Biological and Man-Made Extreme Environments

“Field” by Richard Box
Power lines light up fluorescent tubes

Centers for Disease Control (CDC)

• Responsible for maintaining public records of infectious diseases
 – identify, track, and provide information for treatment
• also tracks potential biological and chemical warfare agents

Natural Biological Diseases

• Plague
• Yellow Fever
• Influenza
• Meningitis
• Encephalitis

Plague

• 2003, New Mexico man and woman diagnosed with plague
• April 30th, 2004 Two cats found in Santa Fe with plague

Yellow Fever Epidemics in Galveston

• Periodic epidemics during summers to the first frost
• 20 lives / day, 10% of the population
• Houston militia sent out to stop trains from Galveston—enforced quarantine.
• influenced the decision to locate the medical school in Galveston, 1891

Biological Effects of Atmospheric Ions?

• Biometeorology: effects of environmental factors on living organisms
• Ions
 – Folk lore of effects of changing weather patterns
 – Weather causes atoms (oxygen, water) to gain or lose electrons
 – Real effects??
Natural Effects of Ions?

- Positive ions
 - Associated with hot, dry winds
 - Santa Ana (CA), Chinook (Canada)
 - 30% of humans are sensitive
 - Migraines, limb swelling, asthma, arrhythmias, GI hyperactivity
- Negative ions
 - Associated with lightning, waterfalls
 - Neutralize effects of positive ions

Serotonin Irritation Syndrome

- Ions travel in respiratory tract
- Cause release of serotonin
 - Cause production of NE and EPI
 - Increase secretion of ACTH and prolactin
- Decreased visual m time, increased fatigue
- Depression, irritability
- Neg ions result in smaller increases in body temp, HR, RPE and increased “work output” in a hot environment

Man-Made Extreme Environments

Biological Weapons

- Used in warfare since the 6th century
 - Assyrians poisoned enemy wells
 - Native Americans first exposed to European diseases
 - Mayans, Pueblo, Inuits
 - ricin (a toxic product from castor beans) used in an assassination in London in 1978

Potential Biological Warfare Agents Table 19.1

- Category A, easily disseminated, high mortality
 - anthrax, botulism toxin, plague
- Category B, not easily disseminated, moderate or low mortality
 - Q fever, ricin toxin, staphylococcus
- Category C, emerging pathogens
 - hanta virus, yellow fever, tuberculosis

Chemical Weapons

- Arrived with the industrial revolution
- Used extensively in WW1
 - chlorine, phosgene, mustard gas
- Sarin used in Tokyo subway 1998 kills 12 people
- Mustard and nerve gases used in Iraq in 1988
Regulations against biological and chemical weapons

- 1972 Biological Weapons Convention
 - prohibit development, production, stockpiling
 - US destroyed microbes for anthrax, tularemia, viruses for Q fever, encephalitis, and staphylococcus and botulism toxins
 - not all countries signed
 - not all countries who signed have complied

Radiation: friend or foe?

- Albuquerque Atomic Energy Museum
 - Central across from Old Town
- Exhibits of the development of the first Atomic bombs
- Exhibits of the medical uses of radiation

Natural Radiation Exposures

- Radioactive potassium in foods
- radioactive radon in air
- normal background cosmic radiation
 - increases 100 fold during jet travel

Radiation from human activities

- Work in mines (uranium mines in Galisteo)
- x-rays, medical, security
- radioactive meds, cardiac imaging
- atomic weapons testing fallout

Astronauts and Radiation exposure

- Radiation exposures outside Earth’s atmosphere are much larger
 - cosmic rays not filtered by the Earth’s atmosphere
 - x-rays and gamma rays from the Sun
 - high atomic number energetic particles (HZE) derived from the sun or stars
 - biological effects are unknown
 - products from interaction with shielding

Physiological Effects that might alter radiation damage

- Impaired immune function
- impaired repair processes?
- Unknown effects of HZE
- 3-year trip to Mars, estimated 3% of cells would sustain lethal damage
- long-term effects?
Career Radiation Limits (Sv)

<table>
<thead>
<tr>
<th>Age at entry</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>35</td>
<td>2.5</td>
<td>1.75</td>
</tr>
<tr>
<td>45</td>
<td>3.25</td>
<td>2.5</td>
</tr>
<tr>
<td>55</td>
<td>4.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

HZE exposure of 4 Sv is estimated to double the risk of cancer (1 Sv = 100 REM)

Thermonuclear Weapons

- Greatest threat from terrorism
 - initial blast
 - long-term effects, medical and environmental

Hiroshima/ Nagasaki

- 103,000 to 200,000 civilians died initially

Regulations against Nuclear Testing

- 1963 Test ban treaty between the US and Soviet Union
- Now over 40 nations have nuclear bomb capability

Units of Measure for Radiation

- Roentgen (R)
 - amount of radiation required to ionize a specific volume of air under standard conditions
- Rad (radiation absorbed dose)
 - energy deposited in tissue (100 ergs/gm)
- Gray (Gy) is the international unit
 - equals 100 Rads

Dose Equivalence

- Different types of radiation (gamma, x-ray, cosmic) produce different amounts of biological effect
- Dose equivalence
 - exposure dose x biological effect factor for the type of radiation
Units for dose equivalence

- REM (roentgen equivalent in man)
- SI units, 1 Sievert (Sv) = 100 REM
 - 10 Sv = 1000 REM is lethal
 - 1 mSV = 100 mrem, average bkg radiation per year
 - 0.1 to 0.5 mSV = 10 to 50 mrem = chest x-ray
 - 5 mSV = 500 mrem = yearly allowable radiation exposure for most IRBs

Types of Radiation

- Ionizing radiation: tissue absorbs radiation energy, exciting an electron which is ejected from the atom
 - 2 types
 - electromagnetic
 - particle

Electromagnetic Radiation

- X-rays
 - produced when electrons strike a target and release energy
- Gamma rays
 - produced by the decay of radioactive isotopes
 - Electromagnetic radiation lacks charge and mass

Particle Radiation

- electrons, protons, and alpha particles
 - are accelerated in an electrical field, have charge and mass
 - lose energy rapidly when they enter tissue
 - cause a region of local ionization
- alpha particles
 - are helium nuclei (2 protons and 2 neutrons) usually too large to enter tissues
- neutrons
 - emitted as fission products or produced in colliders

Biological effect: RBE

- Vary with the type of radiation
- Radiation effect is normalized by being expressed in terms of relative biologic effectiveness (RBE)
 - RBE for x-rays and gamma rays is 1
 - RBE for neutrons is 10-20, much more potent
- RBE varies with type of radiation, dose, and type of tissue

Radiation and Mortality

data from Hiroshima, Pacific Islanders, Chernobyl

- < 2 Gy (200 Rad), little if any therapy
- 3.25 Gy, LD50/60
 - 50% of population is dead in 60 days
 - young and old are more sensitive
 - non-pregnant women are more radiation tolerant than men
Exposure effects
• 2-8 Gy, death from hematopoietic syndrome in 3-6 wks (bone cells)
• 5-10 Gy, gastrointestinal syndrome in 3-10 days (GI epithelial cells)
• 100 Gy, cerebrovascular syndrome within 2 days (brain and heart cells)

Free Radicals
• FR = reactive and unstable molecules that contain an unpaired electron
• radiation can produce FR by interacting with oxygen, carbon, or water inside the cells
• FR oxidize nucleic acids in the cell and cause break in DNA

DNA damage and cancer
• If both stands of DNA are broken it causes cell death
• If one strand is broken
 – it can be repaired by the cell
 – it can cause mutations when the cell divides, may be years later
 – it can cause cell death when the cell divides

Long-Term Fall-out
• Stochastic effect (long-term) of radiation
 – induction of cancer years after the original exposure
 – 8 types of radiation-induced cancer
 • leukemia, meningioma, thyroid, breast, lung, stomach, colon, skin
• Deterministic effects
 – Short term effects

Effects of nuclear testing
• Release of I-131 from American nuclear tests has caused 49,000 cases of thyroid cancer in the US
• Release of all substances from all tests has led to 430,000 deaths by 2000.
• Effect on human germ cell mutation rate?

Controversy over Food Irradiation
• Irradiation kills lethal microbes and other pathogens
• Eating of irradiated food is safe?
Radiation treatment for cancer

- Effective as a cancer treatment when it causes greater harm to cancer cells than tumor cells
- Cancer cells may be more susceptible since they are more active and undergoing more divisions
- Locally heat cells to increase effect
- Radiowaves to heat “tagged” cells

Radiation sensitivity vs. resistance

- Natural resistance to radiation damage
 - hypoxia
 - tumor protection genes (oncogenes)
 - response of various growth factors and cytokines (tumor necrosis factor, IL-1)
 - may increase or decrease susceptibility to radiation damage

Exercise and Survival in a world of natural and man-made terrorism

- Exercise improves immune function; does it protect against radiation damage?
- Exercise produces FR yet it also builds tolerance against FR
 - what is the net effect of exercise on FR damage?