Exercise in Hot Environments

Victorian Views of Heat Exposure

- Europeans were not "designed" to survive in hot climates
 - employ "men of color" for troops in India
 - women particularly are vulnerable to reproductive disorders
 - "red underwear" to protect against dangerous effects of the sun

"Actinic Rays"

- Sunlight has dangerous rays the penetrate the skull and cause solar apoplexy
 - "spine pads made of quilted cloth interwoven with a red material.."
 - "an enormous topee to which was attached a long purple scarf..Under this a spreading spine pad made of kongoni hide lined with red flannel... black goggles and a huge stripped umbrella" *Elspeth Huxley*
 - Is this why British uniforms were bright red???

Unique features of human thermoregulation

- · Homo sapiens evolved in a tropical climate
 - a homeotherm (birds and mammals)
 - importance of evaporative cooling
 - no selective brain cooling? (rete mirabile)
 - No panting
 - symp cholinergic sweat glands
 - one of the highest sweat rates of any mammal
 - lack of fur/ skin is the main organ for thermoreg.
 - active vasodilation
 - importance of behavioral cooling

Heat exchange at rest and exercise

Mechanisms of Heat Loss	Re	st	Exe (70% V	rcise O2max)			
	% total	Kcal/min	% total	Kcal/min			
C + D	20	0.3	15	2.2			
R	60	0.9	5	0.8			
E	20	0.3	80	12.0			

Core Temperature

- Measurement Sites
- Rectal
- Esophageal
- tympanic
- Ear canal
- oral
- axillary
- intestinal

- Measurement Response
- steady state
- transient changes
- · during exercise
- during fluid intake

Skin Temperature

- Number of measurement sites (3-15)
- · "Weight" of measurement sites
- · Uncovered thermistor or thermocouple
- $T_{sk} = 0.3T_{ch} + 0.3T_{arm} + 0.2T_{thigh} + 0.2T_{calf}$

Ramanathan formula

Mean Body Temperature

- Tb = (0.4 Tsk) + (0.6 Tcore)
- Heat content of the body = HC
 - total calories of heat contained in the body tissues
 - specific heat of body tissues is 0.83 kcal/kg/°C (amt of heat to raise temp 1°C)
- HC = 0.83 (Wt x Tb)

Evaporation of Sweat

- Insensible perspiration (20% of heat loss at rest)
 - surface of the skin
 - respiratory tract
- Sensible perspiration
 - sweating from the eccrine glands
 - 2-4 million sweat glands
 - each liter of sweat extracts 580 kcal of heat from the body
 - sweat is dilute (0.2 to 0.4% NaCl)

- Sweat must evaporate to remove heat
 - men are "wasteful sweaters"?
 - humidity increases sweat drippage
 - in a hot humid environment, drying the skin will increase evaporation
 - person's with a greater SA will lose more heat by evaporation

		Air temperature (*F)									
ativ	70		80	85	90	95	100	105	110		
Rela											
	64	69	73	78	83	87	91	95	99	103	107
10%	65	70	75	80	85	90	95	100	105	111	116
20%	66	72	77	82	87	93	99	105	112	120	
30%	67	73	78	84	90	96	104	113	123	135	148
	68	74	79	86	93	101	110	123	137	151	
	69	75	81	88	96	107	120	135	150		
60%	70	76	82	90	100	114	132	149			
	70	77	85	93	106	124	144				
80%	71	78	86	97	113	136					
90%	71	79	88	102	122						
100%	72	80	91	108							

<text>

Heat Illnesses

- Prickly heat
 - inflammation of the sweat glands
- Heat cramps
 - cramping of muscles
 - · electrolyte imbalance
 - · accumulation of fluid in muscle cells
- Heat exhaustion
 - heat production > heat loss
 - Tc < 39°C, dehydrated, unfit, unacclimatized

Heat Stroke

- 1917, finally recognized as a failure of thermoregulation
- life threatening condition
 U.S., 250 deaths/yr)
- Tc > 40°C
- · cessation of sweating?
- confusion

 tissue damage, elevated enzymes

Heat Illness Warning signs Heat Exhaustion Heat Stroke - headache, tingling - headache - chills, shivering - unconsciousness great fatigue – confusion - pale, moist, cool skin - bizarre behavior dizziness - hot. red skin - rapid, weak pulse - rapid, strong pulse - vomiting, nausea - profuse sweating dehydration - fainting

Cause of death from heat stroke?

- Survival depends on temp and length of exposure to Tc > 40°C
- Rapid cooling may occur, but death still occurs several days later
- Type of septic shock?
 - Increase in lipopolysaccharides (LPS) from intestinal lumen
 - heat stress injuries the intestinal lining, increasing permeability to LPS

Treatment for Heat Stroke?

- Damage is ~ to length of time spent at core temperature > 44°C
- Ashcroft: most effective method is to sponge victim with tepid water. Evap cooling is more effective than cold water bath--no vasoconstriction. Ice packs
- Armstrong: immersion in cold water is still the best method

Heat Acclimatization

- Habituation with continued daily heat exposures
- Immediate classic signs
 of heat acclimation
 - lower heart rate
 - increased sweat rate
 - lower skin temperatures

- lower core temperature

Other signs of heat acclimatization

- · Increased plasma volume
- Decreased sweat electrolytes
- Increased sweating sensitivity
- · Decreased sweating threshold
- Increased vasodilatory sensitivity
- Decreased vasodilatory threshold
- Reduced muscle glycogen use 50-60%

How do you acclimatize?

- · Exercise daily for at least 14 days
 - $> 50\% \text{ VO}_2\text{max}$
 - work up to 90 to 100 min
 - keep hydrated (replace sweat losses)
 - replace sodium loss with meals

The Camel: master of heat tolerance in the desert

- · Homeotherm, but - Tb varies by 7°
 - heat loss by R, less E
 - lower brain temp/cc in nose and brain
 - kidneys
 - coat (18°C gradient)
 - alimentary tract water storage (10-20% body wt)
 - RBC osmotic fragility
 - drinking (100l in 10 min)
 - behavioral

 tolerates > 25% loss of body wt with only $\sim 10\%$ loss of PV