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Synopsis 
This paper  invest igates  single part ic le  propert ies  in a Fermi  gas wi th  in terac t ion  a t  

the  absolute  zero of tempera ture .  In  such a sys tem a single part ic le  energy has ordy a 
meaning  for part icles  of m o m e n t u m  [k I close to the Fermi  m o m e n t u m  kF. These single 
part ic le  s tates  are metas tab le  wi th  a l ife-t ime approaching  inf in i ty  in the  l imit  Jk I --~ kF. 
The  l imit ing va lue  of the energy is called the  Fe rmi  energy EF. As a special ease of a 
more general  theorem,  it  is shown t h a t  for a sys tem with zero pressure (i.e. a Fermi  
l iquid a t  absolute  zero) the  Fermi  energy E y  is equal  to the  average  ene rgype r  par t ic le  
Eo/N of the  system. This result  should apply  bo th  to l iquid Hes and to nuclear  mat ter .  

The  theorem is used as a test  on the  internal  consis tency of the  theory  of 
B r u e c k n e r  1) for the  s t ructure  of nuclear  mat ter .  I t  is seen t h a t  the large discrepancy 
between the  values of EF  and Eo/N, as calculated by  B r u e c k n e r  and G a m m e l  2), 
arises from the  fact  t h a t  B r u e c k n e r  neglects impor t an t  cluster  terms cont r ibut ing  
to the  single part ic le  energy. This neglection s t rongly affects the calculat ion of the  
optical  potential .  

1. Introduction. In B r u e c k n e r ' s  theory 1) on the structure of nuclear 
matter  the interior of a nucleus is considered as a gas of strongly inter- 
acting Fermi particles. To each particle a separate energy Ez is assigned, 
which depends on the momentum l of the particle. This energy is written 
as the sum of the kinetic energy 12/2M and a potential energy Vz. The 
computation of Vt from a set of implicit equations is the main problem in 
this theory. Once Vz is known, the energy of the whole system in its ground 
state is given by  the simple formula 

E0 = ~]lZt<k~ (12/2M + ½Vt). (1) 

The summation is extended over all occupied states, i.e. over all momenta 
smaller than the Fermi momentum kv *). 

One might ask the question, what is the physical meaning of this single 
particle energy Et or the "potential energy" Vz in a system of strongly 
interacting particles. To answer this question we consider the theory of 
B r u e c k n e r  as a special approximation of a general time-independent 

*) We put h = 1 throughout this paper. 

- -  3 6 3  - -  
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perturbation formalism which was developed earlier by the authors a) 
(to be quoted as I, II  and III).  As will be shown in section 2, it then turns 
out that  only to particles with momentum l in the neighbourhood of the 
Fermi momentum kF an approximate energy Ez can be assigned. Only 
in the limit that  Ill approaches kF the energy Ez gets a precise meaning. 
This limiting value of E~ is called the Fermi energy EF. 

Section 3 will be devoted to an important theorem concerning this Fermi 
energy. It  will be shown rigorously that  for a system of Fermi particles at 
its ground state the Fermi energy as defined above is equal to the mean 
energy per particle, provided the system has zero pressure. Nuclear matter  
is an example of such a system. 

This theorem, which is a special case of a more general formula, derived in 
the first half of section 3, can be used as a test for the validity of the ap- 
proximation of B r u e c k n e r .  In recent calculations of B r u e c k n e r  and 
G a m m e l  2) the ground state energy per particle is found to be --15 MeV, 
whereas these authors find for the Fermi energy the value -- 34 MeV *). The 
cause of this discrepancy is investigated in the last section. Indications are pre- 
sented that  the largest part of the discrepancy comes" from the inaccuracy of EF. 

2. The single particle energy. The considerations of this and the following 
sections are mainly based on I and III .  We consider a system of a large 
number N of Fermi particles enclosed in a box of volume ~2. For simplicity 
we assume the particles to have no spin or charge. We are interested in 
particular in the case that  both N and ~2 are very large with a finite density 
p = N/~2. The hamiltonian H of the complete system is written as a sum 
of the kinetic energy H0 and the interaction V, which in the occupation 
number representation for plane wave states have the form 

Ho = f~ (lll2/2M) ~l*~z, 

For the notation we refer to III .  ~z and ~z* are annihilation and creation 
operators for a particle with momentum l, obeying the anticommutation 
relations 

(~ ,  ~*) -- ~9(2~)-~ ~z. 
In the limit ~2 -+ oo the right-hand side goes over into the Dirac 5-function 
~(k -- l). 

The ground state 190) of the unperturbed system is the state where all 
states of the Fermi sea, i.e. all one particle states with momenta less tha~ 
the Fermi momentum kF, are occupied. The Fermi momentum kF is related 
to the particle density by p = kFa/6~ 2. 

*) As Dr.  B r u e c k n e r k ind ly  po in ted  ou t  [o us, the n u m b e r s  quo ted  here  are not  qui te  correc'  

and  m u s t  be rep laced  b y  - -  14.6 MeV and  - -  27.5 MeV. Th e  d i sc repancy  is therefore  13 MeV. (Not, 
added in prool). 
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All other stationary states of the unperturbed system are characterized by  
the momenta kl, k2, . . . .  of the additional particles present and the momenta 
ml, m2 . . . . .  of the holes present (holes are unoccupied states of the Fermi 
sea). We respectively use the letters k and m to indicate momenta larger and 
smaller than the Fermi momentum kF. Because the annihilation of a particle 
in the Fermi sea is equivalent to the creation of a hole, it is useful to 
reinterpret ~m and ~m* for Im] -<< kF as creation and annihilation operators 
for holes. 

We have thus obtained a hamiltonian which exhibits a close formal 
resemblance to a field theory with pair creation. There is, however, an im- 
portant difference, which will be considered in this section. Whereas in field, 
theory, for not too strong coupling, to each unperturbed state corresponds 
at least one stationary state of the complete system; this is not the case in 
our system, which is essentially dissipative. In I and II a simple criterion 
was given for the existence of a perturbed stationary state corresponding 
to a state ]~> of the unperturbed system. It amounts to the existence of a 
pole for the expectation value of the resolvent R(z) = ( H -  z)-I for the 
state l~>. As shown in I I I  the expectation value Do(z) of R(z) for Jg0> has 
always a pole. Consequently there exists a stationary state l~o0>, the ground 
state of the system of interacting particles, which corresponds to the un- 
perturbed ground state 190>. The energy of IV)0> we call E0. The explicit 
expression of I~v0> and E0 was determined in III.  

Next we consider an unperturbed state with one additional particle with 
momentum k (Ikl> kF); it will be denoted by  Ik;>. According to I we must 
s tudy the function Dk(z) = Dk(z) -~ Do(z) *) of the complex variable z. D~(z) 
is the expectation value of the resolvent R(z) for Ik;> except for a factor 
6(o)" <;k IR(z)l k' ;) = ~(k --  k') Dk(z). The product ~ is the convolution 
product defined and extensively used in III.  Dk(z) was defined in I I I  
(section 10) by  a series in increasing powers of the interaction V, all terms 
of which can be represented by  means of connected diagrams with one ex- 
ternal particle line at both ends (the diagrams used are defined in III, 
section 3; particle lines have arrows pointing to the left, lines corresponding 
to holes the opposite direction). The decisive point is now whether or not 
D~(z) has a pole. A pole would mean that the complete system has a statio- 
nary state corresponding to the unperturbed state Ik ;>. The absence of a pole 
would reveal the dissipative nature of the unperturbed state Ik ;>. As shown 
previously (see a fourth paper 4) to be quoted as IV)/gk(z) has no pole and 
consequently Dk(~) can have none, so that the state Ik ;> is a dissipative one t)- 
The only singularity of/)lc(z) is a cut in the complex plane along the real 
axis, running from some point EF, independent of k, up to +oo .  Whereas the 

*) To avoid  the unnecessary  appea rance  of the t e rm eo in our  formulae  the funct ion  D~:(eo + 2) 
def ined in I I I  is deno ted  here  s imp ly  as Dr:(2). 

~f) For  a fu r ther  discussion of d i s s ipa t ive  s t a t e s  see 5). 
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real part  of Dg(z) varies continuously if we cross this cut, the imaginary 
part  changes its sign. If we now consider the discontinuity of the imaginary 
part  o f /~ (z )  for all points of the cut, we find, in the case that  Ik[ is very 
close to the Fermi-momentum kl~, a high narrow peak for some point Ek *). 
This situation is to be compared with the 0-singularity, which one would 
find if E~ was a pole of Dk(z). In the limit [k[ -> kF the point E~ approaches 
the branching point EF, the difference E ~ -  EF being proportional to 
Ik[ --  kv. The width Fk of the peak decreases as (Ee -- EF) z, so that  for 
I k ] -  kF small enough, the width of the peak is small compared to its 
distance from EF. 

Such a situation was analysed in I I I  (section 14). In the case that  F~ 
<~ gk  --  EF a state vector [~o~> can be constructed, which corresponds to a 
metastable state with an approximate energy E~ + E0 and a life-time 
equal to Fk -1. The metastable character of [~ok> is exhibited by  the equation 

(~o~, le-*nt[ ~ok) = ~a(k' --  k)-exp [--i(Eo + Ek)t --  Fe [t]], 

which holds for values of t of the order of F~-i  t). The energy E~ can 
then be interpreted as the energy of a metastable particle with mo- 
mentum Ikl> kF, moving in the Fermi gas with slow dissipation of its 
momentum and energy into collective types of motion of the gas. The 
success of the optical model for the scattering of nucleons on heavy nuclei 
is experimental evidence for the existence of such metastable states in 
nuclear matter.  Conversely we can say that  our theory of the Fermi gas 
with interaction accounts for the low energy behaviour of the optical 
potential. 

In the limit of Ikl --> kF the single particle energy E~ tends to EF. We call 
this limit the Fermi energy. The life-time Fk -1 tends then to infinity, and 
it can even be shown that EF is the pole (in the somewhat broadened sense 
defined in I I I  section 9) of the function/)k~(z). Hence a state with one addi- 
tional particle at the surface of the Fermi sea is exactly stationary, with an 
energy E0 + Ep. 

Instead of states with an additional particle one can also consider states 
with a hole of momentum tm[ < kF. This case is very much analogous to the 
former one. The function Din(z), which is defined in terms of connected 
diagrams with one external hole line at both ends, has for Iml close to kF 
a similar behaviour as/gk(z) for Ikl close to kF. This implies for the case 
that  Iml is close to kF the existence of a metastable state of a hole, with 

*) In  IV th is  q u a n t i t y  was  deno ted  b y / ~ ,  whereas  the no t a t i on  E~ was  there  used for E0 + Ee.  
The  no ta t i on  used  here  agrees wi th  the usua l  one in the B r u e c k n e r  theory.  

t )  I n  I I I ,  eq. (14.8) and  the subsequen t  equaRion as well  a s . t he i r  de r iva t ion  are incorrec t .  The  
def in i t ion  of the t w o  s ta tes  I~pc¢):t: as g iven  b y  eq. 114.2) of I I I ,  however ,  is correct.  In  the case t h a t  
1~) = [k ; )  these  tw o  s t a t e s  are iden t ica l  and  are deno ted  b y  I~v~). 
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an approximate energy E0 -- Era. Here --Era is,the point on the real axis 
where Din(z) is strongly peaked *). It  can be interpreted as the energy of 
a hole of momentum --m near the surface of the Fermi sea, and Em therefore 
can be regarded as the energy of a particle of momentum m in the Fermi sea. 
In the limit Ira] = kF, Din(z) does have a pole which, as was surmised in IV 
and will be confirmed in the next section, is equal to --EF, where EF is the 
Fermi energy as defined above. 

We should like to stress here that  all our considerations are based on the 
assumption of convergence of all series involved. It  may  very well be that  
in addition to the ground state and metastable excited states here considered 
for the Fermi gas with interaction there exist another "abnormal" stationary 
state and metastable excitations of it, depending in a singular way on the 
two-body interaction and therefore not directly accessible to our methods. 
The possibility of such abnormal states for a Fermi gas with attractive 
forces has been established by  B a r d e e n ,  C o o p e r  and S c h r i e f f e r  6) in 
their theory of superconductivity. How the abnormal states can be obtained 
in the perturbation formalism based on diagrams has been shown by  
B o g o 1 u b o v 7). The possible existence and observability of such abnormal 
states for nuclear matter  and liquid helium 3 are questions of great impor- 
tance which we shall not discuss here. 

3. Theorem on the Fermi energy EF. We start this section with the deri- 
vation of a formula for /~(z) ,  which brings to light a close similarity between 
this function and the ground state expectation value <90 IR(z) l 9o> = Do(z). 
We shall make an extensive use of the methods presented in III .  Before 
doing so we want, however, to stress the following point. As is well known, 
the general perturbation method as developed in I, II  and II I  is only 
exact if the particle number N and the volume 12 of the system are so large 
that  terms proportional to 12-1 or N -1 Call be neglected. Nevertheless 
several definitions and results of I I I  are also exactly valid for systems with 
arbitrary finite N and 12. This is the case in particular with the definitions 
and calculation rules of diagrams, diagonal diagrams, connectedness and also 
with the theorem on the convolution of the contributions of two diagrams 
(section 7, eq. 4). We use this important fact in the following derivation. 

We take a finite cubic box with volume 12, and impose, as usual, periodic 
boundary conditions. Let the state vector 19>, which is normalized to one, 
describe a state of the unperturbed system where N particles occupy N given 
single particle plane-wave states. This set of N single-particle" states we 
shall call the "sea". The state ]~0> may be different from the unperturbed 
ground state ]90). All other states of the unperturbed system can be obtained 
from 19> by  the application of suitable operators ~ *  or ~m, thereby creating 

*) Era in this paper corresponds to the quantity --/~ra in IV. The single particle energy for particles 
in the Fermi sea is now Era. 
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additional particles or holes. Clearly the momenta  k of the additional 
particles must be outside the sea, whereas the momenta m of the holes 
must belong to it. 

In calculating the diagonal matrix element (9 IR(z)lg) we make use of 
diagrams. If, just as in In ,  lines running from right to left (from left to right) 
represent particles (holes), we obtain diagrams identical with those which 
were used in n I  for calculating Do(z) -- (9o IR(z)l 9o). Their contributions 
are, however, different, because the momenta k and m of the virtual particles 
and holes have now to be summed over different, discrete sets of values. The 
diagrams contributing to (9 [R(z)[ 9) are either connected or consist of two 
or more connected parts. If we denote the total contribution to (9[R(z+t)19) 
of all connected diagrams by  B(z), with t the energy of [9), the total contri- 
bution to (9 ]R(z + e) [9> of all diagrams consisting of two connected parts 
is equal to 

½ B(z) * B(z). 

Here we used the convolution in the complex plane introduced in I I I  
(section 7). The factor ½ accounts for the fact that  this convolution gives 
each term twice. Proceeding in the same way with diagrams consisting of 
three and more components, one finds easily 

<9 [R(t + z) 19> = -- z-1 + B(z) + ½S(z) * B(z) + 1 B(z) * B(z) * B(z) + . . . .  (2) 

For the special choice where [9> -- [90> equation (2) leads to 

Do(to + z) = - -  z -1 + Bo(z) + ½Bo(z) -~ Bo(z) + 

+ {Bo(z) -* Bo(z) * Bo(z) + . . . .  s), (3) 

where Bo(z) is defined as the sum of the contributions of connected ground 
state diagrams; to is the energy of the unperturbed ground state ]90). 

We now also apply (2) for another choice of 19). We take for [9) the 
unperturbed state 19e), where in addition to the N particles in the 
Fermi sea of [90) there is an extra particle of momentum k (Ik[)kf). The 
total contribution of all connected diagrams (without external lines) to 
(ge ]R(e + z)[ 9e), where s = eo + k~/2M, we denote by  Be(z). Equation (2) 
reads for this case 

<ge[ R(t0 + k~/2M + z) [ge> = -- z-1 + Be(z) + ½Be(z) * Be(z) + 

-~- ~ Be(z) -~ Be(z) ~ Be(z) -~- . . . . .  

Introducing the notation Be(z) -- Bo(z) -~ Be(z) we are lead to the equation 

<gel R(to + k2/2M + z)] 9e> = -- z -x + (Bo(z) + B~(z)) + 

+ ½(Bo~z) + Be(z)).* (Bo(z) + Be(z)) + . . . . .  

If we compare this series with the exponential series we see immediately 
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tha t  it can be wr i t ten  as the convolut ion of twd functions one of which, b y  
equat ion (3), is equal  to D0(~o + z). Thus  

<9~ IR(e0 + k2/2M + z)l 9k> ----- 

---- Do(eo + z) * [--z-1 + Bk(z) + ½Bk(z) * ]~k(z) + . . . .  ]. (4) 

The s ta te  vectors  ]~> and Ik;>--= ~ ]  9o> describe the same state. 
Remember ing  their  different normalizat ion we can write 

Ik ;> = 521/2(2~)-3/2 I~k>. 
Hence 

D~(z) tS(k --  k') -- <;k' IR(z)l k;> = t~,,k <;k IR(z)l k;> = 

_-- 52(2=)-3 tk ' ,k <~o~ [R(z)I 9~> = <9~ JR(z)[ ~k> t3(k - -  k'), 

where we used the relation be tween  Kronecker  symbol  and t-function for 
finite 52 (see I I I ,  section 2)" 

t3(k --  k') ---- 52(2~) -3 t~,k'. 

We see tha t  

(9~ IR(z)l~k) --  De(z). (5) 

As we know Dk(z) can be expressed very  simply in te rms of .D~(z), which 
is defined b y  means of connected one particle diagrams, and Do(z) b y  the 
formula (see I I I  (10.1)) 

Dk(eo + z) = De(z) -~ Do(eo + z). (6) 

Comparing (4) and (6) we get 

Dk(k2/2M + z) : - z -1 + B~(z) + ½Bk(z) ~ B~(z) + 

+ {B/e(z) * / ~ ( z )  9e/~/e(z) + . . . . .  (7) 

This equation, which is formally quite similar to equat ion (3) for D0(z), 
is str ict ly va.lid for a finite system. We a re ,  however,  specially interested in 
the case that  both  f2 and N are infinite. We therefore s tudy  the function 
Bk(z) in this limit. As follows from its definition the function Bk(z) can be 
obta ined from Bo(z), if in the la t ter  each summat ion  fk, corresponding to a 
particle line is replaced b y  (fk, --  (2~) 3 ~Q-1 X term with ks ---- k) and each 
summat ion  fins for a hole line is replaced b y  (f, nj + (2z~) s52-1 × term with 
mj = k). Keeping in mind that  Bo(z), which was defined in terms of connect- 
ed ground s tate  diagrams, is proport ional  to 52 in the limit of £2 -+ oo, we 
see that  B e ( z ) =  Be(z) - -Bo(z)  contains a main term independent  of 52, 
and other  terms which vanish if 52 tends to infinity. The function/~e(z) is 
therefore well defined also for an infinitely large system. Replacing summa-  
tions b y  integrations and keeping only those terms which are independent  
of the volume £2,/~k(z) is calculated in the following way. I t  is a sum of terms, 



3 7 0  N . M .  HUGENHOLTZ AND L. VAN HOVE 

each of which is obtained from the function (2~)3 9-1  Bo(z) by putting the 
momentum of one of the lines equal to k 3nd performing the integration over 
all other momenta.  If the momentum which is put equal to k belongs to a 
particle line, the corresponding term gets a minus sign. Both sides of 
equation (7) have well defined finite limits for f2 -~ c~. We can now return 
to this limiting case. 

Although equation (7) for general k is interesting in itself, giving an 
alternative way of calculating Dk(z), we are here particularly interested 
in the limit of Ikl tending to kF. In this limit the relation between Bk(z) and 
Bo(z) has the following very simple form 

=  2kF- . (8) 

I 

To prove equation (8) we notice that  Bo(z)/~ depends on ky only through 
the limits of integration of the integrals over  particle and hole momenta. 
Differentiation of Bo(z)/~ with respect to kF gives a sum of terms, in each of 
which the momentum of one line is put  equal to kF. There is in addition 
a common factor 40zk• 2 resulting from integration over the surface of the 
Fermi sphere. Also here one gets a minus sign if the fixed momentum belongs 
to a particle because then k~ appears in the lower integration limit. The 
factors 4:rkF 2 and 2oz2/kF2 give together exactly (2~)8, thus establishing 
equation (8). Using the well known relation between k~ and the density 
p -- N/~2: 

p = kF3/6~2, 

equation (8) gets the simpler form 

= (9) 

We now make essential use of the great formal similarity of equations (3) 
and (7). Clearly Do(to + z) changes into D~(k2/2M + z) if in (3) Bo(z) is 
replaced b y / ~ ( z ) .  I t  was shown in I I I  (section 9) that  Do(to + z) can be 
expressed very simply in terms of the function Go(to + z) --z~'Bo(z). In 
particular Do(to + z) was found to have a simple pole at z = -- Go(to) with 
the residue exp(--G0'(eo)), where the prime means the derivative with 
respect to z. This was a consequence of the fact that  z2Bo(z) = Go(to + z) 
had no singularities on the negative real axis of the z-plane. The same 
property holds for z2Bu(z) when Ik[ = ke. By analogy we therefore conclude 
immediately that  D~(kF2/2M + z) has a pole at the point 

d 
z = -- limzr~ 0 [Zl2B~(Zl)~ -- d~ (Go(to)fig), (10) 

with a residue 

F d" (0o'(to)/~2)~ e x p  u- 
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As follows from the definition of the Ferm~ energy E~,, the pole of 
Dk~(kF2/2M + z) is equal to A E v  = EF --  kF2/2M. We have thus from (10) 

d 
= - v - -  

Clp 

The same relation holds for the kinetic parts of EF and Eo, hence 

d 
EF = -7 -  (Eo/~). (I 1) 

tip 

This equation, if written in the equivalent form 

( OEo ~ , 
E v = \-ff-ff T / Q 

where the derivative is taken at constant ~2, shows that the Fermi energy 
E~, as defined in the previous section in terms of one-particle diagrams, is 
equal to the change in ground state energy of the system produced by  
addition or removal of one particle at constant volume. 

For the function /)re(z) ([m[ < kv), which is the counterpart of Dk(z) 
for holes, one can proceed in exactly the same way. Instead of (7) one finds 

Din(-- m~'/2M + z) = 

= --  z -1 + Bin(z) + ½.Bin(z) "~3m(z) + {Bin(z) O+Bra(Z) -~Bm(z) + . . . . .  (12) 

where Bin(z) is defined in exactly the same way as Bg(z), except for the 
momentum k being replaced by  m and the roles of particle and hole lines 
being interchanged. It  is easily seen that the limit of Bin(z) for [m] -+ kF 
is equal to --/~k~(z). Forming now the convolution of Dk(kg"/2M + z) and 
Din(-- m~'/2M + z) for [k I = Ira] = kF one finds, after an obvious shift of 
z in both functions 

D~(z) ~+ Dra(z) = -- z -1, for [k[ = [m[ = kF. 

This equation implies, that  the poles of/gk(z) and/gin(z) for [k[ = [m] = k~ 
add up to zero, while the corresponding residues have a product equal to one. 
Since the sum of the poles is zero, the energy of a hole at the surface of the 
Fermi sea is equal to --EF. Therefore the energy Ez of a particle of mo- 
mentum ]l] c loseto kF, as defined in section 2 for [l] smaller or larger than 
kF, is continuous at [l] ---- kF. 

Equation (11) can be expressed ill terms of the energy per particle instead 
of the energy per unit volume: 

d 
EF = Eo/N + p -dp (Eo/N). 
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In terms of the pressure 

_ ( ~ E o ~  --p2 d 
P = \ - -a-~-/N-  -~p (Eo/N), 

this equation reads 

Ev = Eo/N + p/p. 

In the case that  the system is in equilibrium, i.e., at a density such that the 
pressure vanishes, we obtain the equation 

E v  = Eo/N.  (13) 

This  equality of the Fermi energy and the average energy, which we have 
proved generally, was derived recently by  W eis s k o p f 9) on the basis of 
the independent particle model. B e t h e  lO) considered it to be only a rough 
approximation. 

4. Test on the accuracy o/the theory o/Brueckner. In this last section the 
theorem (13) derived in section 3 will be used as a test on the validity of the 
B r u e c k n e r  theory. Recently very accurate calculations on the basis of this 
theory have been made by  B r u e c k n e r  and G a m m e l  2). The following 
discussion will be based mainly on the results of their work. 

Our considerations will be of special interest because the calculations of 
B r u e c k n e r  and G a m m e l  show that their results vary strongly with slight 
changes in the forces between the particles *). Good agreement with the ex- 
periments does therefore not guarantee the accuracy of the theory. The 
test to be discussed here, on the contrary, is independent of the choice of 
the forces, for equation (13) must hold for all forces. 

For the average energy Eo/N and the Fermi energy EF B r u e c k n e r  and 
G a m m e 1 find --15 MeV and --34 MeV respectively. There is a discrepancy 
of about 20 MeV, which shows that  at least one of these values is very 
inaccurate. To investigate the origin of the discrepancy we consider the 
theory of B r u e c k n e r  as an approximation of our exact perturbation 
formalism, as was done in IV t)- It  was shown there how one can obtain 
the theory of B r u e c k n e r  from the exact theory by  selecting only those 
terms which correspond to a certain class of diagrams. The relevant terms 
for E0, E~ and Em ([k] > kF and Ira[ < kF) are represented by  the diagrams 
of type a, b and c of fig. 1 **). 

Let us consider equation (3) and equation (7) where /3k(z) is obtained 

*) We are i ndeb ted  to Dr .  J .  L. G a m m e l  for c o m m u n i c a t i o n  of this  and  m a n y  o ther  as ye t  
unpub l i shed  results .  

t )  The  equa ' t ion for the sca t t e r ing  m a t r i x  G in IV at  the b o t t o m  of page 537 con ta ins  an error.  
The ene rgy  d e n o m i n a t o r  m u s t  read  E e l  + /~k~--IE,31 - - I / T q l ,  

**) The  add i t i ona l  compl ica t ions  o r ig ina t ing  from the use of sh i f ted  energies  iu the d e n o m i n a t o r s  
are not  r e l evan t  for our  discuss ion and  are o m i t t e d  for s impl ic i ty .  
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from Bo(z) in the way  prescribed in section 3. If  we approximate Bo(z) in 
these equations by  taking the diagrams of fig. l a only, we must  still ex- 
pect tha t  the approximate  values one then finds for EF and Eo/N coincide 
(the lat ter  value is the B r u e c k n e r  approximation for the binding energy). 

C 
Fig. 1. The Brueckne r  diagrams. The diagrams a, b and c correspond to the ground 

state energy E0 and the energies E~ and Era of particles and holes respectively. 

The function/~k(z) in the approximation now considered is equal to the sum 
of the contributions of all single particle diagrams, obtained from the 
ground state diagrams of fig. l a by  replacing any  internal  line by  two ex- 
ternal  particle lines. This leads to two types of diagrams. The first type,  
where one of the hole lines is replaced by two external  particle lines, is 
shown in fig. 1 b. The other type, shown in fig. 2a, is obtained from fig. 1 a by  
replacing one of the m a n y  internal  particle lines by  two external  particle 

a b 
Fig. 2. This figure shows some single particle energy diagrams neglected in the theory 
of Brueckner ;  the diagrams a and b correspond to particles outside and inside the 

Fermi sea respectively. 

lines. I t  is seen from (7) tha t  in the present approximation Dk(z) is a sum of 
the contributions of these diagrams and of the more complicated ones 
constructed by linking together two or more of such diagrams. All these 
single particle diagrams, with the exception of the one in fig. l b, are ne- 
glected in the theory  of B r u e c k n e r .  They  con ta in th ree  and more particle 
clusters. From the numerical  discrepancy between Eo/N and E~ found, as 
ment ioned above, by  B r u e c k n e r  and G a m m e l ,  we must  conclude tha t  for 
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I k] = kF the total contribution of the diagrams neglected in the B r u e c k n e r 
theory is considerable. I t  must account for a difference of about  20 MeV. 
I t  seems reasonable to suppose that  among the neglected terms the most 
important ones are those represented by  diagrams of the type of fig. 2a and 
the corresponding diagrams for holes in fig. 2b. This is also suggested by  
the following consideration. 

The theory of B r u e e k n e r  can be considered as the first term in the so- 
called cluster expansion 11). Using the K-matr ix .instead of the interaction V 
all quantities are expressed by  means of a very much smaller number of 
diagrams, namely those diagrams, where no two successive vertices are con- 
nected by  two particle lines ( G o l d s t o n e  11) called them irreducible; we 
have 'used this term in H I  already with another meaning ). The diagrams 
corresponding to the first three terms of the cluster expansion for Eo are 
shown inJig. 3. To each dot there corresponds a K-matrix. The first term in 
the figure gives the B r u e c k n e r approximatiol~; it corresponds to diagram 
a of fig. 1. The cluster expansion cain' be considered as a power series in the 

Fig. 3. The  first three d iagrams of the  cluster  expansion for E0. 

K-matrix. The B r u e ck n e r approximation is based on the assumption that 
this series converges rapidly. The second term in fig. 3 was calculated by  
B e t h e  lO) for the case of Yukawa forces. It  was found to be less than 1 MeV, 
which is indeed very small compared to the main term. We notice from fig. 3 
that  the cluster expansion for E0 contains no term with two K-matrices. 
This has the consequence that  even for a comparatively slow convergence the 
first term can be a reasonably accurate approximation. 

The first two diagrams of the cluster expansion for the single particle 
energy E~, are given in fig. 4a for ]l I > kF, in fig. 4b for Ill < kF. Also here 
the first diagrams of a and b give the B r u e c k n e r  approximation and corre- 
spond to diagrams b and c of fig. 1. Comparing the first diagrams in fig. 3 
and fig. 4b we find the well-known relation, characteristic of the B r u e c k n e r  
theory, between the energy shift ~lEo of the ground state and the shift 
Vz = E~ --12/2M of the single particle energy: 

/lEo = ½~2(2~)-af0 k~ d3mVm, 

which is another form of (1). In the case of particles with spin and isobaric 
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spin ½ a factor 4 must be added at the right-hand side. One sees again that  
(1) is not an exact equation *). 

The cluster expansion for El involves a term with two K-matrices which 
might be quite appreciable in case of a slow convergence of the series. This 
term corresponds exactly to the type of diagrams shown in fig. 2, so that  we 
must expect the neglection of the diagrams in fig. 2 to be largely responsible 
for the discrepancy between Eo/N and Ev in the theory of B r u e c k n e r .  
We have made a rough estimate of this term, for spin and charge independent 
Yukawa forces. Making the same approximation as B e t h e did in his calcu- 
lation of the three-particle cluster term in E0, we find approximately 12 MeV 
for the second term in fig. 4a or b, for a momentum Ill = kF. This shows that  
even for these unrealistic forces the main single-particle energy term left out 
by B r u  e c k n e r  is quite large. A calculation of this term and other cluster 
terms neglected in the B r u e c k n e r  theory, on the basis of more realistic 
forces with a repulsive core, would be very interesting. We may conclude 
already, however, that in the theory of B r u e c k n e r  the single-particle 
energy is treated very inaccurately. The influence of this inaccuracy on the 
calculation of the ground state energy, which manifests itself only through 
the energy denominators, is probably not very large in the nuclear case. For 
the calculation of the optical potential the situation is completely different 
and one clearly must take into account the terms which we discussed in the 
present section. 

a 4- 

b ~ +  : ~  ~ +... 
Fig. 4. The first  two t e rms  of the  cluster  expans ion  for the  single part icle  energy  Ez; 

a and  b cor respond to  Ill > kF and  [ l [ <  kv respectively.  

Quite recently,, one of the present authors having brought t h e  large 
internal inconsistency revealed in B r u e c k n e r ' s  theory by  the theorem 
here discussed to his attention, B r u e c k n e r reconsidered the problem in the 
framework of his theory and suggested to use the theorem itself for obtaining 

*) Differentiation of (1) with respect to the density p would lead to (1 I), provided V~ would not 
depend on p. We know, however, that such is not the case. 
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a better  definition of the single-particle energy *). The new definition 
amounts to replacing the single-particle energy E z B of the original B r u e c k- 
h e r  approximation (first term in fig. 4a of b) by  a shifted value Ez B + e, 
where the quant i ty  e, assumed independent of the momentum l, is defined 
by  the condition 

E l  B "--[-- e ~-- Eo/N for Ill = ke. 

An obvious correction term is then added to the formula expressing E0 in 
terms of the single-particle energies. This e lementary way of circumventing 
the inconsistency suffers from two obvious defects. The momentum inde- 
pendence of e is completely unfounded in a theory where, as in B r u e c k -  
ner ' s ,  the potential energy part  of Et B has an important momentum varia- 
tion. In the second place, a proper definition of the single-particle energy 
should be entirely formulated in terms of the propagation of an additional 
particle (or a hole) of given momentum through the given medium. Such is 
the case with the definition of Et in the general theory used here and this is 
the only reason why our theorem is not trivial. B r u e c k n e r's definition of s, 
on the contrary, is in fact based on a comparison between two states of the 
medium with two different densities. 
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