equation (44). Initial production level q(0) is solved using T .
Also shown is the production maximum qmax computed from equation (39) using the
equality condition. The lower graph shows the production rate of change as a function of
marginal cost, with the arrow depicting the trajectory over time for a speci�c marginal
cost. Also shown in the bottom plot is total pro�t as a function of marginal cost.
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−Kq̇ (K − c1) e−r(T−t) + c1
K

=
r (K − c1) e−r(T−t)

K

q̇ = − r

K

(K − c1) e−r(T−t)

(K − c1) e−r(T−t) + c1

= − r

K

(
1 +

c1
K − c1

er(T−t)
)−1

From this it is obvious both that the magnitude of the rate of change decreases with
increasing c1, and that the magnitude increases over time for a given c1. Finally,

π̇q
πq

=
−K2q̇e−Kq(t)

Ke−Kq(t) − c1

= −Kq̇ K

K − c1eKq(t)

= −K
[
− r

K

[
1− c1

K
eKq(t)

]] [ K

K − c1eKq(t)

]
= r

[
K − c1eKq(t)

K

] [
K

K − c1eKq(t)

]
= r

which is Hotelling's Rule.

2.5 A stock cost model

Stock costs - costs associated with cumulative production - are mentioned speci�cally by
Hotelling (1931, p. 152) as a detail omitted from his model. Stock e�ects appear in many
forms in natural resource production models. Lecomber (1979, p 54) sites the examples of
decreasing pressure over the lifetime of an oil well, increased transportation costs as a mine
becomes deeper, and a reduction in yield as the quality of ore decreases.8 Like marginal
cost models, stock cost models are often quadratic or in Cobb-Douglas form (Young, 1992).
The functional forms of stock e�ects in general vary broadly. In �shery models, for ex-

ample, the stock variable may appear in the growth function as second-degree polynomials
(Hanley et al., 1997, sec. 7.4). In econometric analysis of oil production in the U.K.,
Pesaran (1990) �nds that production cost is inversely proportional to remaining stock.
Pindyck (1978) presents a production model that includes growth from exploration, and
�nds an inverse relation between exploration and stock. Slade (1982) �nds evidence of a

8Slade (1984) also points out that yield in copper mining depends on price: when the price is high,
more expensive processing is used, which increases the yield.
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cost curve that is U-shaped in cumulative production. Tietenberg and Lewis (2000, p. 149)
present a resource model for which the stock cost is linear with cumulative production.
For simplicity, this model employs a stock cost that is linear in the stock variable x (t).

The stock cost cS is

cs (x(t)) = c2 (x0 − x(t)) (46)

where c2 is the marginal cost of stock depletion. Note that

x0 − x(t) =

tˆ

0

q(t′)dt′

so that cS is identical to a cost based on cumulative production.
The net pro�t function is

π (p (q (t)) , q (t) , t) = p (q (t)) · q (t)− c2 (x0 − x(t))

which, for the inverse demand function in Section 2.1, is

π (q (t) , x (t)) = 1− e−Kq(t) − c2 [x0 − x (t)] (47)

Coming into the pro�t function via the state variable x(t) means that

πx = c2 (48)

Unlike the preceding models, the general form of Hotelling's Rule (13) applies rather than
(14).
With cost based on cumulative production, it is possible for marginal cost to exceed

marginal pro�t as the stock diminishes. Again it is necessary to invoke the non-negative
pro�t constraint, but unlike the �xed cost and marginal cost models, this constraint can
be binding.
If production is to halt when cost exceeds revenue, the producer will optimize such that

(47) is non-negative at all times. For some values of c2, this can be maintained until the
stock is physically depleted, and terminal shadow price can be positive. In other cases,
however, this results in production ceasing before the stock is physically depleted, so that
x (T ) > 0. In this case, the transversality condition (9) requires that m (T ) = 0.
The �rst order necessary condition for Hq proceeds as for the costless model up to (20).

From the �rst order necessary condition for Hx (11)

ṁ (t) = rm (t)− c2
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This di�erential equation has the solution

m (t) =
c2
r

(
1− ert

)
+ Cert

where C is a constant of integration. Solving for C using the yet-to-be-determined terminal
shadow price mT ,

m (t) =
c2
r

[
1− e−r(T−t)

]
+mT e

−r(T−t) (49)

Note that the static solution to the di�erential equation, in which rm (t) = c2, is recovered
for m0 = mT = c2/r. It will be seen that this static condition represents the transition
from decreasing to increasing production path.
Assuming that T is nonin�nite, there are two forms for the terminal Hamiltonian, de-

pending on whether x (T ) = 0 or x (T ) > 0. For x (T ) = 0, m (T ) > 0, so

H (T ) = 1− e−Kq(T ) − c2x0 −mT q (T ) = 0

which yields

e−Kq(T ) =
1− c2x0

1 +Kq (T )
(50)

This has a unique solution for q (T ) given c2, as long as c2 <
1
x0
. This is solved numerically

in GAUSS.9

The condition x (T ) > 0 arises because marginal pro�t becomes negative before the stock
is physically depleted. Marginal pro�t going to zero implies also that shadow price of the
next unit of resource is zero. That is, m (T ) = 0, which is the transversality condition for
x (T ) > 0. Pro�t going to zero provides an additional constraint on q (T ),

1− e−Kq(t) − c2 [x0 − x (T )] = 0 (51)

The �rst order necessary condition (19) implies that, if m (T ) = 0, then e−Kq(T ) = 0, so
that (51) becomes

x (T ) = x0 −
1

c2
(52)

Clearly, this only holds for c2 ≥ 1
x0
. Thus, c2 = 1

x0
marks the transition between physical

depletion of the stock with a non-zero terminal shadow price, and economic depletion, with
some physical stock remaining and a zero terminal shadow price. That is

9The GAUSS code for numerical solutions is available from http://www.unm.edu/~ddixon (last ac-
cessed 28 February 2010)
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m (T ) > 0 , x (T ) = 0 for c2 <
1
x0

m (T ) = 0 , x (T ) > 0 for c2 >
1
x0

Finally, in this regime, the terminal Hamiltonian is

H (T ) = 1− c2 (x0 − x (T )) = 0

which is satis�ed by the terminal stock level (52). Finally, terminal time T is found by
integrating

x0 − x (T ) =

T̂

0

q (t) dt (53)

where

q (t) =
1

K
ln

K
c2
r

[1− e−r(T−t)] +mT e−r(T−t)
(54)

The numerical solutions for the x (T ) = 0 regime involve solving for q (T ) using (50),
computing m (T ) from (19), then numerically integrating (54) to �nd the T that solves
(53) with x (T ) = 0. For the x (T ) > 0 regime, mT is assumed zero, and (54) is integrated
to �nd the T that solves (53) where x (T ) is found using (52).
On a �nal note, (13) implies that the percent change in marginal net pro�t changes over

time, since πx is constant while πq, equation (18), is a function of time . The percent
change in marginal net pro�t is positive for

r >
πx
πq

=
c2

Ke−Kq(t)

percent change in marginal net pro�t is computed from the derivative of πq with respect
to time

π̇q
πq

=
d
dt
Ke−Kq(t)

Ke−Kq(t)
= −Kq̇ (55)

where q̇ is the time rate of change in production. This is found by taking the derivative of
(19) with respect to time
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Figure 4: Stock cost model - theoretical values for terminal time, initial production level,
starting and ending shadow price, ending stock level, producer pro�t, and user
cost as a function of stock cost.

The top plot shows the numerical solutions for initial production q (0), starting shadow
price m (0) and ending shadow price m (T ) as a function of stock cost parameter c2.
The middle plot shows the numerical solutions for terminal stock x (T ), total producer
pro�tΠSC , and user cost as a function of c2. The bottom plot shows termination time T ,
percent change in marginal net pro�t and percent change in marginal net pro�t plus stock
cost. This last value should equal the discount rate (see equation 13).
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d

dt
Ke−Kq(t) =

d

dt
m (t)

−K2q̇e−Kq(t) = ṁ

Substituting (12) into the left hand side and (11) into the right hand side

−Km (t) ˙q (t) = rm (t)− c2
˙q (t) = − 1

K

(
r − c2

m (t)

)
= − r

K

(
1− c2

rK
ekq(t)

)
For small enough c2, the production path will be downward sloping. For higher c2, it will
be upward sloping. Substituting back into the percent change in marginal net pro�t (55)

π̇q
πq

= r − c2
m (t)

(56)

Finally, replacing c2 from (48) and m(t) from (12),

π̇q
πq

= r − πx
πq

This is Hotelling's Rule for nonzero stock cost as seen in (13). π̇/π in Figure 4 is computed
using (56).

2.6 Oligopoly models

Perhaps the most straightforward de�nition of an oligopoly market is in terms of what it
is not. It is not a monopoly market - there is more than one producer. Nor is it a com-
petitive market, if a competitive market is de�ned as one in which there is a large number
of producers, no one of which can a�ect the market equilibrium when acting indepen-
dently. There are only a few ways in which an oligopoly producer can a�ect equilibrium,
however, each depending on the reaction of the rest of the producers in the market. For
example, total pro�t is maximized in a monopoly market, so if all the oligopolists can
agree to hold their combined production to the monopoly level, the average pro�t per pro-
ducer is maximum. This is a collusion market. At the other extreme, they can engage in
price competition, driving the price down to marginal cost and eliminating economic pro�t
altogether, and possibly driving higher-cost producers out of the market. This is the out-
come of the price-competition, or Bertrand, oligopoly model. The other possible outcomes
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are modeled based on quantity competition (Cournot oligopoly model), market leadership
(Stackelburg oligopoly model) or product di�erentiation (Bertrand oligopoly with product
di�erentiation). These models have the distinction of giving the producers levels of pro�t
intermediate between collusion and perfect competition.
Qualitatively, the expectations of an oligopoly market are:

• If the total production path is similar to the monopoly production path, it is a
collusive market

• If total production is high and market price trends down to marginal cost then price
competition is occurring

• If total production is higher than monopoly but lower than price competition, then
there is production-level cooperation (Cournot or Stackelburg) or price competition
with product di�erentiation (Bertrand).

2.7 Summary of the theoretical models

This section develops optimal control solutions to the production paths for the Hotelling
costless model plus extensions for �xed cost, marginal cost, and stock cost production
technologies. For the inverse demand function in Section 2.1, only the costless model can
be solved in closed form. The others are solved numerically using the parameter values in
Section 2.1.
Table 1 compares the production paths for the models in terms of initial production

level q (0), the slope of the production path, the terminal production level qT , and the
percent change in marginal pro�t π̇q/πq. Clearly, for the �xed cost model, the initial
production level increases with cost. For the marginal cost model, Figure 3 shows that
initial production level decreases with cost. For the stock cost model, Figure 4 shows that
initial production level also decreases with cost.
For the �xed cost model, the downward slope of the production path is identical to the

costless model. For the marginal cost model, the production path becomes less steep with
increasing cost. For the stock cost model, the slope also becomes less steep with increasing
cost, becoming positive for c2 > 1/x0. This is illustrated by the curves for starting and
ending shadow price, m(0) and mT in Figure 50. Recall that the production path trends in
the opposite direction of the shadow price. In the �gure, shadow price trends upward when
m(0) is below mT , and downward otherwise. Thus, the production path is increasing for
c2 > 1/x0. In all other cases and all other models, the production path trends downward.
Note also that in the stock cost model the shadow price eventually descends to zero as cost
increases, and that at costs above this, the �nal stock reserve is non-zero. These are the
costs at which the stock is economically depleted before it is physically depleted.
For the costless and marginal cost models the ending production level is zero. For the

�xed cost model, Figure 1 shows that the ending production level trends upward with
increasing cost, nearly parallel to the starting production level. Thus, despite the fact that
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Table 1: Production path comparison.

model q(0) slope qT π̇q/πq

costless
√

2rx0
K

− r
K

0 r

�xed
cost

√
q2T + 2rx0

K
− r
K

> 0* r

marginal
cost

1
K

(
ln K

(K−c1)e−rT+c1

)
− r
K

[
1− c1

K
eKq(t)

]
0 r

stock
cost

c2 <
1
x0

1
K

ln K
c2
r
[1−e−rT ]+mT e−rT − r

K

(
1− c2

rK
eKq(t)

)
> 0** r − c2/πq

c2 ≥ 1
x0

1
K

ln K
c2
r
[1−e−rT ]

− r
K

(
1− c2

rK
eKq(t)

)
→∞*** r − c2/πq

* Solved numerically from (32)
** Solved numerically from (50)
*** Truncated at qT �∞ by the numerical integration (53)

the production path has the same downward slope as the costless model, the production
level starts and ends higher as cost increases. The higher production levels result in more
rapid physical depletion of the stock. For the stock cost model the ending production level
increases from zero as c2 increases, going to in�nity for c2 ≥ 1/x0. Were there a closed-form
solution for this model, an additional capacity constraint would have to be added, but the
numerical solution terminates when cumulative production reaches x0, before reaching the
instantaneous in�nite production level.

3 The Hotelling ABMs

There are two general de�nitions of an agent in economics. The principal-agent model de-
�nes an agent as someone who acts on the part of another((Varian, 1992, p. 441)). In other
cases an agent is de�ned as a self-interested actor with an endogenous state (e.g. income
and wealth), as well as a representation of behavior (e.g. utility function for a consumer,
production function for a producer)10. Though typically implicit in economic models, there
also may be exogenous state variables (e.g. GDP) and behaviors (e.g. a supply or demand
function.) In agent-based modeling, the model is a computer program representation of
the agents. In its broadest usage, agent-based modeling also includes computer simulations
of a model in which agents interact via their behaviors and modify their own states, the
states of other agents, or the exogenous state (Epstein and Axtell, 1996, p. 4). Implicit in

10The term is not de�ned, but de�nition can be inferred from the literature. See, for example, Hartley
(1996).
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agent-based modeling is that the agents are autonomous (Tesfatsion, 2006, p. 843).
The agents in the ABM in this paper have no information about the demand function

itself, each determining autonomously its own optimal production path. The extent of the
resource is known exactly, but the market structure and demand function are unknown.
These are adaptive agents for which the behavioral rule is a heuristic to continually adjust
the production level so that estimated total pro�t is maximized. Pro�t estimates are based
on the observed market response to changes in production level. In addition to the costless
basic models, there are models with non-zero cost which may be constant (per period),
marginal (per unit production) or cumulative (proportional to the stock level).
The models are constructed and the simulations run using the MASON agent-based

modeling and simulation library and framework. They are based on and incorporated into
a set of programs included with MASON to demonstrate the MASON Console environment.
The Console provides a general graphical interface for editing model parameters, running
simulations and for viewing model variables as time-series graphs or numerical tables.
The graphical interface for each Hotelling model provides the ability to select a demand

function and one of the various market models described in the following sections, allowing
the user to change the number of producers in the market. Once a speci�c demand function
and market model has been selected, the user can change model-speci�c variables, such
as the mean and standard deviation for cost variables, for example. While running, the
simulation displays a custom window showing real-time plots of current pro�t, current
percent change in marginal pro�t, stock level and production level. Each model optionally
writes a �le of key dynamical variables. These �les were used to produce the plots presented
in Section 4. Images of the interface and results windows are included in the Appendices.
Each model has two types of agent: a market agent and a producer agent. In a given

model there is a single market agent and one or more producer agents. The simulation
is initialized with Monte Carlo draws for the stochastic variables, then the simulation
proceeds, one time-step at a time, until all producers have stopped. The producers stop
either because the resource stock level is zero, or pro�t in the current period is negative.11

Because the agents are autonomous, the simulation behaviors are mediated by information
that is communicated between agents, speci�cally between each �rm agent and the market
agent. These exchanges occur as four distinct actions during each time-step, as illustrated
in Figure 5. The size of a simulation time-step is arbitrary, though the default discount
rate is assumed daily and compounds to ten percent per annum. Changing the discount
rate, via the GUI, changes the implied time-step.

11In some models, pro�t goes negative even though an alternative production level would produce
positive pro�t. A more advanced heuristic could explore alternative production levels to determine if this
is the case, but the simple heuristic does not. This is not dissimilar to a situation in which the owner
of the resource prefers to shut down leaving a small reserve rather than take the risk of incurring further
negative pro�ts while searching for a pro�table production path.
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Figure 5: The details of a time-step
The dashed box represents a single simulation time-step, during which four distinct
actions mediate the exchange of information between each producer agent and the

market agent.
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3.1 The market agent

The market agent, called Market, is assigned a demand function and controls any market
information provided to the producers. Both the speci�c market agent and the demand
function are user-selectable: changing from one model to another is simply a matter of
changing the market agent and/or the market agent's demand function. The market agent
represents a speci�c market structure and production technology. For example, there is a
costless market agent, a �xed-cost market agent, an oligopoly market agent and so on.

3.2 The producer agent

In contrast, the producer agent, called Firm, is the same for all models. The producer agent
computes pro�t, marginal price, marginal pro�t and the percent change in marginal pro�t
for each time period. This information is used by the producer agent at the beginning of
each time period to compute the next production level and is collected at the end of each
time period by the market agent for the real-time displays and, optionally, written to a �le
for post-processing.
Although the producer is the optimizing agent, the algorithms to compute future pro�t

are contained in the market agent so that the details can vary depending on the market
model. A simple heuristic is used for optimization and is described in the next section.

3.3 A simple optimization heuristic

The �rst step in designing the model is to �nd an optimization heuristic that is as simple
as possible while reproducing plausible behavior. Algorithmic simplicity contributes to
robustness, that is, the ability to produce consistent behavior under the planned variety of
production technologies and market structures. For example, in a tournament of bidding
algorithms, Rust et al. (1992) found that the simplest algorithms consistently beat the
more complex. Another advantage to simplicity is analytic transparency. The di�culty
in associating speci�c outcomes with speci�c behaviors increases as the complexity of
the algorithms increases. From an experimental control perspective, it is also easier to
detect, explain and compute the impact of algorithmic artifacts for a simple algorithm.
Algorithmic artifacts may results from the size of the simulation time-step, the size of
changes in production level, or numerical errors in calculating pro�t, cost or production
level changes. A possible added bene�t of a simple algorithm is shorter computation times,
since proper Monte Carlo sampling calls for large numbers of simulations.
The core of the heuristic is a simple estimation of future pro�t. The heuristic uses the

pro�t estimation in two di�erent ways, depending on the phase of the simulation. The
phases are:

1. Increase production level from zero until estimated future pro�ts begin to fall. This
is called the ramp-up phase.

31



Figure 6: An example of the initial production level error.
At the beginning, the agent starts increasing production by ∆q. In this example, the heavy
line is the Hotelling's Rule optimal production path. The production level after the �rst
increment is too low, and after the second increment it is also too low, but after the third
increment, the production level is too high. At this point, the agent begins a constant
downward production path but, because the initial production level is above the optimum,
the stock is depleted more quickly than optimal, and the stock is depleted sooner than the
Hotelling's Rule optimum.

  

t

q

Δq

2. Estimate future pro�ts in each time period based on the three candidate strategies
described below and adopt the strategy that maximizes future pro�t. This is the
optimization phase.

Each phase encompasses a number of time-steps. The ramp-up phase is not intended to
simulate a real-world process, but it is a way for the heuristic to reach an e�cient initial
production level autonomously. The ramp-up phase provides an opportunity to estimate
marginal pro�t for use by the optimization heuristic. The increments in production level
during the ramp-up phase are coarse in order to keep the phase brief, but the coarseness
makes it unlikely that an agent will reach the theoretically optimum production level
exactly. This is illustrated in Figure 6. The error is useful in exploring the consequence of
setting the initial production level sub-optimally.

For both the ramp-up phase and the optimization phase, future pro�t is estimated
for three strategies, one with constant decreasing production, one which maintains the
current production level, and one with constant increasing production. The decreasing
strategy assumes a constant decrease of ∆q∗ each time-step, which will produce a straight-
line decreasing production path that goes to zero when the resource stock is physically
depleted. This is a simple geometric calculation that uses only information available to the
agent. The increasing strategy assumes a constant increase per period that is one percent
of the production level in the current period. This, too, is a simple calculation using only
information available to the agent. The one percent increment is arbitrary, it is intended
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to be small, thus preventing large swings in production level. It is also advantageous
that it be di�erent in magnitude from the decreasing strategy, reducing the likelihood of
non-damping oscillations.

3.4 The use of discrete summations

The following sections present the calculations used by the agents to determine the best
optimization strategy. In contrast to the integrals presented in Section 2, these are discrete
summations, and the derivatives are all discrete (e.g.∆q, ∆p, ∆π). This re�ects the fact
that the simulation itself employs discrete time. A producer agent has very little infor-
mation and estimates future pro�t by counting up the discounted pro�t per period until
the stock is physically depleted. Further advantage is taken of the fact that the producer
agent's strategies all assume constant changes to the production level ∆q, so that the
amount of the change itself comes out of the summations.
The discrete summations also have the advantage of allowing for variable time steps.

The simulations presented here all assume planning on a daily basis, which is may not be
realistic. A real-world planner may reassess the production plan once a quarter or once per
year. To simulate these planning periods, the user of these simulations need only change
the discount rate from daily to quarterly or annual.

3.5 The heuristic algorithm

Estimated future pro�t is computed with all production in the future and pro�t discounted
accordingly. For a costless model, the future pro�t calculation is the summation

Πτ =
τ−1∑
i=0

qipi (1 + r)−i

where

Πτ = estimated future pro�t

qi = production level in period i

pi = price in period i

r = discount rate

τ = remaining lifetime of the stock

With a constant change in production level 4q � which can be negative, positive, or
zero � the production level in period i is

qi = qn + i4q
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where qn is the base production level, meaning the production level at the time the esti-
mate is being computed, and i enumerates the production periods into the future. The
production period i starts at zero for the current production period n. Because the inverse
demand function is unknown to the agent, price is estimated based on the most recent
marginal price

pi = pn +4qi
(
4p
4q

)
i−1

where pn is the price in the current period, and

(
4p
4q

)
i−1

=
pi−1 − pi−2
qi−1 − qi−2

(57)

is the estimated marginal price based on price and production level changes between the
previous two periods. Estimated future pro�t becomes

Πτ (4q) =
τ−1∑
i=0

(qn + i4q)
[
pn + i4q

(
4p
4q

)
i−1

]
(1 + r)−i

= qnpnA+4q
[
pn + qn

(
4p
4q

)
i−1

]
B + (4q)2

(
4p
4q

)
i−1

C (58)

where

A =
τ−1∑
i=0

(1 + r)−i =
1 + r

r

[
1− (1 + r)−τ

]
(59)

B =
τ−1∑
i=0

i (1 + r)−i =
1

r

[
A− τ

(1 + r)τ−1

]
(60)

C =
τ−1∑
i=0

i2 (1 + r)−i =
1

r

[
2B + A− τ 2

(1 + r)τ−1

]
(61)

The lifetime of the remaining stock comes from the constraint that total production
equal total current stock

xn =
τ−1∑
i=0

(qn + i4q) = τqn +4q τ (τ − 1)

2

τ =
−
(
qn − 4q2

)
+

√(
q − 4q

2

)2
+ 2xn4q

4q
(62)
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where xn is the reserve stock in the current period. There exists some minimum constant
production change ∆q∗ for which the total remaining stock is exhausted, at which point
production goes to zero. The lifetime in this case is constrained by

qn +
τ−1∑
i=0

∆q∗ = 0 (63)

and the constraint that total production equal the current stock by

τ−1∑
i=0

(qn + i∆q∗) = xn (64)

Solving (63) for ∆q∗ and substituting into (64)

τ =
2xn
qn
− 1 (65)

Substituting this back into (63),

∆q∗ = − q2n
2xn − qn

(66)

This is the lowest (most negative) 4q that will result in a straight-line decreasing produc-
tion path for which production goes to zero as the stock is physically depleted. This also
satis�es the constraint that the term in the radical in (62) be non-negative.

3.6 Costless model

Initially, consistent with Hotelling, costless production is considered. The introduction of
nonzero cost will be presented in Section 3.7. Production decisions use a heuristic that
estimates future pro�t as described in Section 3.3.
The theoretical maximum pro�t is shown in (30). The equivalent summation expression

is

Πmax =
T−1∑
i=0

(
1− e−Kqi

)
(1 + r)−i =

1 + r

r

[
1− (1 + r)−T

]
− (1 + r)−T − e−rT

er (1 + r)−1 − 1
(67)

With the values given in Section 2.2, the discrete Πmax = 358.53, as compared to the
continuous Πmax = 358.33, the di�erence being due to numerical errors. In practical
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terms, the monopoly models are special cases of the oligopoly models, so simulation results
of the monopoly models are discussed in their respective oligopoly sections in Section 4.
A producer agent has no knowledge of the demand function, and can only infer it from the

observed behavior of the market. Namely, the change in price that results from changes in
the production level. The agent has two behavioral rules, corresponding to the two phases
of the heuristic:

Rule 1. In the ramp-up phase, increase the production level from zero until estimated
total pro�t is positive and begins to decrease. The default monopoly ramp-up
rate is an increase of 0.01 units of production per period.

Rule 2. In the optimization phase, in each period, estimate future pro�t based on
the three production strategies, then execute the strategy that maximizes
future pro�t. Production ceases if, after the ramp-up phase, pro�t becomes
negative.

3.7 Production technologies with nonzero cost

The production technology models with nonzero cost are the costless model with a nonzero
cost term. This does not require a change in the producer agent, which is implemented
with cost variables, all of which were zero for the costless model.

3.7.1 Fixed cost model

Recall from Section 2.3 that, for the �xed cost model, there is a minimum production level
qmin below which pro�t is negative. For the discrete calculations used by the heuristic, the
constraint (63) becomes

qn +
τ−1∑
i=0

∆q∗ = qmin (68)

which, when substituted into equation (64), means that equation (66) becomes

4q∗ =
q2n − q2min

2xn − qn + qmin
(69)

This is the minimum (most negative) change in production that results in a straight-
line decreasing production path that reaches qmin at the moment the stock is physically
depleted. The heuristic determines qmin by increasing production starting from zero and
recording the production level at which pro�t becomes positive.
The estimate of future pro�t is
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ΠFC
τ = ΠNC

τ − c0
τ−1∑
i=0

(1 + r)−i

= ΠNC
τ − c0A

where ΠNC
τ is the no-cost future pro�t estimate (58) and A is from (59).

A �xed cost does not appear in πq or πx, so according to equation (13), there is no e�ect
on the optimal percent change in marginal pro�t. The optimal production path is a�ected,
however, since the initial production level q(0) and the terminal production level qT both
increase with cost, as shown in Figure 1.

3.7.2 Marginal cost model

With no minimum production level constraint, the marginal cost model is identical to the
costless model. The change comes in the estimate of future pro�t

ΠMC
τ = ΠNC

τ − c1
τ−1∑
i=0

(qn + i∆q) (1 + r)−i

= ΠNC
τ − c1

[
qn

τ−1∑
i=0

(1 + r)−i + ∆q
τ−1∑
i=0

i (1 + r)−i
]

= ΠNC
τ − c1 (qnA+ ∆qB)

where ΠNC
τ is the costless future pro�t estimate (58) and A and B are from equations (59)

and (60).

3.7.3 Stock cost model

With the addition of a stock cost as in (46), the future pro�t estimate becomes

ΠSC
τ = ΠNC

τ −
τ−1∑
i=0

c2 (x0 − xi) (1 + r)−i

= ΠNC
τ − c2x0

τ−1∑
i=0

(1 + r)−i + c2

τ−1∑
i=0

xi (1 + r)−i

= ΠNC
τ − c3

τ−1∑
i=0

(1 + r)−i + c2

τ−1∑
i=0

(xn + ∆xi) (1 + r)−i (70)

where c3 ≡ c2x0. The discrete form of equation (6) is ∆x = −q. Assuming that q is
changing by the constant increment ∆q, then ∆xi = − (qn + i∆q). Now, (70) becomes
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ΠSC
τ = ΠNC

τ − (c3 − c2xn)
τ−1∑
i=0

(1 + r)−i − c2
τ−1∑
i=0

(qn + i∆q) (1 + r)−i

= ΠNC
τ − (c3 − c2xn + c2qn)

τ−1∑
i=0

(1 + r)−i − c2∆q
τ−1∑
i=0

i (1 + r)−i

= ΠNC
τ − [c3 − c2 (xn − qn)]A− c2B∆q

where ΠNC
τ is the costless future pro�t estimate (58) and A and B are from (59) and (60).

3.8 Other sources of uncertainty

If the producer is not certain of the extent of the resource x0, the consequent error in the
lifetime of the stock will a�ect estimates of future pro�ts. This, in turn, may a�ect the
production strategy selected by the heuristic outlined above. Although the heuristic can
adjust the rate of change as the stock is depleted, the total pro�t is sensitive to an error in
the initial production level. An initial quantity that is too high will, in general, result in
the resource being depleted too quickly, leaving unrealized pro�t in the future. An initial
quantity that is too low will, in general, result in the resource being depleted too slowly,
with unrealized pro�t in the present.
Errors in x0 are similar to errors in the initial production level, so Monte Carlo sampling

in the neighborhood of the initial production level will give an indication of sensitivity
to errors in x0. The relation between initial production level and initial stock is given
by equation (27). The coarseness of the heuristic strategy serves as a proxy for errors in
computing optima, including errors in x0. This is illustrated in the discussion in Section
4.4.
Other sources of uncertainty in the interest rate, in the demand function, and in the

production technology cost function could be explored in a similar manner. Uncertainty
in the demand function can take on various forms, the simplest being random errors in
constants and systematic errors in functional form. In the former, a su�ciently large
sample reveals a constant variance while, in the latter, a large sample reveals variance that
changes over the range of production. Uncertainty enters the cost function in ways similar
to the demand function. Of particular interest are cases in which the production planner
incorrectly assumes costless production. These issues are beyond the scope of this paper.

4 Simulation results

The ABMs are oligopoly models for which the monopoly results are special cases. The
oligopoly simulations have one market agent and one or more producer agents, depending
on the number of producers in the market. The number of producers is a user-set variable
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in the GUI. Each producer is unaware of the others. In terms of the ABM architecture,
this is done by not providing any communication between producer agents.
The ensemble simulations are models in which there are multiple producer agents and

multiple market agents. Each pair of producer agent and market agent behaves like a
monopoly with dedicated stock and a dedicated market. Ensembles are a way to collect
data about large number of monopolists while running only one simulation. In these
models, the monopolists are all di�erent because each one has been given production
technology cost parameters drawn at random from statistical distributions. This method
of mapping the parameter space onto the outcome space is called Monte Carlo sampling.
The �rst sections will discuss the costless oligopoly models. The monopoly model for

each production technology is presented as an oligopoly with one producer. The following
sections will address the ensemble models. The last section will examines the e�ciency of
the heuristic by introducing intentional error into the initial production level.
The models in the following sections are intentionally wrong. In these models the pro-

ducer always behaves as though it is a monopoly market, even though the models include
oligopolies of two to six producers. Given that a real-world producer is likely to make
mistaken assumptions about the market structure, the object is to assess the worst case
outcome of assuming no competitors whatsoever.

4.1 The costless oligopoly model

For the models in this section, the total stock is constant as the number of producers
increases. For a duopoly, each producer begins with a stock of x0/2, and with ten producers,
each producer begins with a stock of x0/10. The duopoly production path in Figure 10
re�ects a collusion-like outcome, as do models for N=3 and N=4. That is, the producer
agents arrive at what looks like a collusive market structure using only the optimization
heuristic. For an oligopoly of �ve producers, however, something completely di�erent
occurs, as seen in Figure 9. In this model, after the ramp-up phase, some producers begin
reducing production while others continue unchanged.
This behavior is an emergent property of the heuristic. Initially, the total stock of 100 is

distributed among the �ve producers in near equal amounts, with small random deviations.
In this model, the initial stock allocations are 20.11, 20.09, 19.90, 19.88, and 20.02 for Firm
1 through 5, respectively. All �ve �rms conclude the ramp-up phase on day 53. At this
point, Firms 1 and 2, with the largest allocations, select a decreasing strategy, while the
rest of the �rms select zero change strategies. That an individual producer chooses a �at
production strategy is not unexpected. However, the decreases in production by the two
largest producers cause price increases that are su�cient for the remaining producers to
estimate increasing pro�ts at constant production levels for the duration of their stocks.
That is, Firms 3, 4, and 5 are self-optimizing to higher total production than the collusive
outcome (as per Cournot-Nash equilibrium) by maintaining constant production levels
while Firms 1 and 2 decrease theirs.
The results for models with from one to ten producers are shown in Figure 10. As

39



the number of �rms increases, the production paths present evidence of what Hotelling
calls the �retardation of production under monopoly� (Hotelling, 1931, sec. 7) in that the
lifetime of the stock decreases as the number of producers increases. The models with �ve,
seven and ten producers show the Cournot-like outcome, while the rest show the collusion-
like outcome. All of these models appear to reach the theoretically optimal pro�t. These
models show that total collusion-level pro�ts are not necessarily an indicator of collusion.
Note also, in Figure 10, the discontinuities in the percent change in marginal pro�t curves
where producers change strategies at the end stock life.

4.2 Accuracy and precision of the heuristic

The artifacts discussed in the preceding two sections beg the question of errors in the
heuristic ramp-up and their impact on total pro�t. Figure 7 shows the simulation results
from �fty Monte Carlo samples of the monopoly model. For each simulation, the �fth
ramp-up increase was given a small adjustment ε ∼ N (0, 0.00001). The left-hand plot
shows the relationship between optimal initial production level and total pro�t. The upper
curve represents samples which reached the ramp-up cuto� on the ninth day, the lower
curve on the tenth day. The lower curve is essentially an extension of the upper: at the
far right-hand side of the upper curve, it is no longer optimal to end ramp-up on the ninth
day, so the next increment is to end ramp-up on the tenth day at the far left-hand end of
the lower curve. The day on which ramp-up ends a�ects total pro�t in that the fewer days
lost to non-optimum ramp-up production levels, the higher the total pro�t. The curves
end abruptly at the low end because any lower sample ended ramp-up on the previous
day. The right hand plot shows the relationship between percent change in marginal pro�t
and total pro�t. The distribution of points is nearly identical, re�ecting a nearly linear
relationship between initial production level and the percent change in marginal pro�t.
From Hotelling's Rule, maximum pro�t should occur for an initial production level of
0.1022 and a percent change in marginal pro�t of 0.000261. The curves peak very near
these values. The key outcome of these plots is that the distributed error in the heuristic
initial production level results in a error range of 0.45 out of about 358, or less than 0.14
percent.
Figure 7 also illustrates the impact of error in the estimate of x0. According to equation

(27), a one percent error in x0 translates into a one-half percent error in initial production
q0, and from equation (30), that, in turn, translates into an error of 0.84 percent in the
theoretical maximum pro�t. For the heuristic, however, Figure 7 shows a 10 percent error
in q0 leading to a 0.11 percent error in total pro�t. This is almost two orders of magnitude
less impact than theory predicts. The heuristic lessens the impact on total pro�t from an
underestimate of the stock by making Bayesian updates to the production level in each
time-step.
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Figure 7: Monte Carlo samples of heuristic outcomes.

4.3 Nonzero-cost models

Three cost functions are examined: a �xed (per day) cost, a marginal (per unit) cost, and
a stock (cumulative production) cost. For the �xed cost and marginal cost models, the
non-negative pro�t restriction only comes into play when cost exceeds any feasible level
of revenue, in which case the ramp-up phase ends with negative pro�t and the simulation
terminates. In stock cost models, however, cost increases over time, and may exceed any
feasible level of revenue before the stock is physically depleted. This is explored further in
the section on the stock cost model.
For the inverse demand function in Section 2.1 there are no closed-form optimal control

solutions when marginal or cumulative costs are included. The heuristic, however, considers
only per period pro�t, marginal pro�t and marginal price. Qualitatively, Monte Carlo
sampling should show a trend toward the costless behavior as cost decreases. That is,
for the �xed and marginal cost models, percent change in marginal pro�t should approach
equation (14). For the stock cost models, percent change in marginal pro�t should approach
equation (13).

4.3.1 Fixed cost model

The �xed cost model is the costless model with a �xed cost c0 ∼ N (0.012, 0.0016) truncated
such that c0 ≥ 0. The mean and standard deviation were chosen such that ±3σ = 0.24
spans the revenue range of the heuristic's �rst six ramp-up iterations based on equation
(17), which is now revenue rather than pro�t. Time-series plots for �fty Monte Carlo
monopoly simulations are shown in Figure 12. For many of the samples, the heuristic
selects the �at production level strategy, resulting in a zero percent change in marginal
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pro�t until the �nal few time-steps. In other samples, the heuristic selects the decreasing
strategy followed by a �at strategy, resulting in percent change in marginal pro�t curves
that sweep upward then fall to zero. The diamonds in the percent change in marginal
pro�t plot indicate sharp spikes (to several hundreds on the scaled y-axis), indicating that
the heuristic selects a rapid taper down to zero production over the �nal two or three time-
steps as stock reaches physical depletion. Note that optimal percent change in marginal
cost is 2.6 in this graph.
The heavy dashed line in the production path plot indicates theoretical qmin from equa-

tion (31). This is the envelope for optimal terminal production levels.
The results of the Monte Carlo monopoly simulations are summarized in Figure 15. Note

that the results cluster based on the heuristic qmin, and that qmin is in multiples of 0.01.
This is because 0.01 is the default ramp-up production change and qmin is recorded by the
heuristic during the ramp-up phase. The inset graph compares the heuristic values for qmin
with the theoretical values from (31). The graphs show a distinct trend in percent change
in marginal pro�t with regard to �xed cost. The dashed lines are the theoretical values
discussed in Section 2.3.

4.3.2 Marginal cost model

The marginal cost model is the costless model with a constant marginal cost c1 ∼ N (1.0, 0.110889)
truncated such that c1 ≥ 0. The time-series data for the marginal cost model are shown
in Figure 13. The plot shows only three unique production paths because the initial value
is weakly dependent on marginal cost, and the step size in the ramp-up heuristic is much
greater than the variations between starting production levels. The time-series data also
reveal that percent change in marginal pro�t is always close to the optimal 2.6, and trends
toward it in the course of the simulation.
The results from �fty Monte Carlo monopoly simulations are shown in Figure 16. In

these models, percent change in marginal pro�t is sensitive to the initial production level. A
percent change in marginal pro�t below optimum implies that the initial production level
is too low, preventing the heuristic from optimally reducing production each time step.
Similarly, a percent change in marginal pro�t above optimum implies an initial production
level that is too high. In all cases, the percent change in marginal pro�t trends downward.

4.3.3 Stock cost model

The stock cost model is the costless model. In this model, the optimum production path
can be either decreasing or increasing over time, depending on the value of the stock cost
parameter c2. Also, for higher values of c2 it is expected that production will stop before
the stock is physically depleted. These characteristics are discussed in Section 2.5.
Before Monte Carlo sampling the parameter space, it is instructive examine the classes

of behavior anticipated. Figure 14 shows a time-series plot for �ve representative values
of stock cost. The stock cost parameter c2 is shown as �sc� in the legend. The zero cost
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model is included for comparison and is identical to the costless monopoly model in Section
4.1. The model with c2 = 0.001 is included to show the deviation of a small cost from the
costless model. The model with c2 = 0.005 is included to show the behavior in the vicinity
of transition from decreasing production to increasing production discussed in Section 2.5
in the discussion of Figure 4. The model with c2 = 0.010 is 1/x0, which is the cost at which
the producer will begin to leave some of the stock unproduced as discussed in Section 2.5,
and the model with c2 = 0.013 is included to show the behavior well into the regime for
which the physical stock is greater than zero when production stops.
Interesting to note here is that, for small stock cost (much less than 0.10) or large stock

cost (signi�cantly greater than 0.10), the production paths are fairly smooth. In the vicinity
of 0.10, however, the heuristic makes frequent changes resulting in a highly volatile percent
change in marginal pro�t. The percent change in marginal cost plot has been smoothed
with a boxcar length of 100 days. Note also that, for smaller stock costs, the percent change
in marginal pro�t turns toward negative in�nity very quickly, and, at least for 0.005, and
then comes down from positive in�nity thereafter. This arises because, in this period, the
production level is very close to the zero marginal pro�t regime. Marginal pro�t appears in
the denominator of percent change in marginal pro�t, hence the switch between negative
and positive in�nity as marginal pro�t crosses through zero.
Figure Figure (17) shows the outcome space results from 50 Monte Carlo samples with

stock cost taken from c2 ∼ N (0.01, 0.000016), truncated such that c2 ≥ 0. Very little can
be drawn from the percent change in marginal pro�t plot other than to note, as in the
time-series plot, that percent change in marginal pro�t can be highly dynamic. The pro�t
and user cost plot shows that the heuristic is near optimal at zero stock cost and when stock
cost is 0.10. The error in the heuristic is especially large in the range between zero and
0.10. The initial production level plot provides a clue as to why: initial production levels
are consistently too high, resulting in lower pro�ts and an ine�ciently rapid reduction in
stock. Finally, the upper right plot shows the consequences: a much shortened lifetime
for stock costs below 0.10, and too much stock left unexploited for stock costs above 0.10.
The dashed lines are the theoretical values, as discussed in Section 2.5.

4.4 Theoretical e�ciency

To put the foregoing results into perspective, Figure 8 shows the e�ect of error in the the-
oretical costless model. These are families of curves of total net pro�t from the theoretical
costless monopoly model in Section 2.2. The initial production level q0 is varied plus or
minus 15 percent about the optimum of 0.1022. The production path slope is also varied so
that percent change in marginal pro�t varies plus or minus 15 percent about the optimum
of 2.61× 10−4.
The widely spaced diagonal lines (on the left in the left �gure, on the right in the right

�gure) result from the initial production level being so low that the downward slope of the
production path reduces production to zero before the stock is physically depleted. This
represents a gross error in production planning and not one likely to be seen in real-world
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applications.
The closely spaced nearly horizontal lines in both �gures (on the right in the left �gure,

on the left in the right �gure) represent the performance of the Hotelling Rule optimal
production path under slight deviations in q0 and ∆πq/πq. The inverted triangles point to
the optimal control solution. The close spacing of these lines is an indication that, even for
the theoretical solution, there is only a small penalty for small errors in initial production
or the slope in the production path. That is, although Hotelling's Rule is the optimum,
total discounted pro�ts are only weakly a�ected from small deviations from Hotelling's
Rule. There is less than one percent error in pro�t for errors of plus on minus twenty
percent in initial production and plus or minus ten percent in percent change in marginal
pro�t.

Figure 8: Errors in the theoretical model.
The optimal initial production level and optimal ∆π/πq are indicated with an inverted
triangle.

5 Conclusion

The optimization heuristic demonstrated in these models is extremely simple and inelegant.
Yet the performance is e�ectively optimal in costless monopolies, and acceptably e�cient
in oligopoly markets in which there are no competitive behaviors. The oligopoly models
demonstrated a tendency to reach a collusion-like market structure solely through self-
interested optimization in some cases, and to reach a mixed-strategy Cournot-Nash-like
equilibrium at other times.
The heuristic is somewhat less nimble in the face of non-zero costs, but net pro�ts are

within a few percent of optimum in the models tested. In general in these models, percent
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Figure 15: The �xed cost model - outcome space.
In the upper-left plot, the dashed line indicates optimum percent change in marginal
pro�t. The arrows indicate the movement of the percent change in marginal pro�t during
the simulation. The numbers below groups of arrows indicate the day number when the
ramp-up phase was completed. The symbols re�ect the heuristic value of qmin for each
sample. The symbols correspond to values of qmin which are shown in the legend. The
inset graph compares simulation stock lifetimes (dots) with theoretical (dashed line).
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Figure 16: Marginal cost model - outcome space.
Marginal cost models (constant unit cost). The arrows depict the trajectory in the course
of the simulation, starting at the X and ending at the arrowhead. The dashed lines indicate
the theoretical optima.
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Figure 17: Stock cost model - outcome space.
The arrows depict the percent change in marginal pro�t trajectory in the course of the
simulation, starting at the symbol and ending at the arrowhead. Note that y-values on
this graph are 10,000 times those of the others. The inset plots stock lifetime and ending
stock level versus marginal cost of stock.
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change in marginal pro�t can vary over the lifetime of the stock, approaching r percent
only for a costless monopoly. Percent change in marginal pro�t is well above r percent for
�xed cost, and greater than or less than r percent for unit and stock costs. These results
indicate that percent change in marginal pro�t is not a sensitive metric for optimality.
A market with even minor ine�ciencies can deviate signi�cantly from the r-percent rule.
Conversely, a large deviation from the r-percent rule does not necessarily predict signi�cant
ine�ciency.
The relative e�ectiveness of such a simple heuristic implies that producers may be able

to pro�tably exploit natural resources with very little direct knowledge of the demand
function or of the market structure. Examined here is pro�tability, but, in principle, the
heuristic should perform similarly for a more general social welfare, for instance. That will
be the topic for a forthcoming paper.
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