Ischemia and ST changes
- Coronary Arteries
- Mechanisms of ischemia
- Treatment
- Ischemia and MI
- EKG changes

Right Coronary Artery
- RCA Supplies
 - RA and RV
 - Inf and post. walls of the LV
 - SA node in 55% of people
 - AV node in 90% of people
 - Posterior fascicle of the LBB

Left Anterior Descending Artery (LAD)
- LAD Supplies
 - anterior wall of LV
 - LA and IVS
 - Apex of the heart
 - RBB
 - anterior fascicle of the LBB

Circumflex Artery
- Supplies
 - Lateral wall of LV
 - inferior and posterior wall of LV (10% of population)
 - septal perforator of LBB
 - SA (45% of population)
 - AV node (10% of population)

Law of Supply & Demand
- Oxygen delivery
 - luminal diameter
 - driving pressure - resistance to flow
 - hemoglobin content
 - blood viscosity
- Oxygen requirement
 - heart rate
 - wall tension
 - contractile state

Vasospasm
- Occurrence
 - Occurs in large or small arteries
 - Usually occurs near an artery damaged by plaque
- Factors that precipitate vasospasm
 - cold exposure
 - anxiety, fear, hostility
 - exercise, hyperventilation
- Factors that prevent vasospasm
 - nitroglycerine, calcium blockers
 - endothelial factors
Occlusions > 70% cause ischemia?

- Frequently taught that perfusion is not limited until a plaque occludes 70-80% of the lumen
- Untrue at high velocities of flow
- Plaque may increase susceptibility to vasospasm in arteries with much less occlusion
- Use caution in the interpretation of angiography results

Coronary Collaterals

- Primary stimulus is hypoxia
- Occurs in humans in vessels with > 75% occlusion
- Occurs rapidly, min in dogs
- Gradual onset of occlusion, more collaterals, better outcome
- Use of exercise in rehab
 - to promote collateral development?
 - to increase CA size (Clarence Demarr, Mr. Marathon)

Trigger Mechanisms for Ischemia

- Passive collapse of a vessel near a stenotic region
- Spasm, related to sympathetic tone
- Plaque rupture produces an ulcerated region that attracts platelets.
- Platelets attracted to plaque cause production of a powerful vasoconstrictor (thromboxane A2)
- Protective mechanisms = prostacyclin and nitric oxide are made by the endothelium and are vasodilators and plaque inhibitors.

Why the endothelium becomes ischemic first

- > blood flow, < bf to endothelium

Vasodilatory Reserve

- VR = ability to increase coronary flow
 - usually 8-fold ability in humans
 - decreases in arteries with occlusion
 - Syndrome X = persons with LV hypertrophy with normal coronary arteries except, they have a reduced vasodilatory reserve (endothelin mechanism?)
 - nitric oxide
 - adenosine (↑ coronary bf during hypoxia)

Effect of Posture on Angina

- Supine position, CBV increases by 200-300 ml
- Increases LV EF
- Greater endocardial ischemia
ACSM Post-Exercise Guidelines (pg 106, ACSM guidelines)

- Normal stress testing
 - cool-down for 3-5 minutes at low workload, recording EKG and BP
- Clinical stress testing
 - Record 10 sec of EKG in the upright posture, then the patient should be supine during the post-exercise period for EKG
 - more sensitive method to detect ST changes

Protective Action of decreased contractility

- Ischemic region soon loses contractility
- Reduction in wall motion and sometimes even a paradoxical bulge appears in the ischemic region even before ATP is depleted (met trigger, ↓ pH?)
- Decreased contraction promotes increased blood flow to this region—reduces injury?
- Wall motion changes are used to assess for ischemia (echocardiography)

Pericardial Hypothesis of ischemia

Pain and Ischemia

- Cause of pain in ischemia is unknown
 - metabolites? bradykinins, prostaglandins?
- Subendocardial ischemia with ST depression often occurs without pain
- Absence of pain is of no value in predicting CAD
- Silent myocardial infarction
- Silent ischemia
 - in 2703 patients with a positive stress test, only 66% had pain

Mechanism of ST depression

- K+ is lost from the ischemic tissue
- positive ion loss produces a current vector toward the endocardium, opposite the mean QRS vector
- appears as ST depression on the EKG

ST Elevation

- Occurs with myocardial injury
 - Ellstad, occurs with a transmural injury
 - Occurs when the tissue is damaged, before it becomes necrotic and has no electrical activity
Acute Coronary Syndromes Treatment

- AHA Handbook
- pages 28-52
- ischemia algorithm
- treatment rationale
- EKG interpretation
- drug effects

MONA

- Oxygen
 - may reduce ischemic injury
- Nitrates
 - dilates coronary arteries
- Morphine
 - take for pain if nitroglycerin does not help
- Aspirin
 - inhibits thromboxane
 - dissolves fibrin in the clot and prevents platelet aggregation

AHA Chest Pain Algorithm pg 29

MONA greets all patients

History of CAD pg 28

A. Unstable plaque
B. Plaque rupture
 - platelets aggregate
 - thrombin clot
C. Angina
 - anti-platelet agents
 - GP IIb/IIIa, aspirin
D. Microemboli
 - cardiac markers
E. Occlusive thrombus
 - MI with Q waves
 - Fibrinolytics
 - Percut. Coron. Interv (PCI)

Chest Pain Algorithm, cont.

Assess 12 lead EKG

<table>
<thead>
<tr>
<th>ST depression</th>
<th>T inversion</th>
<th>Non-diagnostic normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST elevation</td>
<td>new LBBB</td>
<td></td>
</tr>
</tbody>
</table>

Aspirin/Heparin
- Antiplatelet therapy
- Glycoprotein IIb/IIIa inhibitors
- B-blockers
- nitrates

ST depression treatment

- A partially occluded artery causes ischemia
- Caused by thrombin-rich platelets
- Antiplatelet agents (aspirin and GP IIb/IIIa inhibitors are most effective)
- Fibrinolytic agents may paradoxically accelerate occlusion
- B-blockers to decrease contraction
- Nitrates to vasodilate and increase blood flow
Chest Pain Algorithm, cont.

- Assess 12 lead EKG
- ST depression/T inversion
- ST elevation/new LBBB
- Non-diagnostic normal

ST elevation treatment

- May indicate complete occlusion
- Clot must be dissolved asap to minimize cardiac damage
- Prompt fibrinolytics to dissolve the clot (pg 62)
- Percutaneous coronary intervention to open the artery
- B-blockers to decrease contraction
- Nitrates to vasodilate and increase bf

Ischemia vs. Myocardial Infarction

- Ischemia
 - hypoxic tissue
 - due to inadequate bf/oxygen requirement
 - ST depression
- MI
 - occluded artery(s)
 - tissue necrosis
 - elevated ST segment
 - may or may not have Q wave changes

Non-Diagnostic EKG

- Monitor EKG for elevation or depression
- Monitor cardiac markers for MI
 - CK-MB isoforms (early markers of necrosis)
 - troponin
- Consider imaging
- Look for other causes of chest pain

Q waves and MI

- Small Q waves (septal depol) are usual in leads I, aVL, V5 and V6 (the lateral leads)
- Q Criteria for MI
 - duration ≥ 0.04 sec or
 - amplitude ≥ 1/4 of the R wave in the same lead
- Present when damage involves the entire thickness of the myocardial wall
Localization of MI and Ischemia

- EKG leads can be used to determine which area (sometimes even vessels) of the heart are affected

Inferior leads: II, III, aVF

Anterior leads: V3, V4

Lateral leads: I, aVL, V5, V6

How to measure ST changes

0.08 seconds for ACSM
Types of ST depressions

• Upsloping
 – least specific
 – 30-40% false positive
 – females
• Horizontal
 – ~10% false positives
• Down sloping
 – most sensitive
 – 5-10% false positive in middle-aged males
 – < 5% with chest pain

ST prognosis

• The greater the mm of depression or elevation, the greater the amount of tissue affected
• The greater the number of leads with the change, the greater the amount of tissue affected
• The earlier in the stress test that the changes occur, the more severe the condition
• Simultaneous occurrence of other indicators (pain, T waves, Q waves) increases probability of a true positive result

Other Causes of ST depression

• Ventricular hypertrophy
 – LV, leads I, aVL, V4-V6 (lateral leads)
 – RV, leads V1, V2
• RBBB
 – V1, V2
• LBBB
 – I, aVL, V5, V6
• Drugs, esp. digitalis

Review

• A 55 year old man complaining of chest pain
• Resting EKG and blood pressure are normal
• Bruce treadmill stress test
 – Stage 3
 – 3.3 mph, 14% grade
 – Subject complains of chest pain
 – the following EKG changes are seen

Review cont.

• What do the EKG changes tell you?
 – Mild ischemia, severe ischemia with damage, or MI?
 – right or left side of the heart is affected?
 – Upsloping, horizontal, or downsloping change?
 – What do you think about the prognosis? Accurate?
• What do you do next?
 – Continue the exercise test?
 – Cool down procedures?
Review, cont.

- If the pain continues and gets worse, what treatments should this bring to mind?
 - Immediate treatments for all patients with chest pain?
 - Long-term treatment based on EKG?