Hypothermia!

The Terra Nova viewed from an iceberg near Scott’s camp

What is hypothermia?

- Clinically, a core temperature < 35°C
 - mild (shivering, numb hands, reduced dexterity)
 - moderate (violent shivering, reduced fine motor and mental function) 35 to 32 °C
 - profound (< 32°C) unconsciousness, ↓ HR and breathing, arrhythmias (<28°C), asystole (< 20°C)

Potential for hypothermia

- Extreme environments
 - Antarctic (-129°F, coldest recorded on Earth)
 - Arctic (-60°C in Siberia)
 - Altitude (↓ 1°C every 100 m, -40°C on Everest)
- Winter sports / military
- Water immersion
- Stranded motorists
- The elderly
 - minimum safe indoor temperature is 70°C

Ambient cold limits

- Depends on the duration and extent of exposure
 - nude, feels cold at < 25°C
 - manual dexterity, < 12°C
 - touch sensitivity, < 8°C
 - peripheral tissues freeze around -0.5°C
- wind effect, wind chill index
- water effect, 25x greater conductivity

Wind Chill Effect

Physiological Responses

- Skin blood flow (increase insulation)
 - ↓ with cooling until 10°C
 - < 10°C, hunting reaction
- Shivering
 - ↑ heat production 5 fold
 - unique to birds and mammals
- Voluntary exercise
 - ↑ heat production 15 fold
- Non-shivering thermogenesis
Non-Shivering Thermogenesis

- Babies
 - 4% body wt is brown fat (BAT)
 - rich in mitochondria
 - UCP, uncouples fuel metabolism and energy production, ↑ heat
 - stimulated by NE via β-adrenergic receptors

NST in Adults?

- NST acct for differences in cold tolerance in adults?
 - BAT in white fat?
 - Skeletal muscle NST?
 - BAT role in susceptibility to obesity?

Plants that generate heat

- *Arum Maculatum* (type of lily called jack in the pulpit)
 - produces heat and volatizes chemicals to produce a smell to attract flies to pollinate
 - heat as high as 45°C
- *Soldanella montana* (alpine snowbell)
 - generates enough heat to melt surrounding snow

Chronic Exposure

- Human responses to repeated cold exposure are “unimpressive” compared to other animals
 - little more than some habituation responses
 - for years it was debated whether humans could acclimatize to cold

Cold Habituation

- Fishermen who have cold hands all day have less skin vasoconstriction

Cold Acclimatization?

- Metabolic acclimatization
 - Increase BMR?
 - Shivering thermogenesis (3 METs)
 - Non-shivering thermogenesis
- Insulative acclimatization
 - Vasoconstriction

Victor Boyarsky
Acclimation patterns (3)

• Habituation (fishermen)
 – less vasoconstriction,
 – less shivering, less increase in BMR
 – greater fall in rectal temperature

• Metabolic pattern (Ama Divers)
 – increase BMR
 – increase shivering and NST

• Insulation pattern (Australian aborigines)
 – increased VC
 – increased subcutaneous fat

What determines the acclimation pattern?

Ama Women Divers

• Suk Ki Hong, a lifetime of studying Ama (Japan) and hae-hyo (Korea) women divers
• Extreme cold exposures before 1977
 – frequent dives, year round, in cold water
 – deep body cooling to 35°C
 – light cotton swim suits until 1977
• Wet suits after 1977
 – longer dives but no longer deep body cooling

Ama Cold Acclimatization?

• Metabolic acclimatization,
 – 30% increase BMR in winter
 – increased utilization of thyroid hormone by peripheral tissues

• Insulative acclimatization
 – Increased non-fatty insulation shell
 • greater VC, better countercurrent effect, thicker muscle insulation

• Habituation acclimatization
 – lower core temperature threshold for shivering

Cold Injuries

• Chilblains
 – red, itchy patches of skin (fine capillary damage)

• pernio
 – superficial burning and pain

• Trench foot, immersion foot
 – prolonged immersion of feet in cold water
 – prolonged VC causes ischemic damage to tissues

• frost nip (surface layers), Frost bite (deeper layers),
 – freezing of the tissues

Frostbite
Unexpected effects of cold

- Increases MI, stroke, respiratory disease deaths
 - vasoconstriction
 - dehydration
 - increased blood clotting
 - longer survival of bacteria
 - closed environments
 - inhibits innate immunity

Scott vs Admundsen Story

- Roald Admundsen
 - superb skiers
 - well provisioned
 - dogsledgers

- Robert Falcon Scott
 - military discipline
 - austere provisioning
 - ponies and sledges

Scott 78 days
Admundsen 57 days

Scott' diary

- Expedition’s misfortune was not due to poor planning but to bad weather and bad luck.
 - “It was no one’s fault... every detail of our food supplies, clothing and depots... worked out to perfection... We missed getting through by a narrow margin which was justifiably within the risk of such a journey”.

- Scott and his remaining 2 companions died within a days walk of their next depot of food.

- Scott allowed for 4500 kcal/d/man
- Pulling sledges requires > 7000 kcal/d/man

Hypothermic emergency treatment

- 29 yr-old Norwegian woman survived accidental hypothermia and revived from a Tc of 13.7 °C
 - fell in waterfall while skiing
 - survival more likely when rapidly cooled

- immerse in warm bath
- warm air to breathe
- blood warmed with heat exchanger
- be ready for arrhythmias
Acute effects of Cold

- ↑ muscle blood flow
- ↑ cardiac output only by ↑SV
 - no ↑HR because of vc?
- ↑urine, ↓PV
- ↑EPI and NE which ↑FFA and glucose
- ↑cortisol which ↑blood glucose
- ↑thyroid hormone which ↑met rate
- carbohydrates become the preferred fuel?

BMR and Ta

Effect of cold on aerobic exercise endurance

- Increased metabolic cost
- lower body temperatures
- decreased cv endurance
 - ↓HR max, ↓Qmax, ↓VO2max
 - less O2 delivery to muscle (Hb/O2 binding)
- ↓ active muscle blood flow

Effect of cold on muscle function

- ↓ muscular endurance @ muscle temp < 27oC
 - reduced nerve conduction vel., ↓muscle fiber recruitment
- ↓ muscle strength and ↓ peak muscle power
 - slower force development
 - greater viscosity of sarcoplasm
 - slower chemical reactions

Factors that influence cold responses

- Age (children and elderly)
- Gender (females do better)
- Fitness (an advantage)
- Body fat (a big advantage)
- Alcohol (lowers blood sugar, dehydration, ↓ vd, ↓ shivering)

Other Approaches to Cold

- Countercurrent heat exchangers
 - bird legs, seal flippers, whales tails
- Specialized tissues
 - Antifreeze blood (glycoproteins), modified lipid membranes
- Estivation- body cooling and Suspended animation?
 - body under unfavorable environmental conditions
- Hibernation
 - Metabolism 1% above BMR
Behavior Cold Protections

- Increase metabolism
 - stamp feet
 - jump
- Increase insulation
 - clothing
- Huddling
 - birds
 - bees

Clothing

- Clo
 - measure of clothing insulation
 - 1 clo = insulative value of a regular business suit
 - insulation nec to maintain comfort of a seated adult in a 21°C room, 50%rh, 6 m/min air flow
- COLD
 - clean, open, layers, dry

Death in Cold Water

- Titanic, cause of death for most of the 1000 people not in lifeboats was hypothermia, not drowning
- Reflex gasp
- Hyperventilation (muscle tetany)
- Cardiac arrhythmias
- Post-rescue collapse

Afterdrop

To swim or not to swim?

- Swimming increases metabolic rate but also increases convective heat loss
- <15-20°C, ↓ Tc w/swim
- 16-24°C, depends on %fat
- 25-28°C, no effect of swimming on Tc
- >28°C, Tc increases with swimming