Addition Theorem for Jacobian Elliptic Functions

Recall the addition formula for sine:

\[\sin(u + v) = \sin(u) \cos(v) + \sin(v) \cos(u). \]

Since \(\text{sn}(u, k) \) reduces to \(\sin u \) when \(k = 0 \), then we might expect there to be a similar addition formula for \(\text{sn} \), e.g.

\[\text{sn}(u + v) = ? \]

Consider the rather mundane differential equation

\[
\frac{dv}{du} = -1 \tag{1}
\]

which has the general solution

\[u + v = A \tag{2} \]

where \(A \) is an arbitrary constant. Now consider the new variables

\[x \equiv \text{sn}(u, k) \]
\[y \equiv \text{sn}(v, k) \]

Recalling the derivatives of \(\text{sn} \), we have

\[
\left(\frac{dx}{du} \right)^2 = (1 - x^2)(1 - k^2x^2) \]
\[
\left(\frac{dy}{du} \right)^2 = (1 - y^2)(1 - k^2y^2) \]

and

\[
\frac{d^2x}{du^2} = -(1 + k^2)x + 2k^2x^3 \]
\[
\frac{d^2y}{dy^2} = -(1 + k^2)y + 2k^2y^3 \]

where we have used the fact that

\[\left(\frac{dv}{du} \right)^2 = (-1)^2 = 1. \]

Using these we have

\[
\frac{d}{du} \left(y \frac{dx}{du} - x \frac{dy}{du} \right) = y \frac{d^2x}{du^2} - x \frac{d^2y}{du^2} \]
\[
= -(1 + k^2)xy + 2k^2x^3y + (1 + k^2)xy - 2k^2y^3x \]
\[
= 2k^2xy(x^2 - y^2). \]
and also
\[
\left(y \frac{dx}{du} - x \frac{dy}{du} \right) \left(y \frac{dx}{du} + x \frac{dy}{du} \right) = y^2 \left(\frac{dx}{du} \right)^2 - x^2 \left(\frac{dy}{du} \right)^2
= y^2(1 - x^2)(1 - k^2x^2) - x^2(1 - y^2)(1 - k^2y^2)
= (y^2 - x^2)(1 - k^2x^2y^2).
\]

Dividing the first by the second, we have
\[
\frac{d}{du} \frac{y \frac{dx}{du} - x \frac{dy}{du}}{y \frac{dx}{du} + x \frac{dy}{du}} = \frac{2k^2xy(x^2 - y^2)}{(y^2 - x^2)(1 - k^2x^2y^2)} = \frac{-2k^2xy}{1 - k^2x^2y^2}.
\]

Since
\[
\frac{d}{du} (1 - k^2x^2y^2) = -2k^2 \left(\frac{dx}{du} + \frac{dy}{du} \right)
\]
we can rewrite the above as
\[
\frac{d}{du} \ln \left(y \frac{dx}{du} - x \frac{dy}{du} \right) = \frac{d}{du} \ln (1 - k^2x^2y^2).
\]

Integrating yields
\[
\frac{y \frac{dx}{du} - x \frac{dy}{du}}{1 - k^2x^2y^2} = B
\]
where \(B \) is an arbitrary constant. Since
\[
\frac{dx}{du} = \text{cn}(u) \text{dn}(u)
\]
and
\[
\frac{dy}{du} = \frac{dv}{du} \frac{d\text{sn}(v)}{dv} = -\text{cn}(v) \text{dn}(v)
\]
we have
\[
\frac{\text{sn}(v) \text{cn}(u) \text{dn}(u) + \text{sn}(u) \text{cn}(v) \text{dn}(v)}{1 - k^2 \text{sn}^2(u) \text{sn}^2(v)} = B. \tag{3}
\]

We now have two integrals of (1), namely (2) and (3), with two arbitrary constants \(A \) and \(B \); however since (1) is only a first order equation \(A \) and \(B \) cannot be functionally independent. \(B \) must be some function of \(A \): \(B = f(A) = f(u + v) \), so
\[
\frac{\text{sn}(v) \text{cn}(u) \text{dn}(u) + \text{sn}(u) \text{cn}(v) \text{dn}(v)}{1 - k^2 \text{sn}^2(u) \text{sn}^2(v)} = f(u + v).
\]
To determine f, let’s set $v = 0$. At $v = 0$, $\text{sn}(v) = 0$ and $\text{cn}(v) = \text{dn}(v) = 1$, so

$$\text{sn}(u) = f(u).$$

Therefore

$$\text{sn}(u + v) = \frac{\text{sn}(v) \text{cn}(u) \text{dn}(u) + \text{sn}(u) \text{cn}(v) \text{dn}(v)}{1 - k^2 \text{sn}^2(u) \text{sn}^2(v)}.$$

This is the addition formula for Jacobian elliptic functions, which is a special case of a theorem first proven by Euler concerning functions with algebraic addition formulas. Similar formulas for cn and dn can be found by combining this with the relations between the squares of elliptic functions. The proof here, first shown by Darboux, appears in Whittaker and Watson’s *A Course of Modern Analysis* and Akheizer’s *Elements of the Theory of Elliptic Functions*. Other methods of proving the addition theorem also appear in Whittaker and Watson.