Exercise at Altitude

Khumbu Icefall: on the way to Camp 1 for Everest
1 mi, 2,000ft climb, 300ft crevasses, < 4 hrs

Mallory: a story and a Mystery

• June 8, 1924, George Mallory and Andrew Irvine

A little history

• Torricelli (1644) developed the mercury barometer
• Pascal (1648) Pb decreases with altitude
• Lavoisier (1777) oxygen and other gases contribute to Pb
• Bert (1880s) described effects of hypoxia
• 1875 first balloon fatalities

Altitude and Pressure

1 meter = 3.28 feet
Albuquerque, ~ 1500 meters

Altitude Definitions

• High altitude
 – 1500 to 3500m
• Very high altitude
 – 3500 to 5500 m
• Extreme altitude
 – >5500m
 – 5820m is the upper limit of human habitation (~19,000 ft)

Ambient Pressure and oxygen

• (PO2) = %O2 x Pb - water vapor
 • Sea level
 – PO2 = 760-47 x .2093 = 149 mmHg
 • Albuquerque (5200 ft)
 – PO2 = 630-47 x .2093 =122 mmHg
 • Pikes Peak (14,300 ft)
 – PO2 = 430-47 x .2093 = 80 mmHg
 • Everest (29,028 ft)
 – PO2 = 250-47 x .2093 = 43 mmHg
Altitude and Oxygen Sat.

Acute Pulmonary Responses

- Hyperventilation (at 4300 m, Ve increases 30%)
 - caused by hypoxia (arterial chemoreceptors)
- $\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{HCO}_3^- + \text{H}^+$
 - decreases PACO$_2$
 - decreases HCO$_3^-$
 - respiratory alkalosis
 - increases PAO$_2$
 - shifts Hb dissociation curve left
 - pulmonary hypertension
 - Cheyne-Stokes breathing

Hemoglobin dissociation curve

- Alkalosis
 - left shift
 - greater O$_2$ uptake from air
 - less transfer to tissues
- 2,3 DPG
 - right shift

Acute responses: cardiovascular

- Decreased a-vO$_2$diff (decreases a)
- Increased resting and submax HR
- Decreased SV
 - Hypoxia, ↑ TPR, ↓ PV, ↑ HR
- increase in submax Q
- max Q decreases slightly or remains the same

Acute Responses: body fluids

- Increased fluid loss
 - lower water vapor, hyperventilation, vasoconstriction, diuresis
- Reduced plasma and blood volume
- Increased hct and viscosity

Hypoxia-inducible factor

- Present in most cells and inactivated by the presence of O$_2$
- Hypoxia, HIF-1 is formed, moves to the cell nucleus, binds to a gene promoter
- Gene causes the transcription of mRNA for EPO
- Also transcribes mRNA for VEGF
 - vascular endothelial factor causes growth of new blood vessels
Acclimatization: Body fluids

- Increased Epo from kidney (PO$_2$)
- Polycythemia with no increase in BV
- Increased 2,3-diphosphoglycerate
 - Shifts hb dissociation curve back to the right
 - Compensation for alkalosis
- Excretion of HCO$_3^-$
 - Restores acid-base balance

Acclimatization: cardiopulmonary

- Ve, further increases
 - Increased sensitivity of arterial baroreceptors
- PAO$_2$, further increase
- Submax HR remains elevated
- Submax Q falls, SV lowers
- Max Q lowers
- Some restoration of VO$_2$\textsubscript{max}
 - Endurance trained athletes who live at altitude for years never regain their sea level VO$_2$\textsubscript{max}

Acclimatization: muscle

- Increased muscle capillarity
- Reduced muscle fiber size
- Increased mitochondria
- Increased aerobic enzymes?
- Increased reliance on carbs
- Increased muscle myoglobin
- Body composition
 - Loss of LBM and weight
 - Increased BMR, extra 340 kcal/d

Native responses

- Oxygen-carrying capacity of HA Peruvians is 28% > sea level residents
 - Smaller size with a larger chest (barrel)
 - Increased heart size
 - Larger lungs, more capillaries
- Monge's disease (Chronic Altitude Sickness):
 - Persons who live at altitude
 - Symptoms similar to altitude sickness
 - Hct 80, blue lips, clubbed fingers
 - Sludging of RBC
 - More common in men
High Intensity Exercise
- for 10s max cycling, no effect
- sprint activities less than 1 min are not impaired at moderate altitude
- More prolonged intense exercise
 - decreased max lactate
 - increased acidosis
 - due to reduced HCO$_3^-$ and buffering capacity?

VO$_{2\text{max}}$
- Decrease VO$_{2\text{max}}$
 - Proportional to reduction in P_b
- Decreased VO$_{2\text{max}}$ is due to
 - reduced P_{O_2}
 - impaired O_2 extraction from muscles
 - decreased Q_{max}
 - due to decreased HR$_{\text{max}}$ and SV$_{\text{max}}$

VO$_{2\text{max}}$ and altitude
Above 1500m, VO$_{2\text{max}}$ decreases by 9.2% each 1000m
> fitness > effect

VO$_{2\text{max}}$ on Everest
- VO$_{2\text{max}}$ decreases with altitude
- Individuals with a larger VO$_{2\text{max}}$ will perform better at altitude (despite larger reduction)
- On Everest, VO$_{2\text{max}}$ is reduced to 10-25% of sea level value
- Top of Everest is about the limit of functional work--VO$_{2\text{max}}$ approaches resting VO$_2$
- Persons with exceptionally high VO$_{2\text{max}}$ can summit without oxygen
 - 1978, Messner and Habeler were the first

Cardiorespiratory Endurance
- Decrease in VO$_{2\text{max}}$ and increase in blood lactate independently decrease tolerance to prolonged exercise
 - time trials at 1-3 miles at 2300m were 2-13% slower

Cardiovascular Responses to Submaximal Exercise
- Greater increase Ve
- Increased VO$_2$ (work of breathing)
- Increased HR
- Decreased SV
- Increased Q (lower a-vO$_2$diff)
- No change muscle bf (increased hct)
- Increased blood lactate
Metabolic Response to Exercise
- Higher lactate during submax exercise, but < lactate at max
- No change in LT at given %VO_{2max}
- Greater reliance on carbs

Lactate Paradox
- decreased maximal lactate after chronic altitude exposure
 - due to increased lactate uptake by active and inactive skeletal muscle, the heart, kidney, and liver
 - reduced ability of CNS to support exercise, lower maximal work intensities
 - reduced ability to mobilize glucose and thus form lactate (McArdle, pg 452)

Mexico City Olympics
- 1968 Olympics in Mexico City
 - altitude of 2300 m, Pb 569 mmHg
- Beneficial effects
 - jumping, throwing, sprinting
- Negative effects
 - running distances > 1 mile
- Sparked interest in best ways to train

Benefits of moderate altitude acclimatization
- Natives to moderate altitude (2000m) experience fewer problems with exposure to higher altitude (4300m)
 - less mountain sickness
 - 1/2 decrement in VO_{2max}
 - larger maximal Ve

Time for acclimation
- 2 wks to adapt to 2300m
- thereafter for each 610m increase in altitude, 1 additional wk up to 4572m

Altitude Training Questions?
- Can altitude living improve altitude performance?
- Can altitude living improve sea level performance?
Altitude living and altitude performance

- No doubt, altitude exposure improves altitude performance
 - increases hct and hb concentrations
 - increases VO_{2max} 5-10%

Altitude training to improve sea level performance?

- Mixed results
 - 2300 to 3300m training for 2 wks improved 1500m and 1 mile race times at sea level
 - 3100 to 4000m training for 20-63d produced slower sea level times and decreased VO_{2max}
- To obtain benefits, training must be done at low or moderate altitudes
- At higher altitudes athletes can’t train well and times will be reduced

Live high and Train Low

- Train at lower altitude to optimize work outs
- Athletes who lived at 2500m but trained at 1250m had greater increases in 5000m run than
 - athletes who lived and trained at 2500m
 - athletes who lived and trained at sea level

Sea level altitude training

- Normobaric hypoxia
 - increase inspired nitrogen during training
 - hypoxic sleeping tent
- Hypobaric chambers

Altitude Illnesses

- Ravenhill Br. physician 1913
 - first categorized types of altitude illness in the Andes
- AMS, Acute mountain sickness
- High altitude pulmonary edema (HAPE)
- High altitude cerebral edema (HACE)
- Each vary with the rate of ascent and individual susceptibility
Acute Mountain Sickness

- Symptoms
 - headache, nausea, vomiting, dyspnea, insomnia
 - begins 6 to 96 hrs at altitudes > 3000m
 - 0.1 to 53% at altitudes from 2400 to 5500 m
 - 6.5% men, 22.2% women at 2400-3400m
 - 80% at 4200m

HAPE

- Rapidly ascend > 2700m
- 2% of people in 12 to 96 hrs
- fluid accumulation in lungs interferes with gas exchange, from pulm htn
- cough, pink frothy sputum, rales
- shortness of breathe, extreme fatigue
- cyanosis, confusion, loss of consciousness
- more often in children and young adults
- give oxygen and DESCEND

HACE

- Fluid accumulation in the cranial cavity
- hypoxia causes vasodilation of cerebral blood vessels
- 1% of people > 2700m
- mental confusion, coma, death
- most cases at >4300m
- give oxygen and DESCEND

Prevention of Altitude Illnesses

- Gradual ascent
 - no more than 300m/d above 3000m
- Climb high, sleep low
- Drugs
 - acetazolamide (Diamox)
 - diuretic, increases HCO₃⁻ excretion
 - dexamethasone
 - synthetic glucocorticoid (anti-inflammatory)
- High Carbohydrate diet (>70% cal.)