Pulmonary Diseases and Exercise Testing

- Types of Pulmonary Diseases
- Effect on Exercise Response
- Role of Exercise in Treatments

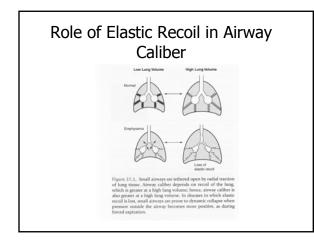
Mallory and Norton, 26,800 ft, Mt. Everest

Pulmonary Diseases

- Obstructive
- Restrictive
- Pulmonary Vascular Diseases
- Hypo-ventilation Syndromes

Obstructive Pulmonary Diseases

- Due to a narrowing of airways
- Can restrict airflow in and out of the lungs
- COPD
 - worsening expiratory obstruction
 - Dyspnea on exertion
 - Reversible airway hyper-reactivity
- Common in cigarette smokers


<figure>

Cardiovascular Consequences of COPD

- Lungs are under-ventilated and overperfused
- Arterial hypoxemia
 - Stimulant for vasoconstriction
- Pulmonary hypertension
 - Right heart hypertrophy/failure
- Secondary polycythemia
- Increased myocardial work/CAD common

Two Main Types of COPD

- Chronic bronchitis
 - Disease of airways
 - Chronic cough, excessive sputum
 - Blue Bloaters: cyanosis, reduced ventilatory drive, low minute ventilation/inactive
- Emphysema
 - Disease of lung parenchyma
 - Enlarged air spaces and loss of airway elasticity
 - Pink puffers: thin from malnutrition and increased cost of breathing. Barrel-chested from air trapping. High ventilation to overcome increased dead space.

Common Causes of Emphysema

- · Cigarette smoking
 - Upsets protease/anti-protease balance in the airways
 - Smoking increases protease activity (from inflammatory cells?)
- · Genetic disease
 - Deficiency of alpha-1 anti-trypsin (antiprotease)

Management for Patients with COPD

- Identify/eliminate sources of inflammation – Cigarette smoke, inhaled irritants
- Dilate airways
 - Bonchodilators, corticosteroids
 - Prevent respiratory infections
 - · Vacinations, anti-biotics
 - Rehabilitation programs
 - individualized

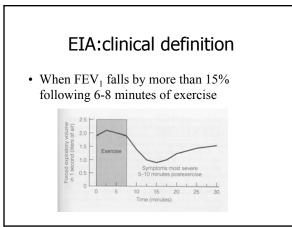
Asthma

- Asthma = Greek "to pant"
- A type of obstructive lung disease
- Inflammation of the lungs which causes airways to narrow
 - constriction of smooth muscles of airways
 - swelling of mucosal cells
 - secretion of mucous

Occurrence

- 5000 people/year die from asthma attacks
- Affects ~5% of Americans (15 million)
- twice as common in Blacks than Whites
 - more common in urban areas
- 49% increase since the 1980s
 - tightly sealed housing
 - pollution
 - greater awareness
 - changes in diet

Types of Asthma


- Childhood asthma (7% children)
 - affects twice as many boys as girls
 - some outgrow
 - others experience asthma-free teens and early 20s, then returns as an adult
- Adult on-set asthma (5% adults)
 - appears as an adult
 - no gender differences
 - gets worse with age (75% of deaths in elderly)

Asthma "triggers"

- Exercise: 80% of children and 60% adults
- Dust mites
- Allergens in animal fur and cockroaches
- tobacco smoke
- mold, fungal spores, pollens
- smoke from wood-burning stoves
- · colds and respiratory infections

Exercise-Induced Asthma

- Mechanism?
 - Primarily due to broncho-constriction
 - Mucosal airway cells dried and cooled
 - · Increased osmolality of mucous
 - Chemicals released by airway cells that cause constriction
 - · Pollutants and pollen increase risk

EIA: timecourse

- · Early Phase
 - wheezing, coughing, chest tightness appears within several minutes after exercise
- Spontaneous Recovery

 Symptoms gradually diminish (usually 45-60 min)
- · Refractory Period
 - Symptoms markedly less is exercise again within 30-90 min.

Exercise Training and Asthma

- As asthmatic becomes physically fit, EIA attacks are less frequent
- · Several famous athletes have asthma
 - Jackie Joyner-Kersee, Jim Ryun, Tom Dolan, Nancy Hogshead
- Need to establish a medication/treatment plan

Cystic Fibrosis

- Another type of Obstructive Lung Disease
- Genetic disorder, affects mucus secretions

 Lungs, digestive, reproductive
 Sodium and chloride loss is increased
- Most life-shortening genetic disease in Caucasians
- 1/3000 live births
- Median survival age is 31 yrs

Restrictive Lung Diseases

- · Reduced lung volume
- · Thorax diseases
 - Diseases of rib cage or spine
 - Diseases of the respiratory muscles and nerves
 - Morbid obesity
- Lung parenchyma diseases
 - Interstitial or alveolar disease (>200 kinds)
 - Infection, pulmonary edema, interstitial lung disease
- Occupational exposures
 - Black lung disease, asbestos, solvents

Pulmonary Vascular Disease

- Thrombo-embolism = most common
- Conditions that predispose:
 - Bed rest
 - Post-operative
 - Chronic cardiac disease
 - Injury to lower extremity
 - Clotting disorders

Hypoventilation Syndromes

- CNS disorders (stroke, tumor, encephalitis)
- Sleep apnea
 - Upper airway muscles lose tone
 - Hypertrophied tonsils
 - Anatomical abnormalities of jaw
- · Diseases of the respiratory control system
- Obesity hypoventilation syndrome (Pickwickian Syndrome)

Pickwickian Syndrome

- Cause??? Link with obesity is incompletely understood
 - Mechanical effects of obesity
 - Depressed responsiveness to hypoxia and hypercapnia
 - Lose of tone of pharyngeal muscles

Pulmonary Rehabilitation

- Exercise training is a key component in pulmonary rehab:
 - increases functional capacity
 - decreases severity of dyspnea
 - improves quality of life
- Specific breathing exercises
 - Respiratory muscle training
 - Upper body resistive training

Exercise Prescription

- Standard Principles apply:
 - Mode:
 - walking, cycling, rowing: indoors
 - Frequency:
 - minimum 3-5 d/wk
 - Intensity: 2 major approaches
 - 50% VO2pk
 - · maximal limit tolerated by symptoms, GXT
 - Duration:
 - intermittent exercise may be necessary to get 20-30 min.

Pursed-lip Breathing

- breathe in through nose, breathe out slowly (twice as long as inhale) blow out firmly through mouth with lips tightly closed except at very center
 - good for patients with obstructive disease
 - decreases frequency of respiration
 - increases tidal volume
 - reduces breathing distress

Supplemental Oxygen

- Oximetry recommended during GXT and initial training sessions
 - if PaO₂ < 55 mmHg or SaO₂ < 88% use supplemental oxygen
 - adjust flow rate to maintain $SaO_2 > 90\%$ throughout exercise

Alternate Exercise Modes

- Continuous positive airway pressure (CPAP)
- Upper body resistance training
- Ventilatory Muscle Training (VMT)

CPAP

- · Lung diseases
 - Hyper- or under-inflation
 - Ventilation/perfusion mismatching
 - Increased work of breathing
- CPAP
 - Start 2-3 cm water & work up to 5-10 cm water
 - Reduces work of breathing and dyspnea
 - Increases ventilation to collapsed regions of the lungs
 - Increases exercise duration

Upper Body Resistance Exercise

- Arm and shoulder exercises
- high vol, low intensity (1-2 kg)
- · slow expiration linked with lift

Ventilatory Muscle Training

- Strength training
 - inspiratory resistance at near maximal effort
- Endurance training
 - low to moderate inspiratory resistances for 15-30 minutes

Indications for VMT

- Symptomatic and limited patients
- Decreased respiratory muscle strength

 inspiratory and expiratory mouth pressures
- Absence of severe hyperinflation on chest radiograph

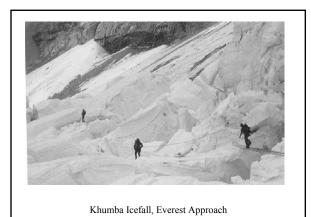
Guidelines for VMT

- Frequency:
 minimum 4-5 times/wk
- Intensity - 30% Pimax measured at FRC
- Duration
 - two 15 min or one 30 min session

Exercise Monitoring

- Pulse oximetry, $SaO_2 > 90\%$
- SaO₂/HR
- dyspnea rating (5 out of 10) "severe"

Precautions for Exercise Testing in Pulmonary Patients


- medications taken before exercise test?
- inhaler and broncho-dilating drugs handy
- Oxygen, mouthpiece for gas analyses or mask?
- CPAP
- Cardiovascular effects of meds?

Precautions cont.

- consider the patient's triggers (indoor)
 - design prescription with regard to the patient's symptoms (ventilation level, intermittent)
- Other training?

Case Study, Ehrman et al. pg 356

- See handout
- Medical history
 - 69 yr old male with shortness of breathe
 - Quit smoking 3 yrs ago
 - Stage 2 obstructive lung disease, obesity, HTN, sedentary
- Exercise test results
 - 2 min, 1.5 mph, 1% grade
 - 83% HRmax predicted, bp 194/100,dyspnea, Po2 85%
- Exercise prescription
 - Exercise to dyspnea
 30-min interval training
 - Upper body resistive exercise, flexibility

