Populations with Special Needs (ACSM guidelines)
■ Congestive Heart Failure (CHF)

- Pacemakers
- Cardiac Transplant

CHF, Benefits of exercise

- Improves functional capacity and quality of life
- Peripheral muscle adaptations are largely responsible for improved exercise tolerance
- Exercise for patients
- who are stable on medical therapy
- without contraindications
- Functional capacity > 3 Mets
- Special precautions from meds
- digoxin, diuretics may pre-dispose to arrhythmias

Congestive Heart Failure

- CHF, heart cannot deliver oxygenated blood to tissues
- impaired cardiac output and cardiac function
- impaired skeletal muscle metabolism, greater glycolysis, metabolic acidosis, early fatigue
- catecholamines unusually elevated
- abnormal beta-receptor density-reduced cardiac contractility

CHF, Exercise Prescription

- Exercise intensity based on symptom-limited exercise test
- THR 40-75\% VO2max
- 3-7 d/wk

■ work slowly towards 20-40 min/sessions
■ Warm-up and cool-downs of 10-15 min

- If HR is altered, use RPE (11-14) and dyspnea to target workloads
- complement with resistance training
- high volume, low intensity

Patients with Pacemakers

Pacemakers

- A pacemaker is a battery-powered device that delivers an electrical stimulus to the myocardium
- Implanted in patients with
- symptomatic sinus bradycardia
- sinus arrest
- sick sinus syndrome
- slow atrial fibrillation
- 2 nd degree type 2 or 3rd degree heart blocks

Exercise in Patients with Pacemakers

■ Fixed-rate pacemaker: HR does not increase appropriately with exercise, attenuated functional capacity

- Still show some training effects
- Intensity determined using SBP
- TSBP $=\mathrm{T} \%($ SBPmax-SBPrest $)+$ SBP
- T $\%=50-80 \%$ SBPmax

A = stimulus with ventricular capture
$B=$ a native beat
$\mathrm{C}=\mathrm{a}$ fusion beat (pacemaker fires at the same time as
the ventricle

Types of Pacemakers

- Pacemaker with a fixed rate
- Dual chamber pacing with AV synchrony
- Dynamic adjustment to match met demand
- sensors that respond to physiologic, mechanical or electrical signals
■ Pacemakers with implantable cardioverter defibrillator (ICD)
- electrically terminate tachy-dysrhythmias

Exercise in Patients with

 Pacemakers- Rate-modulating pacemakers
- Use normal HR methods to set rate, but consider HR limits of the pacemaker
- Rate sensor is non-physiologic (motion sensitive or accelerometer)
- carefully designed exercise modes--eg. Increase treadmill load by increasing speed, not grade. Cycle may not produce sufficient feedback to regulate HR

| Types of Pacemakers |
| :---: | :---: |
| ■ Pacemaker with a fixed rate
 ■ Dynamic adjustment to match met demand
 ■ sensors that respond to physiologic,
 mechanical or electrical signals |
| • Pacemakers with implantable cardioverter
 defibrillator (ICD)
 ■ electrically terminate tachy-dysrhythmias |

| Exercise in Patients with |
| :--- | :--- |
| Pacemakers |
| Rate-modulating pacemakers |
| Use normal HR methods to set rate, but |
| consider HR limits of the pacemaker |
| Rate sensor is non-physiologic (motion |
| sensitive or accelerometer) |
| - carefully designed exercise modes--eg. |
| Increase treadmill load by increasing speed, |
| not grade. Cycle may not produce sufficient |
| feedback to regulate HR |

Exercise in Patients with pacemaker, cont.

- Pacemaker with ICD
- Know the critical HR or HR interval that triggers shock treatment
- stay well below that HR
- monitor HR continuously
- A magnet should be available to override or inactivate the device

Cardiac Transplant

■ 3000 patients/yr

- 1 and $3-y r$ survival rates are 83 and 77%, respectively
- Loss of ventricular innervation
- except for PS post-ganglionic fibers
- Adverse effects of immunosuppressive drugs
- Prolonged inactivity

Pacemaker manfunctions

Under-sensing
 -normally the pacemaker is set to fire only after a set period -due to problem with the sensing catheter tip -sensitivity setting is too low

Exercise Response in Cardiac Transplant Patients

- 2 separate P waves
- resting sinus tachycardia (90-100)
- hypertension (Sys and Dias)
- elevated catecholamines
- increase in HR with exercise
- due primarily to HR, less to SV
- increase in HR is delayed
- Initial increase in CO is due to Frank-Starling effect (increase SV)
- Later HR increases in response to humoral (catecholamine) response

Exercise Response in Cardiac

 Transplant patients, cont.■ Submax Exercise Responses

- Increased RER, Ve, NE
- Peak Exercise Responses
- increased lactate
- decreased HR, BP, VO2, AT, SV, CO, exercise time
- VO2pk ~ $17 \mathrm{ml} / \mathrm{kg} / \mathrm{min}$

Exercise Prescription for Cardiac

 Transplant Patients- Base prescription on exercise testing
- intensity, 50-75\% VO2pk
- RPE, 11-15
- Initial exercise HR response altered, so initially use target work loads or Met loads; later HR, RPE and dyspnea.
■ Prolonged warm-up and cool-downs
- aerobic, 4-6 d/wk
- duration slowly increasing from 16-60 min/session
- low-mod intensity resistance training 2-3d/wk

Training and Qualifications to work in Cardiac Rehab (Robergs, 97)

- Minimum Qualifications
- BS in exercise physiology or related field
- Certification, experience and training equivalent to Exercise Specialist (ACSM)
- Experience in exercise planning, counseling, supervision with cardiac rehab patients
- BLS
- Preferred Qualifications
- MS
- ACLS

