Methods Introduced in the “heat lab”

- How did we measure core temp?
 - What was the termination Tc?
- How did we measure skin temp? Sites?
 - Calculate mean skin temp
 - Calculate mean body temp
- What is the WBGT?
 - Wet bulb, dry bulb, globe temp
- Did you see how we measured air flow?
 - What is an anemometer
- What is uncompensible heat stress?

Water and Survival

- Water is more important than food when it comes to survival
 - death in weeks, even months, w/o food
 - death in days w/o water (100 hr rule)
- Humans can not acclimate to lack of water
 - with heat acclimation, ↓ sweat threshold
 - training, ↑ sweat for a given Tcore
 - natives, are more “efficient sweaters”—genetics or adaptation?

Fluid and salt control

- Water and salt intake vary greatly
 - 1 L/d for old, sedentary
 - 10 L/d for camel drivers in the Sahara
 - 3-30 g/d salt intake
- Plasma volume and sodium content are controlled within ~1%
 - PV, maintained ± 50 ml
 - Na⁺, maintained 135-145 mequiv/L

Body fluid imbalances

- Over-hydration is rare
 - water and salt will be excreted with too much intake
 - water intoxication is very rare
- Under-hydration is very common
 - dehydration with exercise
 - dehydration in the elderly (lack of thirst)
 - dehydration with fever and diarrhea (children most susceptible)
 - Hypo-hydration in astronauts

Dehydration vs. Hypohydration

- Dehydration
 - reduced plasma volume
 - increased plasma osmolality
- Hypohydration
 - Isotonic loss of water without increased plasma osmolality
Normal fluid balance

- Intake (2550 ml)
 - drink 1200 ml
 - food 1000 ml
 - metabolically produced 350 ml

- Output (2550 ml)
 - insensible 900 ml
 - sweat 50 ml
 - feces 100 ml
 - urine 1500 ml

Obligatory Water loss

- Humans lose water (minimum 1000-1200 mL) due to:
 - elimination of metabolic byproducts (500 mL/d)
 - insensible water loss (600 mL/d temperate climate, 1000 mL/d hot/humid)
 - sensible sweating
 - begin at Ta > 25°C
 - 1.5 to 3.0 L/hr

Human kidneys

- Concentrating ability of kidneys
 - human, urine can be 2/3 as concentrated as seawater
 - sand rat, urine is 5 times seawater

- Humans do not store water
 - human, 2-3 liters stored in stomach and intestines
 - camel, > 50 liters

Obligatory Water Intake

- Humans must have 1000-1200 mL/d fluid intake to avoid a progressive dehydration

Body fluid compartments

- Human body is 60% water (42 liters)
 - TBW
 - 55% Intracellular fluid
 - 45% Extracellular fluid (19 L)
 - 2/3 interstitial
 - 1/3 blood vol (6 L)
 - RCM
 - PV (3L)

What is dehydration?

- Loss of body water
 - > 2% body weight loss
- Loss of plasma volume
 - Estimated from changes in hct and hb
- Increased urine osmolality and specific gravity
 - Color > 3, Sg > 1.030, osm > 800 mosm/kg
- Increased serum osmolality
 - > 290 mosm/kg
% change in PV

• Dill and Costill (hct and hb)

\[\% \text{chPV} = \frac{\text{Hb}_1 \times (1 - \text{Hct}_2)}{\text{Hb}_2 \times (1 - \text{Hct}_1)} - 1 \times 100 \]

• Van Beaumont formula (hct only)

\[\% \text{ch PV} = 100 \left(\frac{\text{Hct}_1 - \text{Hct}_2}{\text{Hct}_2} \right) \times \frac{1}{1 - \text{Hct}_1} \]

Fluid loss in sweat is shared by all compartments, but, look at the unproportionate loss of PV

Fluid compartments and dehydration

PV and Fitness

• PV expands with training and heat acclimation. How?
 – Piantadosi
 • sweating causes increased sodium concentration in PV
 • water moves into PV to equalize sodium
 – Senay
 • with exercise, protein moves from the lymph into the PV
 • each g of protein binds 15 ml of water

Plasma volume changes with exercise

• Exercise Mode
 – Greater loss of PV with cycle vs treadmill exercise
 – More anaerobic, > loss

• Exercise intensity
 – Mild exercise, expand PV
 – heavy exercise, decrease PV

• Ambient temp
 – Hotter environments, greater decrease PV

• Training and heat acclimation
 – Greater loss of PV with equal drinking
 – Usually however, trained people drink more

Components of Plasma

• 96% of osmolality is determined by Na+ and its associated anions.
 – Plasma osmolality is 280 mosm/l
 – Na+, 136 mequiv/l, (NaCl, 272 mosom/l)
 – Electrolytes easily move through the capillary wall

• oncotic pressure is determined by proteins
 – [total protein] is about 7.4 g/dl in plasma
 • albumin (4-5 g/dl) smallest and most influential in terms of fluid movement
 – Proteins can move in and out of the PV with posture, exercise
 – New proteins are produced with training, heat acclimation
Thirst

- Regulated in the hypothalamus. Thirst stimuli:
 - plasma osmolality > 295
 - water loss > 2 liters
 - renin-angiotension-angiotension II
 - dry mouth and throat receptors
- Humans normally stop drinking before replacing all fluid lost
 - stomach distention
 - drop in plasma osmolality

ADH

- Acts to retain water (kidneys, sweat glands)
- Release from posterior pituitary is stimulated by:
 - osmoreceptors (brain, liver, others?)
 - SNS, stress
 - elevated temperature
 - cardiac atrial receptors (Henry Gauer reflex?)
 - Role in humans?
 - arterial baroreceptors

Other hormones

- Aldosterone acts to conserve sodium
 - conserving Na+, conserves water
- Atrial natriuretic factor (peptide)
 - released from the cardiac atria with distention to cause sodium excretion
 - less distention in dehydration
 - less ANF is released
 - less sodium is excreted

Early studies of dehydration and heat tolerance

- Effects of dehydration first studied in coal miners in England (JS Haldane)
 - voluntary water restriction
 - afraid of water toxicity
- Importance of heat acclimation shown in gold miners in S. Africa (Wyndham, Strydom)

Stomach emptying and dehydration

- Sweat loss during exercise is typically 0.8 to 1.4 l/h
- The rate of stomach emptying during exercise is 0.8 to 1.2 liters/min
 - will be slower with increased osmolality of the drinking solution
- Prolonged severe exercise in heat can lead to progressive dehydration even with excessive drinking? (Gisolfi, very rare)

Hydromiosis

- Sweat gland fatigue?
 - sweating is reduced under conditions where sweating is not effective
 - with prolonged sweating in humid conditions (> 2hrs), SR will decline
 - mechanism proposed to be swelling of the epidermal cells around the sweat gland pores
 - drying of the skin can lead to return of sweating
Dehydration and heat responses

- Dehydration (decreased PV and increased osmolality)
 - increase thresholds for sweating and FBF
 - decreased maximal SR and FBF
 - faster rise in body temperature
 - conserves body water

Other effects of dehydration

- Cardiovascular
 - increased HR and decreased SV
 - reduced CO and increases in a-v(O2 diff)
 - decreased splanchnic bf
 - decreased muscle bf (controversial)

- Muscular
 - > 5% dehydration—loss of strength
 - increased lactate
 - reduced clearance and increased production?
 - decreased endurance

Dehydration and exercise

- Decrease in body weight
 - 1%, cardiovascular effects
 - 3%, decrease VO_max in cool
 - 5%, loss of strength
 - 2-8%, common during competition and training
 - 12%, often fatal
 - 25%, Pablo syndrome, 1906 (pg 83, Piantadosi)

Am I the good, the bad, or the ugly guy??

Dehydration and survival

- Loss of 12% body mass
 - clinical shock
 - plasma osmolality of 350 mosm/liter
 - loss of 8.4 liters of sweat
 - loss of 33% of PV (1 liter)

- With no fluid intake and an obligatory water loss of 1200 ml/d, 8.4 liters will be lost in 7 days (168 hrs), with no exertion

Dehydration and endurance

<table>
<thead>
<tr>
<th>Body Weight Loss</th>
<th>Exercise Environment</th>
<th>VO2 max Change</th>
<th>Endurance change</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2% HOT</td>
<td>-10%</td>
<td>-22%</td>
<td></td>
</tr>
<tr>
<td>-4% HOT</td>
<td>-27%</td>
<td>-48%</td>
<td></td>
</tr>
<tr>
<td>-5% MILD</td>
<td>-7%</td>
<td>-12%</td>
<td></td>
</tr>
<tr>
<td>-5% MILD</td>
<td></td>
<td>-17%</td>
<td></td>
</tr>
</tbody>
</table>

Armstrong, pg 26

100 hr rule

- Humans can survive about 100hrs without water
 - shorter than 168 hrs because more water is lost due to heat, activity
 - shorter yet with increased activity and heat exposure
Hydration Solutions

- **Adolf (early 40s)**
 - Importance of fluid ingestion to reduce cardiovascular and thermoregulatory effects of dehydration
 - Slows development of fatigue
- **Gisolfi (90s)**
 - Studied effect of weak carbohydrate (6%) and electrolyte solutions

Water vs. electrolyte solutions?

- **Add carbohydrates**
 - When exercise is intense (>70%) and prolonged (> 1 hr)
- **Add electrolytes**
 - When sweating is profuse and prolonged (> 4 hrs)
- **Water**
 - Empties best from the stomach and is most effective in shorter duration exercises
 - For most individuals (except athletes, military or spec. occup.) water is enough

How much fluid intake?

- **Current ACSM recommendation**
 - Drink to maintain body weight
- **Noakes**
 - Prolonged drinking to maintain wt can lead to hyponatremia (Na⁺ < 130 mequiv/l)

Increase sodium intake?

- Americans typically eat 6-17 g NaCl/d
 - Recommended to reduce to 6 g
- People who live in hot climates and eat less than us don’t have hyponatremia:
 - Masai, < 5g NaCl/d
 - Galilean naturalists, 1.9 g NaCl/d
- Lab studies have shown successful heat acclimation with 4-6 g NaCl/d
 - Typical sweat losses are 0.8-2.0 g in acc and 3-4 g NaCl/l in unacclimated humans
 - 1 Tsp salt (8g NaCl) can easily replace sweat loss

Rehydration

- **Drink water?**
 - Water will empty from the stomach quickly
 - Water will lower sodium concentration
 - Lower sodium will inhibit drinking before fluid is totally replaced
 - Delay rehydration?
- **Nose:**
 - Add sodium to the rehydration solution to get more rapid and complete rehydration

Over-hydration to improve exercise performance?

- A controversy over semantics?
- **Over-hydration (Sawka)**
 - Is not effective
 - Drink before & replace fluids during exercise
 - Is no better than controls drinking during exercise
- **Over-hydration (Moroff)**
 - Is effective
 - Drink before & no fluids during exercise
 - Is better than controls not drinking during exercise
 - Extra fluid before exercise delays dehydration.
Glycerol Hydration Controversy

- Riedesel, Montner
 - pre-hydration with glycerol and hydration during exercise reduces cv and tr strain
 - expanding the ICF and ISF allows > reservoir to maintain PV

- Sawka
 - glycerol hydration solutions offered no benefit. Expands TBW but does not increase PV and therefore is not effective

- Robergs
 - Negative findings with glycerol are related to the method of administration. Must start the night before and continue during exercise

ACSM Position Stand on Exercise and Fluid Replacement, 2000

- drink 500 ml of fluid 2 hr before exercise
- during exercise, drink early, drink to maintain body wt, or max rate tolerated (600-1200 ml/hr)
- cool fluids (15-22°C)
- with few exceptions, water is the replacement of choice
- unless the exercise bout lasts > 60-90 min. there is little advantage to supplementing carbs