CHAPTER 18

EQUATIO!

In Section 7-2 we introduced the concept of phase space and distribution functions in
phase space. We also derived the Liouville equation, which is the equation of motiqn
that the phase space distribution function must satisfy. Since we were interested only in
equilibrium statistical mechanics at that time, we did not consider the Liouville
equation in any detail. In this chapter we shall review the concept of phase space and
derive the Liouville equation again. We shall then introduce reduced distribution
functions and derive the Bogoliubov, Born, Green, Kirkwood, Yvon (BBGKY)
hierarchy. This hierarchy is the nonequilibrium generalization of the Kirkwood
integral equation hierarchy for the fluid distribution functions, g®(x,, ..., r,), of
Chapter 13. Nobody has yet devised a successful way to uncouple the BBGKY
hierarchy, and so in Section 18-4 we shall derive a physical, yet approximate, equation
for the distribution function for gases. This equation, called the Boltzmann equation,
is the central equation of the rigorous kinetic theory of gases. In Section 18-5, we shall
derive some of the general consequences of the Boltzmann equation that can be
determined without actually solving it completely. We shall discuss its solution in
Chapter 19. The standard reference for most of this chapter is Hirschfelder, Curtiss,
and Bird. Mazo (in ““Additional Reading”’) also discusses these topics well.

18-1 PHASE SPACE AND THE LIOUVILLE EQUATION

Consider a system of N point particles. The classical dynamical state of this system
is specified by the 3N momentum components py, p,, ..., p;y and the 3N spatial
coordinates gy, ..., g3y. We can construct a 6 N-dimensional space whose coordinates
are ¢y, a2, .-+, Pis -+, P3y- One point in this phase space completely specifies the
microscopic dynamical state of our N-particle system. As the system evolves in time,
this phase point moves through phase space in a manner completely dictated by the
equations of motion of the system. Actually, one never knows (nor really cares to
know) the 6N coordinates of a macroscopic system. Rather, one knows just a few
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macroscopic mechanical properties of the system, such as the energy, volume, velocity,
etc. Clearly there are a great number of points in phase space that are compatible
with the few variables that we know about the system. The set of all such phase
points constitutes an ensemble of systems. The number of systems in an ensemble
approaches infinity, and so the set of phase points that could possibly represent our
system becomes quite dense. This allows us to define a density of phase points or
distribution function as the fraction of phase points contained in the volume dq, dq,
"+ dpsy. We shall denote the phase space distribution function by fy(q,, Gos oes
P3n 1), or more conveniently by fy(p, g, 1). We shall often use this abbreviated notation.

Similarly, we shall often denote dqy, dq, -+ dpsy by dp dg. The density fy(p, gq, 1) is
normalized such that

[ A, a0 dpdg =1

Since each phase point moves in time according to the equations of motion of the
system it describes, fy itself must obey some sort of equation of motion. The equation
that fy(p, g, t) satisfies can be readily determined by using the methods of the previous
chapter, particularly, the argument associated with Egs. (17-1) to (17-5). The number
of phase points within some arbitrary volume v is

n=A[ v a0 dp dg

where we are using the condensed notation of letting p and ¢ denote all the spatial
coordinates and momenta necessary to specify a system in the ensemble. The rate of
change of the number of phase points within v is

dn Ofy
E—/va 7 dp dq (18-1)

Since phase points are neither created nor destroyed, the rate of change of n must be
given by the rate at which phase points flow through the surface enclosing v. The rate
of flow ofphase points is./fyu, where u is not just the 3N-dimensijonal vector
(41> 42+, dsy), but the 6N-dimensional vector (4> -5 Py, ..., P3y) since the spatial
coordinates and momenta play an equivalent role in phase space. We integrate this
flow over the surface to get - :

n__ [ fyn-as
dt s
The negative sign here indicates that an outflow of phase points yields a negative
value for dn/dt since u - dS is positive if u is directed outward from o and negative if u
is directed inward.
The surface integral can be transformed to a volume integral by using Gauss’
theorem to get

dn

E:-wfvvxf,vu)dpdq (18-2)

If we subtract Eq. (18-1) from Eq. (18-2) and realize that this equation is valid for any
choice of v, we have the equation for the conservation of phase points
d .
£V+V'(fNu)=0 (18-3)
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in which it should be clear that since we are dealing with phase space

“=(41,-..,43N,P1,-~->P3N)
and
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But Eq. (7-27) shows that the summand of the second summation here is zero, and so
Eqg. (18-3) becomes
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Using Hamilton’s equations of motion,

__om . _0H
bi=—g and =7

Eq. (18-4) can be written

ofy (aH 8fy oH afN) o (8-5)

The summation here is called a Poisson bracket and is commonly denoted by { H, fx };
so Eq. (18-5) is often written as

%)
;NJr{H fv}=0 (18-6)

This is the Liouville equation, the most fundamental equation of statistical mechanics.
In fact, it can be shown that the Liouville equation is equivalent to the 6N I—Iamilton.
equations of motion of the N-body system.*

In Cartesian coordinates, the Liouville equation reads

oy ZN]pJ Vf+Z]F V, fy=0 (18-6")
6t Simy Y N ps /N
In this equation V,, denotes the gradient with respect to the spatial variables in fy;
Vp, denotes the gradlent with respect to the momentum variables in fy; and F; is the
total force on the jth particle.
One often sees the Liouville equation written as

Uy
=17, (18-7)
i =1L
where L is the Liouville operator,
Nop; N
L:—i(z —’-V,j-l— ZFJ--VPJ) (18-8)
ji=1 mj j=1

* Mazo, “*Additional Reading,” p. 23; M. Beran, Amer. J. Phys., 35, p. 242, 1967,
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The Liouville operator has been defined in such a way as to bring the Liouville equa-
tion into the form of the Schrodinger equation. A formal, and sometimes useful, solu-
tion to Eq. (18-7) is

S, v, 1) = e~ fy(p, v, 0) (18-9)

Note that the operator exp(—iLt) displaces fy ahead a distance ¢ in time. This operator
is called the time displacement operator of the system.

18-2 REDUCED DISTRIBUTION FUNCTIONS

Once we have the distribution function f4(p, ¢, ), we may compute the ensemble
average of any dynamical variable, A(p, g, t), from the equation

AWy = [ Alp, 4, 0 fu(p, g, 1) dp dg (18-10)

It turns out that the dynamical variables of interest are functions of either the coordin-
ates and momenta of just a few particles or can be written as a sum over such functions.
A familiar example of this is the total intermolecular potential of the system. To a
good approximation, this can be written as a sum over pair-wise potentials, and so

U) = ZJ fll(i'i> ) ey, .o Py, 1) iy o dpy (18-11)

We encounteled similar integrands when we studied the equilibrium theory of liquids.
There we integrated over the coordinates of all the particles except i and j and called
the resulting function of r; and r; a radial distribution function. We do the same thing
here. We define reduced distribution functions fy®™ @y, ..., %y, Py, + -, Py, 1) by

N! .
=mf“‘Jf~(ﬁ'1,---,PN, )
Avypy o diy Py dpy (18-12)

fN(")(H‘la s By Py e B t)

We shall usually drop the N subscript and furthermore write this simply as £ ", p", £).
Usually only /) and f® are necessary, and therefore we want to derive an equation
for £ and f. To do this, write the force F, appearing in the Liouville equation as
the sum of the forces due to the other molecules in.the system ) ; F;; and an external
force X;. Then multiply through by N!/(N —n)! and integrate over dr,
dry dp,,y - dpy to get (Problem 18-2) .

3f(") n ” .
5 " XV, f™
ot + Zl n’[ V f +Z PJf
NI N
_N e (B, fdryy o diydp,., o dpy =0  (18-13)
+(N“71)!i,;;1f J‘ J pff Fu+1 Fy aPy+y Pn (

We have used the fact that f vanishes outside the walls of the container and when
p; = 0. The last term in Eq. (18-13) can be broken up into two parts:

Z I‘U V f('l)
ih,j=1
N' " N

+mj;1 i:;+1 f jFij . fofd}r"*‘l wordeydp, g dpy
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The second term here can be writtgn as

i ffFj, nt+t’ Vpif("+1) v,y dpusy

i=1

Putting all this together finally gives an exact equation for f, namely, (Problem 18-3),

5
gt m;

(n) n . " \
of + Z B, Vr,f(") + lej . ijf( )
sim; i=

i, j=

+ Z ]FU ’ Vij(“) + .Zl fJ Fj,ll+1 ) ijf(n-‘_l)di‘n+1 dpn+] =0 (18-14)
1 =

This is the so-called Bogoliubov, Born, Green, Kirkwood, Yvon (BBGKY) biera
archy. This is the time-dependent generalization of the hierarchy that we derived
earlier in the equilibrium theory of fluids. In fact, if one assumes that

1 u 2}
f(n) — g(")(rl’ N i‘,,) eXp{— 2mkT ij /

i=1

multiplies Eq. (18-14) through by p;, 1 < i <#, and integrates over all momenta, one
obtains the equilibrium hierarchy for g*(xy, ..., r,) (Problem 18-4). It would seem
natural at this point to truncate this hierarchy by some sort of a superposition approxi-
mation, but so far this approach has not been successful.* We shall end up deriving
imate equations for /1 and f®, .
apg;/?r(;ﬁi;g \c)lve have don{: up to now has been incliep'endent of density;‘i.e., it has
been applicable to any density. Now we shall specialize to systems of dilute gases.

18-3 FLUXES IN DILUTE GASES

In a dilute gas, most of the molecules are not interacting With.any other molecu?e
and are just traveling along between collisions. Efeca‘use.of this, ‘the n(lla)croscoplc
properties of a gas depend upon only the singlet dlstrlbu.tlon functlc?n fj (r., P 1.
The subscript j here denotes the singlet distribution function of species j. T'hlS is .the
central distribution function of any theory of transport in dilute gases. In thlS. section
we shall define a number of averages over f;) and derive molecular expressions for
the important flux quantities in terms of integrals over Y. Since we shall be con-
cerned only with gases in this and the following segtlons‘, we sha!l drop the superscript
(1) from here on. We shall also write our equations in velocity space rather than
momentum space, and so the distribution function .of {nte.rest.becomes. fi@, vy, 0.
We shall renormalize f; such that the integral of thls‘ dlStl‘lbu.tIOn fl.JnCtIOIl over all
velocities is the number density of j particles at the point r at time ¢, i.e.,

pix, 1) = ffj(l‘, v;, 1) dv; (18-15)

Furthermore, if N, is the total number of j molecules in our system, then

Ny =[] £ v, 0 dedy, (18-16)

We shall now define a number of important average velocities. v, is the linear

* See, for example, R. G. Mortimer, J. Chem. Phys., 48, p. 1023, 1968.

FLUXES IN DILUTE GASES a07

velocity of a molecule of species J; i.e., it is the velocity with respect to a coordinate
system fixed in space. The average velocity is given by

1
v(x, 1) =;_fvjf(i', v;, B dy; : (18-17)
J

and represents the macroscopic flow of species J. The mass average velocity is defined by

2,0,
iMipj

Yoll, 1) = (18-18)

Note that the denominator here is the mass density p,(x, £). This velocity is often
called the flow velocity or stream velocity. The momentum density of the gas is the
same as if all the molecules were moving with velocity vo. The peculiar velocity is
the velocity of a molecule relative to the flow velocity. The peculiar velocity V;is

V==Y (18-19)

The average of this peculiar velocity is the diffusion velocity (Problem 18-5). Clearly,
- 1
Vj:;f(vj — Vo) 3K, v;, ) dv, (18-20)
j

It is easy to show that (Problem 18-6)

Y pym;V,; =0 (18-21)
J

When we studied the elementary kinetic theory of gases, we saw that the various
transport coefficients were related to molecular transport of mass, momentum, and
kinetic energy. Let these molecular properties be designated collectively by v ;> where
J refers to the particular species. We now derive expressions for the fluxes of these
properties. Figure 18-1 shows a surface dS moving with velocity v,. The quantity
m is a unit vector normal to dS, and dS = n dS. All the molecules that have velocity
V;=v; — v, and that cross dS in the time interval (¢, t + df) must have been in a
cylinder of length | V| dt and base dS. This cylinder is shown in Fig. 18-1 and has a
volume (n * V) dS dt. Since there are Jj4v; molecules per unit volume with relative
velocity V;, the number of j molecules. that cross dS in df is given by

(fdv)(m- V) dS dt

)

V]

Figure 18-1. The cylinder containing all those molecules of species j with velocity V,, which cross the
surface dS during the time interval dr. (From J. O. Hirschfelder, C. F. Curtiss, and R. B.
Bird, Molecular Theory of Gases and Liquids. New York: Wiley, 1954))



