xxvi Historical Introduction

Soon after its appearance, the Fermi-Dirac statistics were applied by Fowler (1926) to
discuss the equilibrium states of white dwarf stars and by Pauli (1927) to explain the wealk,
temperature-independent paramagnetism of alkali metals; in each case, one had to deal with a
“highly degenerate” gas of electrons that obey Fermi-Dirac statistics. In the wake of this, Som-
merfeld produced his monumental work of 1928 that not only put the electron theory of metals
on a physically secure foundation but also gave it a fresh start in the right direction. Thus, Som-
merfeld could explain practically all the major properties of metals that arose from conduction
electrons and, in each case, obtained results that showed much better agreement with exper-
iment than the ones following from the classical theories of Riecke (1898), Drude (1900), and
Lorentz (1904-1905). Around the same time, Thomas (1927) and Fermi (1928) investigated the
electron distribution in heavier atoms and obtained theoretical estimates for the relevant bind-
ing energies; these investigations led to the development of the so-called Thomas—Fermi model
ofthe a’igm, which was later extended so that it could be applied to molecules, solids, and nuclei
as well.

Thus, the whole structure of statistical mechanics was overhauled by the introduction
of the concept of indistinguishability of (identical) particles.!® The statistical aspect of the
problem, which was already there in view of the large number of particles present, was now
augmented by another statistical aspect that arose from the probabilistic nature of the wave
mechanical description. One had, therefore, to carry out a fwo-fold averaging of the dynamical
variables over the states of the given system in order to obtain the relevant expectation val-
ues. That sort of a situation was bound to necessitate a reformulation of the ensemble theory
itself, which was carried out step by step. First, Landau (1927) and von Neumann (1927) intro-
duced the so-called density matrix, which was the quantum-mechanical analogue of the density
function of the classical phase space; this was elaborated, both from statistical and quantum-
mechanical points of view, by Dirac (1929-1931). Guided by the classical ensemble theory, these
authors considered both microcanonical and canonical ensembles; the introduction of grand
canonical ensembles in quantum statistics was made by Pauli (1927).17

. The important question as to which particles would obey Bose-Einstein statistics and
which Fermi-Dirac remained theoretically unsettled until Belinfante (1939) and Pauli (1940)
discovered the vital connection between spin and statistics.!8 It turns out that those particles
whose spin is an integral multiple of % obey Bose-FEinstein statistics while those whose spin
is a half-odd integral multiple of # obey Fermi-Dirac statistics. To date, no third category of
particles has been discovered.

Apart from the foregoing milestones, several notable contributions toward the devel-
opment of statistical mechanics have been made from time to time; however, most of those
contributions were concerned with the development or perfection of mathematical techniques
that make application of the basic formalism to actual physical problems more fruitful. A review

of these developments is out of place here; they will be discussed at their appropriate place in
the text.

5For an excellent review of this model, see March (1957).

180f course, in many a situation where the wave nature of the particles is not so important, classical statistics continue
to apply.

'7A detailed treatment of this development has been given by Kramers (1938).

18See also Liiders and Zumino (1958).

The Statistical Basis
of Thermodynamics

In the annals of thermal physics, the 1850s mark a very definite epoch. By that time the
science of thermodynamics, which grew essentially out of an experimental study of the
macroscopic behavior of physical systems, had become, through the work of Carnot, Joule,
Clausius, and Kelvin, a secure and stable discipline of physics. The theoretical conclusions
following from the first two laws of thermodynamics were found to be in very good agree-
ment with the corresponding experimental results.! At the same time, the kinetic theory of
gases, which aimed at explaining the macroscopic behavior of gaseous systems in terms of
the motion of their molecules and had so far thrived more on speculation than calculation,
began to emerge as a real, mathematical theory. Its initial successes were glaring; however,
areal contact with thermodynamics could not be made until about 1872 when Boltzmann
developed his H-theorem and thereby established a direct connection between entropy on
one hand and molecular dynamics on the other. Almost simultaneously, the conventional
(kinetic) theory began giving way to its more sophisticated successor — the ensemble the-
ory. The power of the techniques that finally emerged reduced thermodynamics to the
status of an “essential” consequence of the get-together of the statistics and the mechan-
ics of the molecules constituting a given physical system. It was then natural to give the
resulting formalism the name Statistical Mechanics.

As a preparation toward the development of the formal theory, we start with a few
general considerations regarding the statistical nature of a macroscopic system. These
considerations will provide ground for a statistical interpretation of thermodynamics. It
may be mentioned here that, unless a statement is made to the contrary, the system under
study is supposed to be in one of its equilibrium states.

1.1 The macroscopic and the microscopic states

We consider a physical system composed of N identical particles confined to a space of
volume V. Int a typical case, N would be an extremely large number — generally, of order
1023, In view of this, it is customary to carry out analysis in the so-called thermodynamic
limit, namely N — oo,V — oo (such that the ratio N/V, which represents the particle den-
sity n, stays fixed at a preassigned value). In this limit, the extensive properties of the system

1The third law, which is also known as Nernst’s heat theorem, did not arrive until about 1906. For a general discussion
of this law, see Simon (1930) and Wilks (1961); these references also provide an extensive bibliography on this subject.
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2 Chapter 1 » The Statistical Basis of Thermodynamics

become directly proportional to the size of the system (i.e., proportional to N or to V),
while the intensive properties become independent thereof; the particle density, of course,
remains an important parameter for all physical properties of the system.

Next we consider the total energy E of the system. If the particles comprising the system
could be regarded as noninteracting, the total energy E would be equal to the sum of the
energies ¢; of the individual particles:

E= Z nie;, . ] 1)
i

where n; denotes the nurmber of particles each with energy ¢;. Clearly,
N= Z n;. (2)
i

According to quantum mechanics, the single-particle energies ¢; are discrete and their val-
ues depend crucially on the volume V to which the particles are confined. Accordingly, the
possible values of the total energy E are also discrete. However, for large V, the spacing of
the different energy values is so small in comparison with the total energy of the system
that the parameter E might well be regarded as a continuous variable. This would be true
even if the particles were mutually interacting; of course, in that case the total energy E
cannot be written in the form (1).

The specification of the actual values of the parameters N,V, and E then defines a
macrostate of the given system.

At the molecular level, however, a large number of possibilities still exist because at
that level there will in general be a large number of different ways in which the macrostate
(N, V,E) of the given system can be realized. In the case of a noninteracting system, since
the total energy E consists of a simple sum of the N single-particle energies ¢;, there will
obviously be alarge number of different ways in which the individual ¢; can be chosen so as
to make the total energy equal to E. In other words, there will be a large number of different
ways in which the total energy E of the system can be distributed among the N particles
constituting it. Each of these (different) ways specifies a microstate, or complexion, of the
given system. In general, the various microstates, or complexions, of a given system can
be identified with the independent solutions ¥ (ry,...,rn) of the Schrodinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian. In any case,
to a given macrostate of the system there does in general correspond a large number of
microstates and it seems natural to assume, when there are no other constraints, that at
any time ¢ the system is equally likely to be in any one of these microstates. This assump-
tion forms the backbone of our formalism and is generally referred to as the postulate of
“equal a priori probabilities” for all microstates consistent with a given macrostate.

The actual number of all possible microstates will, of course, be a function of N, V,
and E and may be denoted by the symbol Q(V,V, E); the dependence on V' comes if
because the possible values ¢; of the single-particle energy ¢ are themselves a function
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of this parameter.? Remarkably enough, it is from the magnitude of the number Q, and
from its dependence on the parameters N, V, and E, that complete thermodynamics of
the given system can be derived!

We shall not stop here to discuss the ways in which the number Q (N, V, E) can be com-
puted; we shall do that only after we have developed our considerations sufficiently so that
we can carry out further derivations from it. First we have to discover the manner in which
this number is related to any of the leading thermodynamic quantities. To do this, we con-
sider the problem of “thermal contact” between two given physical systems, in the hope
that this consideration will bring out the true-nature of the number .

1.2 Contact between statistics and thermodynamics:
physical significance of the number Q (N, V,E)

We consider two physical systems, A; and Az, which are separately in equilibrium; see
Figure 1.1. Let the macrostate of A; be represented by the parameters Ny, V1, and E; so
that it has Q1 (N1, V1, E;) possible microstates, and the macrostate of Az be represented by
the parameters N, V2, and E; so that it has Qz (N2, V2, E;) possible microstates. The math-
ematical form of the function Q; may not be the same as that of the function », because
that ultimately depends on the nature of the system. We do, of course, believe that all
thermodynamic properties of the systems A; and A, can be derived from the functions
21(N1, V1, E1) and Q2(Na, Va, Ep), respectively.

We now bring the two systems into thermal contact with each other, thus allowing the
possibility of exchange of energy between the two; this can be done by sliding in a con-
ducting wall and removing the impervious one. For simplicity, the two systems are still
separated by a rigid, impenetrable wall, so that the respective volumes V; and V; and the
respective particle numbers N and N remain fixed. The energies E; and E;, however,
become variable and the only condition that restricts their variation is

E® = F, + B, = const. 1)

A Az
(Ny, Vi, By) | (N, Vo, Bp)

FIGURE 1.1 Two physical systems being brought into thermal contact.

21t may be noted that the manner in which the ¢; depend on V is itself determined by the nature of the system. For
instance, it is not the same for relativistic systems as it is for nonrelativistic ones; compare, for instance, the cases dealt
with in Section 1.4 and in Problem 1.7. We should also note that, in principle, the dependence of Q on V arises from
the fact that it is the physical dimensions of the container that appear in the boundary conditions imposed on the wave
functions of the system.




4 Chapter 1 * The Statistical Basis of Thermodynamics

Here, E@ denotes the energy of the composite system AQ (= A; + A,); the energy of inter-
action between A; and Ay, if any, is being neglected. Now, at any time £, the subsystem A; is
equally likely to be in any one of the ©1(E;) microstates while the subsystem A; is equally
likely to be in any one of the Q,(E,) microstates; therefore, the composite system A©® is
equally likely to be in any one of the

Q1 (ENQ2(B) = Q1 (B)Q(E® - E) = ®EO, B 2

microstates.® Clearly, the number Q( itself varies with E;. The question now arises: at
what value of E; will the composite system be in equilibrium? In other words, how far
will the energy exchange go in order to bring the subsystems A; and A, into mutual
equilibrium?

We assert that this will happen at that value of E; which maximizes the number
QO (EO, Ey). The philosophy behind this assertion is that a physical system, left to itself,
proceeds naturally in a direction that enables it to assume an ever-increasing number
of microstates until it finally settles down in a macrostate that affords the largest pos-
sible number of microstates. Statistically speaking, we regard a macrostate with a larger
number of microstates as a more probable state, and the one with the largest number of
microstates as the most probable one. Detailed studies show that, for a typical system,
the number of microstates pertaining to any macrostate that departs even slightly from
the most probable one is “orders of magnitude” smaller than the number pertaining to
the latter. Thus, the most probable state of a system is the macrostate in which the system
spends an “overwhelmingly” large fraction of its time. It is then natural to identify this state
with the equilibrium state of the system.

Denoting the equilibrium value of E; by E; (and that of E, by E,), we obtain, on
maximizing Q©,

391(131)) = = [ 022(E2) ) 9Ep
Qa(E2) + Q1 (E1) == =0.
( 0Ey /g =F, 0E; Jg,—E, 9E1

Since 9E,/3E; = —1, see equation (1), the foregoing condition can be written as

(aanI(EI)) _(alnszz(Ez))
: dE; E=E oE; E=T,

Thus, our condition for equilibrium reduces to the equality of the parameters g; and B2
of the subsystems A; and Ay, respectively, where 8 is defined by

,BE (W (3)

oE ) NV.E<E

®1t is obvious that the macrostate of the composite system A® has to be defined by two energies, namely E; and E;
(or else E@ and E;).

1.2 Contact between statistics and thermodynamics 5

We thus find that when two physical systems are brought into thermal contact, which
allows an exchange of energy between them, this exchange continues until the equilibrium
values E; and E; of the variables E; and E, are reached. Once these values are reached,
there is no more net exchange of energy between the two systems; the systems are then
said to have attained a state of thermal equilibrium. According to our analysis, this hap-
pens only when the respective values of the parameter 8, namely g; and 8,, become
equal.? It is then natural to expect that the parameter g is somehow related to the ther-
modynamic temperature T of a given system. To determine this relationship, we recall the

thermodynamic formula
(E) - “)
E)yv T

where S is the entropy of the system in question. Comparing equations (3) and (4), we
conclude that an intimate relationship exists between the thermodynamic quantity S and
the statistical quaritity 2; we may, in fact, write for any physical system

AS

m = ﬂ—T = const. (5)

This correspondence was first established by Boltzmann who also believed that, since
the relationship between the thermodynamic approach and the statistical approach seems
to be of a fundamental character, the constant appearing in (5) must be a universal
constant. It was Planck who first wrote the explicit formula

S= kan, (6)

without any additive constant Sy. As it stands, formula (6) determines the absolute value of
the entropy of a given physical system in terms of the total number of microstates acces-
sible to it in conformity with the given macrostate. The zero of entropy then corresponds
to the special state for which only one microstate is accessible (€ = 1) — the so-called
“unique configuration”; the statistical approach thus provides a theoretical basis for the

- third law of thermodynamics as well. Formula (6) is of fundamental importance in physics;

it provides a bridge between the microscopic and the macroscopic.

Now, in the study of the second law of thermodyriamics we are told that the law of
increase of entropy is related to the fact that the energy content of the universe, in its
natural course, is becoming less and less available for conversion into work; accordingly,
the entropy of a given system may be regarded as a measure of the so-called disorder or
chaos prevailing in the system. Formula (6) tells us how disorder arises microscopically.
Clearly, disorder is a manifestation of the largeness of the number of microstates the sys-
tem can have. The larger the choice of microstates, the lesser the degree of predictability
and hence the increased level of disorder in the system. Complete order prevails when and

*This result may be compared with the so-called “zeroth law of thermodynamics,” which stipulates the existence of
a common parameter T for two or more physical systems in thermal equilibrium,




6 Chapter 1  The Statistical Basis of Thermodynamics

only when the system has no other choice but to be in a unique state (2 = 1); this, in turn,
corresponds to a state of vanishing entropy.
By equations (5) and (6), we also have

B=—. @)

The universal constant k is generally referred to as the Boltzmann constant. In Section 1.4
we shall discover how k is related to the gas constant R and the Avogadro number Ny; see
equation (1.4.3).°

1.3 Further contact between statistics
and thermodynamics

In continuation of the preceding considerations, we now examine a more elaborate
exchange between the subsystems A; and A;. If we assume that the wall separating the
two subsystems is movable as well as conducting, then the respective volumes V7 and V»
(of subsystems A; and Ay) also become variable; indeed, the total volume V(= V1 + V2)
remains constant, so that effectively we have only one more independent variable. Of
course, the wall is still assumed to be impenetrable to particles, so the numbers N; and
N, remain fixed. Arguing as before, the state of equilibrium for the composite system A©
will obtain when the number Q@ (V®,E®; V1, Ey) attains its largest value; that is, when

not only
<81n521) =<Bln92> (1a)
3E1 N1, Vp; E1=F1 aEz Ny, Vo; E2=f2
but also
(311’191) =<3h’1§22> (1b)
aVl Ny,Eq; V1=V1 aVz Ny ,Ey; V2=-‘72

Our conditions for equilibrium now take the form of an equality between the pair of
parameters (8;,m) of the subsystem A; and the parameters (82,72) of the subsystem A
where, by definition,

dlnQ(N,V,E)
n= <—————> . (2)
NEV=V

v

Similarly, if A; and A, came into contact through a wall that allowed an exchange of parti-
cles as well, the conditions for equilibrium would be further augmented by the equality

SWe follow the notation whereby equation (1.4.3) means equation (3) of Section 1.4. However, while referring to an
equation in the same section, we will omit the mention of the section number.
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of the parameter ¢; of subsystem A; and the parameter ¢ of subsystem A; where, by
definition,

aInQ(N,V,
;E(_HL_B 3

oN ) VEN=N

To determine the physical meaning of the parameters 5 and ¢, we make use of equa-
tion (1.2.6) and the basic formula of thermodynamics, namely

dE=TdS—PdV +pdN, @

where P is the thermodynamic pressure and x the chemical potential of the given system.
It follows that :
_Pp =

n=17 and = T ()
From a physical point of view, these results are completely satisfactory because, thermo-
dynamically as well, the conditions of equilibrium between two systems A; and Ay, if the
wall separating them is both conducting and movable (thus making their respective ener-
gies and volumes variable), are indeed the same as the ones contained in equations (1a)
and (1b), namely

Ti=T, and P;=P;. ©)]

On the other hand, if the two systems can exchange particles as well as energy but
have their volumes fixed, the conditions of equilibrium, obtained thermodynamically, are
indeed

=T, and p;=us. (N

And finally, if the exchange is such that all three (macroscopic) pardmeters become
variable, then the conditions of equilibrium become

Ty=Ts, P1=Pp and ui=u. (8)8

It is gratifying that these conclusions are identical to the ones following from statistical
considerations.

Combining the results of the foregoing discussion, we arrive at the following recipe
for deriving thermodynamics from a statistical beginning: determine, for the macrostate
(N, V,E) of the given system, the number of all possible microstates accessible to the sys-
tem; call this number Q(NV, V, E). Then, the entropy of the system in that state follows from

81t may be noted that the same would be true for any two parts of a single thermodynamic system; conséquently, in
equilibrium, the parameters T, P, and » would be constant throughout the system.
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the fundamental formula
S(N,V,E)=kInQ(N, V‘,E), (€)]

while the leading intensive fields, namely temperature, pressure, and chemical potential,

are given by
33) _1 (_"’ﬁ) _ P <E> __k (10)
<8_E vy T \aV/)yg T \oN)yp T

Alternatively, we can write’

N,E N, )
E ) ¥

dE
S il ) 13)
T <aS>N,V : (

Formulae (11) through (13) follow equally well from equation (4). The evaluation of P, i,
and T from these formulae indeed requires that the energy E be expressed as a function
of the quantities N, V, and S; this should, in principle, be possible once S is known as a
function of N, V, and E.

The rest of the thermodynamics follows straightforwardly; see Appendix H. For
instance, the Helmholtz free energy A, the Gibbs free energy G, and the enthalpy H are
given by

and

while

A=E-TS, (14)
G=A+PV=E-TS+PV
— uN - (15)8

7In writing these formulae, we have made use of the well-known relationship in partial differential calculus, namely
that “if three variables x, y, and z are mutually related, then (see Appendix H)

(5.2,

8The relation E — TS + PV = uN follows directly from (4). For this, all we have to do is to regard the given system
as having grown to its present size in a gradual manner, such that the intensive parameters, T, P, and  stayed constant
throughout the process while the extensive parameters N, V, and E (and hence S) grew proportionately with one another.
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and
H=E+PV=G+TS. (16
The specific heat at constant volume, Cy, and the one at constant pressure, Cp, would be
given by
as dE
Cy=T|— = —
v <3T)N,V <3T>N,V 4
and
CPET(a_S) =(_—3(E+PV)) - ﬁ) . 18)
3T N,P aT N,P BT N,p

1.4 The classical ideal gas

To illustrate the approach developed in the preceding sections, we shall now derive
the various thermodynamic properties of a classical ideal gas composed of monatomic
molecules. The main reason why we choose this highly specialized system for considera-
tion is that it affords an explicit, though asymptotic, evaluation of the number Q(N, V, E).
This example becomes all the more instructive when we find that its study enables us,

“in a most straightforward manner, to identify the Bolizmann constant k in terms of

other physical constants; see equation (3). Moreover, the behavior of this system serves
as a useful reference with which the behavior of other physical systems, especially real
gases (with or without quantum effects), can be compared. And, indeed, in the limit of
high temperatures and low densities the ideal-gas behavior becomes typical of most real
systems. '

Before undertaking a detailed study of this case it appears worthwhile to make a remark
that applies to all classical systems composed of noninteracting particles, irrespective
of the internal structure of the particles. This remark is related to the explicit dependence
of the number Q(N, V,E) on V and hence to the equation of state of these systems. Now,
if there do not exist any spatial correlations among the particles, that is, if the probability
of any one of them being found in a particular region of the available space is completely
independent of the location of the other particles,® then the total number of ways in which
the N particles can be spatially distributed in the system will be simply equal to the prod-
uct of the numbers of ways in which the individual particles can be accommodated in the
same space independently of one another. With N and E fixed, each of these numbers will
be directly proportional to V, the volume of the container; accordingly, the total number
of ways will be directly proportional to the Nth power of V:

QUV,E, V) VN, o))

9This will be true if (i) the mutual interactions among particles are negligible, and (ii) the wave packets of individual
particles do not significantly overlap (or, in other words, the quantum effects are also negligible).
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so that, for the ratio of the two specific heats, we have
5
y=Cp/Cv=3. (28)

Now, suppose that the gas undergoes an isothermal change of state (T = const. and
N = const.); then, according to (23), the total energy of the gas would remain constant
while, according to (26), its pressure would vary inversely with volume (Boyle’s law). The
change in the entropy of the gas, between the initial state { and the final state f, would then
be, see equation (21),

S —S; = NkIn(V;/V)). (29)

On the other hand, if the gas undergoes a reversible adiabatic change of state (S = const.
and N = const.), then, according to (22) and (23), both E and T would vary as V—%/3; so,
according to (25) or (26), P would vary as V—5/3, These results agree with the conventional
thermodynamic ones, namely

PVY =const. and TV?~!=const., (30)

withy = g It may be noted that, thermodynamically, the change in E during an adiabatic
process arises solely from the external work done by the gas on the surroundings or vice
versa:

2E
(dE)adiab = ~PdV = —dei (31)

see equations (1.3.4) and (25). The dependence of E on V follows readily from this
relationship.

The considerations of this section have clearly demonstrated the manner in which
the thermodynamics of a macroscopic system can be derived from the multiplicity of its
microstates (as represented by the number Q or I or ). The whole problem then hinges
on an asymptotic enumeration of these numbers, which unfortunately is tractable only
in a few idealized cases, such as the one considered in this section; see also Problems 1.7
and 1.8. Even in an idealized case like this, there remains an inadequacy that could not be
detected in the derivations made so far; this relates to the explicit dependence of S on N.
The discussion of the next section is intended not only to bring out this inadequacy but
also to provide the necessary remedy for it.

1.5 The entropy of mixing and the Gibbs
paradox

One thing we readily observe from expression (1.4.21) is that, contrary to what is logi-
cally desired, the entropy of an ideal gas, as given by this expression, is not an extensive
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(N, Vs T) | (Noy V3 T)

FIGURE 1.3 The mixing together of two ideal gases 1 and 2.

property of the system! That is, if we increase the size of the system by a factor «, keep-
ing the intensive variables unchanged,'® then the entropy of the system, which should
also increase by the same factor «, does not do so; the presence of the InV term in the
expression affects the result adversely. This in a way means that the entropy of this system
is different from the sum of the entropies of its parts, which is quite unphysical. A more
common way of looking at this problem is to consider the so-called Gibbs paradox.

Gibbs visualized the mixing of two ideal gases 1 and 2, both being initiAlly at the same
temperature T; see Figure 1.3. Clearly, the temperature of the mixture would also be the
same. Now, before the mixing took place, the respective entropies of the two gases were,
see equations (1.4.21) and (1.4.23),

2am;kT .
S,-=Nikan,-+-Z-N,-k[1+ln( 7'[7;17,2; )], i=12. . 03]

After the mixing has taken place, the total entropy would be

2
3 2nm;kT

i=1

where V = Vj + V». Thus, the netincrease in the value of S, which may be called the entropy
of mixing, is given by

3

2
. +V, +V2T.
(ASy=S81— E Si=k [Nlh’l i +NyIn v ;

i=1

the quantity AS is indeed positive, as it must be for an irreversible process like mixing.
Now, in the special case when the initial particle densities of the two gases (and, hence, the
particle density of the mixture) are also the same, equation (3) becomes

N Ny +N.
(AS)*=k[N11n—N1+ 2 +NzIn 1+ 2],

4
N N, @

which is again positive.

15This means an increase of the parameters N, V, and E to aN, aV, and «E, so that the energy per particle and the
volume per particle remain unchanged.
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So far, it seems all right. However, a paradoxical situation arises if we consider the mix-
ing of two samples of the same gas. Once again, the entropies of the individual samples
will be given by (1); of course, now m; = my = m, say. And the entropy after mixing will be
given by

ST=Nk1nV+gNIc{1 +1n<2”hL2kT)], | (2a)
where N = N + N,; note that this expression is numerically the same as (2), with m; = m.
Therefore, the entropy of mixing in this case will also be given by expression (3) and, if
Nj/V1 =Ny Vo = (Ny + N2)/(V1 + V), by expression (4). The last conclusion, however, is
unacceptable because the mixing of two samples of the same gas, with a common initial
temperature T and a common initial particle density n, is clearly a reversible process, for
we can simply reinsert the partitioning wall into the system and obtain a situation that is
in no way different from the one we had before mixing. Of course, we tacitly imply that
in dealing with a system of identical particles we cannot track them down individually;
all we can reckon with is their numbers. When two dissimilar gases, even with a common
initial temperature T, and a common initial particle density #n, mixed together the process
was irreversible, for by reinserting the partitioning wall one would obtain two samples of
the mixture and not the two gases that were originally present; to that case, expression (4)
would indeed apply. However, in the present case, the corresponding result should be

(AS)f_, =0. (4a)16

The foregoing result would also be consistent with the requirement that the entropy of a
given system is equal to the sum of the entropies of its parts. Of course, we had already
noticed that this is not ensured by expression (1.4.21). Thus, once again we are led to
believe that there is something basically wrong with that expression.

To see how the above paradoxical situation can be avoided, we recall that, for the
entropy of mixing of two samples of the same gas, with a common T and a common #,
we were led to result (4), which can also be written as

(AS)* =St — (S1+ S2) = kiIn{(Ny + N2)!} —In(Vi!) —In(V21)], @

instead of the logical result (4a). A closer look at this expression shows that we would
indeed obtain the correct result if our original expression for S were diminished by an
ad hoc term, kln(N\!), for that would diminish S; by kIn(Vi!), S, by kIn(N,!) and St by
kln {(N1 + N2)!'}, with the result that (AS)* would turn out to be zero instead of the expres-
sion appearing in (4). Clearly, this would amount to an ad hoc reduction of the statistical
numbers I" and ¥ by a factor N!. This is precisely the remedy proposed by Gibbs to avoid
the paradox in question.

161n view of this, we fear that expression (3) may also be inapplicable to this case.
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If we agree with the foregoing suggestion, then the modified expression for the entropy
of a classical ideal gas would be

V [4rmE\*?| 5
= —_— | — - 1.4.21
S(N,V,E) = NlclnliNh3 ( AN ) il + 2Nk ( a)
\4 3 5 2nmkT
= — )4+ ZNk{= = la
_Nk1n<N)+2Nk[3+ln( 7 )], (1a)

which indeed is truly extensive! If we now mix two samples of the same gas at a common
initial temperature T, the entropy of mixing would be

V.
(AS)1=2 = k[a\r1 +N2)ln< itV ) —MNln <ﬁ) —Nyln (lﬂ 3a)

N1 +N Ny N
and, if the initial particle densities of the samples were also equal, the result would be
(AS)i_, =0. (4a)

It may be noted that for the mixing of two dissimilar gases, the original expressions (3) and
(4) would continue to hold even when (1.4.21) is replaced by (1.4.21a).}” The paradox of
Gibbs is thereby resolved.

Equation (1a) is generally referred to as the Sackur-Tetrode equation. We reiterate the
fact that, by this equation, the entropy of the system does indeed become a truly extensive
quantity. Thus, the very root of the trouble has been eliminated by the recipe of Gibbs. We
shall discuss the physical implications of this recipe in Section 1.6; here, let us jot down
some of its immediate consequences.

First of all, we note that the expression for the energy E of the gas, written as a function
of N, V, and S, is also modified. We now have

2 7\5/3
Sh°N ( 28 5), (1.4.22a)

ENYV.5) = grmver ®P\3ne ~ 3
which, unlike its predecessor (1.4.22), makes energy too a truly extensive quantity. Of
course, the thermodynamic results (1.4.23) through (1.4.31), derived in the previous
section, remain unchanged. However, there are some that were intentionally left out, for
they would come out correct only from the modified expression for S(N, V, E) or E(S, V,N).
The most important of these is the chemical potential of the gas, for which we obtain

3E 5 28
= — = —_— ], 5
h= (aN)V,S E[SN 3N2k] ©)

7Because, in this case, the entropy St of the mixture would be diminished by kln(Ni!Na!), rather than by
kln{(IVi + Na2)!}. .
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In view of equations (1.4.23) and (1.4.25), this becomes

1 G
= — vV — =—,
w {(E+ P 18] N (6)

where G is the Gibbs free energy of the system. In terms of the variables N ,V,and T,
expression (5) takes the form

9 3/2 ‘
u(N,V,T):lenl%( B ) l 7

2rmkT

Another quantity of importance is the Helmholtz free energy:

N hz 3/2

It will be noted that, while A is an extensive property of the system, yx is intensive.

1.6 The “correct” enumeration of the microstates

In the preceding section we saw that an ad hoc diminution in the entropy of an N-particle
system by an amount kln(N!), which implies an ad hoc reduction in the number of
microstates accessible to the system by a factor (IV!), was able to correct the unphysical fea-
tures of some of our former expressions. It is now natural to ask: why, in principle, should
the number of microstates, computed in Section 1.4, be reduced in this manner? The phys-
ical reason for doing so is that the particles constituting the given system are not only
identical but also indistinguishable; accordingly, it is unphysical to label them as No. 1,
No. 2, No. 3, and so on and to speak of their being individually in the various single-particle
states g;. All we can sensibly speak of is their distribution over the states ¢; by numbers, that
is, n; particles being in the state ¢, ny in the state ¢, and so on. Thus, the correct way of
specifying a microstate of the system is through the distribution numbers {#;}, and not
through the statement as to “which particle is in which state.” To elaborate the point, we
may say that if we consider two microstates that differ from one another merely in an inter-
change of two particles in different energy states, then according to our original mode of
counting we would regard these microstates as distinct; in view of the indistinguishability
of the particles, however, these microstates are not distinct (for, physically, there exists no
way whatsoever of distinguishing between them).8

BOf course, if an interchange took place among particles in the same energy state, then even our original mode of
counting did not regard the two microstates as distinct.
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Now, the total number of permutations that can be effected among N particles,
distributed according to the set {rn;}, is

N!

—— M
ni:na....

where the n; must be consistent with the basic constraints (1.1.1) and (1.1.2) 19 If our parti-
cles were distinguishable, then all these permutations would lead to “distinct” microstates.
However, in view of the indistinguishability of the particles, these permutations must be
regarded as leading to one and the same thing; consequently, for any distribution set {rn;},

" we have one, and only one, distinct microstate. As a result, the total number of distinct

microstates accessible to the system, consistent with a given macrostate (N, V, E), would
be severely cut down. However, since factor (1) itself depends on the numbers r; consti-
tuting a particular distribution set and for a given macrostate there will be many such sets,
there is no straightforward way to “correct down” the number of microstates computed on
the basis of the classical concept of “distinguishability” of the particles.

The recipe of Gibbs clearly amounts to disregarding the details of the numbers r; and
slashing the whole sequence of microstates by a common factor N; this is correct for situa-
tions in which all N particles happen to be in different energy states but is certainly wrong
for other situations. We must keep in mind that by adopting this recipe we are still using a
spurious weight factor,

1
W{ni} = n1!n2!...’ @
for the distribution set {n;} whereas in principle we should use a factor of unity, irre-
spective of the values of the numbers 7;.2° Nonetheless, the recipe of Gibbs does correct
the situation in a gross manner, though in matters of detail it is still inadequate. In fact,
it is only by taking w(n;} to be equal to unity (or zero) that we obtain true quantum
statistics!

We thus see that the recipe of Gibbs corrects the enumeration of the microstates, as
necessitated by the indistinguishability of the particles, only in a gross manner. Numeri-
cally, this would approach closer and closer to reality as the probability of the n; being
greater than 1 becomes less and less. This in turn happens when the given system is
at a sufficiently high temperature (so that many more energy states become accessible)
and has a sufficiently low density (so that there are not as many particles to accommo-
date). Tt follows that the “corrected” classical statistics represents truth more closely if the
expectation values of the occupation numbers n; are much less than unity:

(ni) <1, 3)

19The presence of the factors (n;!) in the denominator is related to the comment made in the preceding note.
200y a factor of zero if the distribution set {n;} is disallowed on certain physical grounds, such as the Pauli exclusion

principle.
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that s, if the numbers n; are generally 0, occasionally 1, and rarely greater than 1. Condition
(3) in a way defines the classical limit. We must, however, remember that it is because ofthe
application of the correction factor 1/N!, which replaces (1) by (2), that our results agree

with reality at least in the classical limit.
In Section 5.5 we shall demonstrate, in an independent manner, that the factor by

which the number of microstates, as computed for the “labeled” molecules, be reduced so
that the formalism of classical statistical mechanics becomes a true limit of the formalism

of quantum statistical mechanics is indeed N

Problems

1.1. (a) Show that, for two large systems in thermal contact, the number Q@ (E®, E;) of Section 1.2
can be expressed as a Gaussian in the variable F;. Determine the root-mean-square deviation
of E; from the mean value E, in terms of other quantities pertaining to the problem.

(b) Make an explicit evaluation of the root-mean-square deviation of Ey in the special case when
the systems A; and A; are ideal classical gases.

1.2. Assuming that the entropy S and the statistical number $2 of a physical system are related through

an arbitrary functional form
S=f(),

show that the additive character of S and the multiplicative character of 2 necessarily require that
the function f(£2) be of the form (1.2.6).

1.3. Two systems A and B, of identical composition, are brought together and allowed to exchange both
energy and particles, keeping volumes Vi and V3 constant. Show that the minimum value of the

quantity (dEa/dNy) is given by
paTs — pTa
Tg—Ta

»

where the p's and the T's are the respective chemical potentials and temperatures.

In a classical gas of hard spheres (of diameter D), the spatial distribution of the particles is no

longer uncorrelated. Roughly speaking, the presence of n particles in the system leaves only

avolume (V — nyg) available for the (n + 1)th particle; clearly, vo would be proportional to

D3. Assuming that Nvg « V, determine the dependence of Q(N, V,E) on V (compare to

equation (1.4.1)) and show that, as a result of this, V in the ideal-gas law (1.4.3) gets replaced

by (V — b), where b is four times the actual volume occupied by the particles.

1.5. Read Appendix A and establish formulae (1.4.15) and (1.4.16). Estimate the importance of the
linear term in these formulae, relative to the main term (7/6)&*3/2, for an oxygen molecule
confined to a cube of side 10 cm; take ¢ = 0.05 V.

1.6. Acylindrical vessel 1 mlong and 0.1 m in diameter is filled with a monatomic gas at P=1latmand
T = 300K. The gas is heated by an electrical discharge, along the axis of the vessel, which releases

ioules. What will the temperature of the gas be immediately after the discharge?

an energy of 10%j
1.7. Study the statistical mechanics of an extreme relativisitic gas characterized by the single-particle

energy states

14

hc 1/2
£(nx s 112) = o7 (ni + 2+ ng) )

instead of (1.4.5), along the lines followed in Section 1.4. Show that the ratio Cp/Cy in this case is

4/3, instead of 5/3.
1.8. Consider a system of quasiparticles whose energy eigenvalues are given by

e(m)y=nhv; n=012,....
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Obtain an asymptotic expression for the number 2 of this system for a given number Nofthe
quasiparticles and a given total energy E. Determine the temperature T of the system as a function
of E/N and hv, and examine the situation for which E/(Nhv) > 1.

1.9. Making use of the fact that the entropy S(N, V,E) of a thermodynaric system is an extensive

quantity, show that
as aS S
N| — V| — El — =S8.
(3N>V,E+ <3V>N,E+ (aE)N,V

Note that this result implies that (-Np + PV +E)/T =S, thatis, Nu=E+ PV -T8S.

1.10. A mole of argon and a mole of helium are contained in vessels of equal volume. If argon is at 300 K,
what should the temperature of helium be so that the two have the same entropy?

1.11. Four moles of nitrogen and one mole of oxygen at P = 1 atm and T = 300K are mixed together to
form air at the same pressure and temperature. Calculate the entropy of mixing per mole of the air
formed.

1.12. Show that the various expressions for the entropy of mixing, derived in Section 1.5, satisfy the
following relations:

(a) Forall Ni, Vi, Na, and Vs,

(AS)1=2 = ((AS) — (AS)*} 2 0,

the equality holding when and only when Ni/Vi = N2/ Va.
{(b) For a given value of (N} + Ny),

(AS)* < (N1 +N2)kIn2,

the equality holding when and only when N1 = Na.

1.13. If the two gases considered in the mixing process of Section 1.5 were initially at different
temperatures, say T and Tz, what would the entropy of mixing be in that case? Would the
contribution arising from this cause depend on whether the two gases were different or identical?

1.14. Show that for an ideal gas composed of ‘monatomic molecules the entropy change, between any
two temperatures, when the pressure is kept constant is 5/3 times the corresponding entropy
change when the volume is kept constant. Verify this result numerically by calculating the actual
values of (AS)p and (AS)v per mole of an ideal gas whose temperature is raised from 300 K to 400 K.

1.15. We have seen that the (P, V)-relationship during a reversible adiabatic process in an ideal gas is
governed by the exponent y, such that

PVY =const.
Consider a mixture of two ideal gases, with mole fractions fi and f» and respective exponents y1
and y». Show that the effective exponent y for the mixture is given by

N S Bj! n 2
y—=1 n-1 r-1

1.16. Establish thermodynamically the formulae

V(g) =S .and V op =N.
3T m BM T

Express the pressure P of an ideal classical gas in terms of the variables x and T, and verify the
above formulae.




Elements of Ensemble Theory

In the preceding chapter we noted that, for a given macrostate (N,V,E), a statistical
system, at any time ¢, is equally likely to be in any one of an extremely large number of
distinct microstates. As time passes, the system continually switches from one microstate
to another, with the result that, over a reasonable span of time, all one observes is a behav-
ior “averaged” over the variety of microstates through which the system passes. It may,
therefore, make sense if we consider, at a single instant of time, a rather large number of
systems — all being some sort of “mental copies” of the given system — which are charac-
terized by the same macrostate as the original system but are, naturally enough, in all sorts
of possible microstates. Then, under ordinary circumstances, we may expect that the aver-
age behavior of any system in this collection, which we call an ensemble, would be identical
to the time-averaged behavior of the given system. It is on the basis of this expectation that
we proceed to develop the so-called ensemble theory.

For classical systems, the most appropriate framework for developing the desired for-
malism is provided by the phase space. Accordingly, we begin our study of the various
ensembles with an analysis of the basic features of this space.

2.1 Phase space of a classical system

The microstate of a given classical system, at any time ¢, may be defined by specifying the
instantaneous positions and momenta of all the particles constituting the system. Thus,
if N is the number of particles in the system, the definition of a microstate requires the
specification of 3N position coordinates q1,4z,...,q3n and 3N momentum coordinates
pL,P2; ..., psn. Geometrically, the set of coordinates (g;, p;), where i =1,2,...,3N, may be
regarded as a point in a space of 6N dimensions. We refer to this space as the phase space,
and the phase point (g;, p;) as a representative point, of the given system.

Of course, the coordinates g; and p; are functions of the time ¢; the precise manner in
which they vary with ¢ is determined by the canonical equations of motion,

i = aH(qi, pi)
T o
_3H(4i»Pi)
0q;

i=1,2,...,3N, (1)

i=

where H(q;,p;) is the Hamiltonian of the system. Now, as time passes, the set of
coordinates (q;, p;), which also defines the microstate of the system, undergoes a continual
change. Correspondingly, our representative point in the phase space carves out a

Statistical Mechanics . 25
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trajectory whose direction, at any time ¢, is determined by the velocity vector v = (g1, p),
which in turn is given by the equations of motion (1). It is not difficult to see that the
trajectory of the representative point must remain within a limited region of the phase
space; this is so because a finite volume V directly limits the values of the coordinates g;,
while a finite energy E limits the values of both the g; and the p; [through the Hamiltonian
H(g;, p»)]. In particular, if the total energy of the system is known to have a precise value,
say E, the corresponding trajectory will be restricted to the “hypersurface”

H(q;,p))=E (2

of the phase space; on the other hand, if the total energy may lie anywhere in the range
(E- %A,E + %A), the corresponding trajectory will be restricted to the “hypershell”
defined by these limits.

Now, if we consider an ensemble of systems (i.e., the given system, along with a large
number of mental copies of it) then, at any time ¢, the various members of the ensem-
ble will be in all sorts of possible microstates; indeed, each one of these microstates must
be consistent with the given macrostate that is supposed to be common to all members
of the ensemble. In the phase space, the corresponding picture will consist of a swarm of
representative points, one for each member of the ensemble, all lying within the “allowed”
region of this space. As time passes, every member of the ensemble undergoes a continual
change of microstates; correspondingly, the representative points constituting the swarm
continually move along their respective trajectories. The overall picture of this movement
possesses some important features that are best illustrated in terms of what we call a
density function p(q, p;t).! This function is such that, at any time ¢, the number of repre-
sentative points in the “volume element” (d*N qd®N p) around the point (g, p) of the phase
space is given by the product p(q, p;)d*¥qd®Np. Clearly, the density function p(q, p; 1)
symbolizes the manner in which the members of the ensemble are distributed over all
possible microstates at different instants of time. Accordingly, the ensemble average (f) of a
given physical quantity f (g, p), which may be different for systems in different microstates,
would be given by

[f@q.peqp;)dNqdNp

3
[p(a,p;d3Nqd3Np ®

(=

The integrations in (3). extend over the whole of the phase space; however, it is only
the populated regions of the phase space (p # 0) that really contribute. We note that, in
general, the ensemble average (f) may itself be a function of time.

An ensemble is said to be stationary if p does not depend explicitly on time, that is, at
all times

dp
— =0.
at @

!Note that (g, p) is an abbreviation of (g;, pi) = (q1,- .1 G3N, P1, - --» P3N)-
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Clearly, for such an ensemble the average value (f) of any physical quantity f(qg, p) will
be independent of time. Naturally, a stationary ensemble qualifies to represent a system in
equilibrium. To determine the circumstances under which equation (4) may hold, we have
to make a rather detailed study of the movement of the representative points in the phase
space.

2.2 Liouville's theorem and its consequences

Consider an arbitrary “volume” o in the relevant region of the phase space and let the
“surface” enclosing this volume be denoted by o; see Figure 2.1. Then, the rate at which
the number of representative points in this volume increases with time is written as

3 [ pdw, W

@

where dw = (dsN qasN p). On the other hand, the net rate at which the representative points
“flow” out of w (across the bounding surface o} is given by

/pv-fldcr; @

(e

here, v is the velocity vector of the representative points in the region of the surface
element do while # is the (outward) unit vector normal to this element. By the divergence
theorem, (2) can be written as

/ div(pv)dw; _ 3

of course, the operation of divergence here means

, Np(a .. o
div(pv) = Z [g (pg) + 5 (i) } (4)
i i

=1
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In view of the fact that there are no “sources” or “sinks” in the phase space and hence the
total number of representative points remains conserved,? we have, by (1) and (3),

0
% pdw= —fdiv(pv)dw, (5)
that is,
p ..
/ [E + dlv(pv)]dw =0, (6)

@

Now, the necessary and sufficient condition that integral (6) vanish for all arbitrary
volumes o is that the integrand itself vanish everywhere in the relevant region of the phase
space. Thus, we must have

o | ..
i div(pv) =0, (7

which is the equation of continuity for the swarm of the representative points.
Combining (4) and (7), we obtain

3N

3N .
dp <3p . dp ) (3671' api
—+ —qi+—pi)+p) [ +-=)=0.
n = quql opi” pi=1 9q; 3Pi> 0 @

The last group of terms vanishes identically because, by the equations of motion, we have,
forall i, '

3 _ ®H(gwpy) _ ¥*H@up) _ 0ps

oqi  oadp; | opida; | opr ©)

Further, since p = p (g, p; 1), the remaining terms in (8) may be combined to form the
“total” time derivative of p, with the result that

dp 8

—_— = = 3

| ;= o Tl HI=0. (10)

Equation (10) embodies Liouville’s theorem (1838). According to this theorem, the “local”
density of the representative points, as viewed by an observer moving with a representa-
tive point, stays constant in time. Thus, the swarm of the representative points moves in

*This means that in the ensemble under consideration neither are any new members being added nor are any old
ones being removed.
3We recall that the Poisson bracket [0, H] stands for the sum
3 (L oty
S \9q; p;  dpi dq;)’
which is identical to the group of terms in the middle of (8).

2.2 Liouville’s theorem and its consequences 29

the phase space in essentially the same manner as an incompressible fluid moves in the
physical space!

A distinction must be made, however, between equation (10) on one hand and
equation (2.1.4) on the other. While the former derives from the basic mechanics of the
particles and is therefore quite generally true, the latter is only a requirement for equi-
librium which, in a given case, may or may not be satisfied. The condition that ensures
simultaneous validity of the two equations is clearly

[pm=% 3—pq~+a—pp->=o. an
' “\ag;" " opi

Now, one possible way of satisfying (11) is to assume that p, which is already assumed
to have no explicit dependence on time, is independent of the coordinates (g, p) as well,
that is,

p(q,p) = const. (12)

over the relevant region of the phase space (and, of course, is zero everywhere else). Physi-
cally, this choice corresponds to an ensemble of systems that at all times are uniformly

- distributed over all possible microstates. The ensemble average (2.1.3) then reduces to

1
(H= - / f(q pdow; ©(13)

here, » denotes the total “volume” of the relevant region of the phase space. Clearly, in
this case, any member of the ensemble is equally likely to be in any one of the various
possible microstates, inasmuch as any representative point in the swarm is equally likely
to be in the neighborhood of any phase point in the allowed region of the phase space.
This statement is usually referred to as the postulate of “equal a priori probabilities” for
the various possible microstates (or for the various volume elements in the allowed region
of the phase space); the resulting ensemble is referred to as the microcanonical ensemble.

A more general way of satisfying (11) is to assume that the dependence of p on (g, p)
comes only through an explicit dependence on the Hamiltonian H(g, p), thatis,

condition (11) is then identically satisfied. Equation (14) provides a class of density func-
tions for which the corresponding ensemble is stationary. In Chapter 3 we shall see that
the most natural choice in this class of ensembles is the one for which

p(q,p) x exp[—H(q;p)/ kT]. (15)

The ensemble so defined is referred to as the canonical ensemble.
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2.3 The microcanonical ensemble

In this ensemble the macrostate of a system is defined by the number of molecules N,
the volume V, and the energy E. However, in view of the considerations expressed in
Section 1.4, we may prefer to specify a range of energy values, say from (E — %A) to
(E+ 3A), rather than a sharply defined value E. With the macrostate specified, a choice
still remains for the systems of the ensemble to be in any one of a large number of pos-
sible microstates. In the phase space, correspondingly, the representative points of the
ensemble have a choice to lie anywhere within a “hypershell” defined by the condition

1 1
. (E—EA)SH(‘%I’)S(E-FEA)- 1

The volume of the phase space enclosed within this shell is given by

w:jdws/(d3qu3Np), (2)

where the primed integration extends only over that part of the phase space which con-
forms to condition (1). It is clear that » will be a function of the parameters N,V,E
and A. o

Now, the microcanonical ensemble is a collection of systems for which the density
function p is, at all times, given by

0(q,p) = const. if (E— %A) <H(g,p) < <E+ %A)
3

0 otherwise

Accordingly, the expectation value of the number of representative points lying in a vol-
ume element dw of the relevant hypershell is simply proportional to dw. In other words, the
a priori probability of finding a representative point in a given volume element dw is the
same as that of finding a representative point in an equivalent volume element dw located
anywhere in the hypershell. In our original parlance, this means an equal a priori probabil -
ity for a given member of the ensemble to be in any one of the various possible microstates.
In view of these considerations, the ensemble average (f), as given by equation (2.2.13),
acquires a simple physical meaning. To see this, we proceed as follows.,

. Since the ensemble under study is a stationary one, the ensemble average of any phy-
sical quantity f will be independent of time; accordingly, taking a time average thereof will
not produce any new result. Thus

{f) = the ensemble average of f

= the time average of (the ensemble average of ).
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Now, the processes of time averaging and ensemble averaging are completely indepen-
dent, so the order in which they are performed may be reversed without causing any
change in the value of (f). Thus

(f) = the ensemble average of (the time average of f).

Now, the time average of any physical quantity, taken over a sufficiently long interval of
time, must be the same for every member of the ensemble, for after all we are dealing
with only mental copies of a given system.* Therefore, taking an ensemble average thereof
should be inconsequential, and we may write

(f) = the long-time average of f,

where the latter may be taken aver any member of the ensemble. Furthermore, the long-
time average of a physical quantity is all one obtains by making a measurement of that
quantity on the given system,; therefore, it may be identified with the value one expects to
obtain through experiment. Thus, we finally have

(f) =fexp- @)

This brings us to the most important result: the ensemble average of any physical quantity
f is identical to the value one expects to obtain on making an appropriate measurement on
the given system.

The next thing we look for is the establishment of a connection between the mechanics
of the microcanonical ensemble and the thermodynamics of the member systems. To do
this, we observe that there exists a direct correspondence between the various microstates
of the given system and the various locations in the phase space. The volume  (of the
allowed region of the phase space) is, therefore, a direct measure of the multiplicity I" of the
microstates accessible to the system. To establish a numerical correspondence between w

4To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for any particular mem-
ber of the ensemble, the quantity f is averaged only over a short span of time, the result is bound to depend on the
relevant “subset of microstates” through which the system passes during that time. In the phase space, this will mean
an averaging over only a “part of the allowed region.” However, if we employ instead a sufficiently long interval of time,
the system may be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only on the macrostate of the system, and not on a subset of microstates.
Correspondingly, the averaging in the phase space would go over practically all parts of the allowed region, again “with-
out fear or favor.” In other words, the representative point of our system will have traversed each and every part of the
allowed region almost uniformly. This statement embodies the so-called ergodic theorem or ergodic hypothesis, which
was first introduced by Boltzmann (1871). According to this hypothesis, the trajectory of a representative point passes,
in the course of time, through each and every point of the relevant region of the phase space. A little reflection, however,
shows that the statement as such requires a qualification; we better replace it by the so-called quasiergodic hypothesis,
according to which the trajectory of a representative point traverses, in the course of time, any neighborhood of any point
of the relevant region. For further details, see ter Haar (1954, 1955), Farquhar (1964).
Now, when we consider an ensemble of systems, the foregoing statement should hold for every member of the
ensemble; thus, irrespective of the initial (and final) states of the various systems, the long-time average of any physical
quantity f should be the same for every member system.
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and ", we need to discover a fundamental volume wp that could be regarded as “equivalent
to one microstate.” Once this is done, we may say that, asymptotically,

I'=w/wp. 5)

The thermodynamics of the system would then follow in the same way as in Sections 1.2—
1.4, namely through the relationship

S=kInl' =kln(w/wg), etc. (6)

The basic problem then consists in determining wp. From dimensional considerations,
see (2), wp must be in the nature of an “angular momentum raised to the power 3N.” To
determine it exactly, we consider certain simplified systems, both from the point of view
of the phase space and from the point of view of the distribution of quantum states.

2.4 Examples

We consider, first of all, the problem of a classical ideal gas composed of monatomic par-
ticles; see Section 1.4. In the microcanonical ensemble, the volume w of the phase space
accessible to the representative points of the (member) systems is given by

:/.../I(d?’quSNp), o)

where the integrations are restricted by the conditions that (i) the particles of the system
are confined in physical space to volume V, and (ii) the total energy of the system lies
between the limits (E — 1A) and (E+ 3A). Since the Hamiltonian in this case is a function
of the p; alone, integrations over the g; can be carried out straightforwardly; these give a
factor of VN, The remaining integral is

/ o #Np = / 5 My,

(be) (n)(eeke)  om(e-he)Ftean(erh)

i=1

which is equal to the volume of a 3N-dimensional hypershell, bounded by hyperspheres
of radii

ffon(e+22)) o {fn(o-20)

For A < E, this is given by the thickness of the shell, which is almost equal to A(m/2E)/2,
multiplied by the surface area of a 3N-dimensional hypersphere of radius ./(2mE). By
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equation (7) of Appendix C, we obtain for this integral

ma12 [ 2mdN2 3
5(35) { ez — @B 1)/2}’

which gives

_ AN 2rmE)3N/2

“E BN - 2)

Comparing (2) with (1.4.17 and 1.4.17a), we obtain the desired correspondence, namely

(w/ F)asymp wy = hSN;

see also Problem 2.9. Quite generally, if the system under study has & degrees of freedom,
the desired conversion factor is

wy=h.

3

In the case of a single particle, & = 3; accordingly, the number of microstates available
w.o%ﬂd asymptotically be equal to the volume of the allowed region of the phase space
divided by k3. Let (P) denote the number of microstates available to a free particle con-

fined to volume V of the physical space, its momentum p being less than or equal to a
specified value P. Then

1 Va
(P~ ﬁf...f(qudsp) = ﬁ—;sz‘, @
p<p

from which we obtain for the number of microstates with momentum lying between p and
p+dp

dax(p)
g(pydp = —— & dp~ ﬁ‘l p’d ®)

Expressed in terms of the particle energy, these expressions assume the form

N(B) ~ ——(2 E)f’/2 6)
and .
dx(s)
a(e)de = df de~ o 27r(2m)3/2 V2ds. @

The next case we consider here is that of a one-dimensional simple harmonic oscillator.
The classical expression for the Hamiltonian of this system is

1 1
H(q,p) = 5kq* + P ®)
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where k is the spring constant and m the mass of the oscillating particle. The space
coordinate g and the momentum coordinate p of the system are given by

g=Acos(@t+¢), p=mg=—mwAsin(wt+¢), (9)
Abeing the amplitude and w the (angular) frequency of vibration:
w = /(k/m). (10
The energy of the oscillator is a constant of the motion, and is given by
E= %mszz. (1

The phase-space trajectory of the representative point (g, p) of this system is determined
by eliminating ¢ between expressions (9) for g(¢) and p(t); we obtain

2 2

¢ . P _
QE/ma?) " (2mE)

1, (12)

which is an ellipse, with axes proportional to ./E and hence area proportional to E; to be
precise, the area of this ellipse is 27 E/w. Now, if we restrict the oscillator energy to the
interval (E — %A,E + %A), its representative point in the phase space will be confined to
the region bounded by elliptical trajectories corresponding to the energy values (E + %A)
and (E — £A). The “volume” (in this case, the area) of this region will be

2n(E+iA) 2r(E-1ia
// (dqdp) = (wz )— (wz )=2’;A. (13)
(E-}a)<H@ps(E+}a)

According to quantum mechanics, the energy eigenvalues of the harmonic oscillator are
given by

Enz(n+%>hw; n=0,12,... (14)

In terms of phase space, one could say that the representative point of the system must
move along one of the “chosen” trajectories, as shown in Figure 2.2; the area of the phase
space between two consecutive trajectories, for which A = hw, is simply 27 4.5 For arbitrary
values of E and A, such that E 3> A >» hw, the number of eigenstates within the allowed

SStrictly speaking, the very concept of phase space is invalid in quantum mechanics because there, in principle, it is
wrong to assign to a particle the coordinates g and p simultaneously. Nevertheless, the ideas discussed here are tenable
in the correspondence limit. !
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—2py |

FIGURE 2.2 Eigenstates of a linear harmonic oscillator, in relation to its phase space.

energy interval is very nearly equal to A /fiw. Hence, the area of the phase space equivalent
to one eigenstate is, asymptotically, given by

wo = 2rAJw)/(AJkw) =2r k= h. NeE)

If, on the other hand, we consider a system of N harmonic oscillators along the same lines
as above, we arrive at the result: wg = #Y (see Problem 2.7). Thus, our findings in these
cases are consistent with our earlier result (3).

2.5 Quantum states and the phase space

At this stage we would like to say a few words on the central role played here by the Planck
constant k. The best way to appreciate this role is to recall the implications of the Heisen-
berg uncertainty principle, according to which we ¢annot specify simultaneously both the
position and the momentum of a particle exactly. An element of uncertainty is inherently
present and can be expressed as follows: assuming that all conceivable uncertainties of
measurement are eliminated, even then, by the very nature of things, the product of the
uncertainties Aqg and Ap in the simultaneous measurement of the canonically conjugate
coordinates g and p would be of order A:

(AgAP)min ~ b ) 1

Thus, it is impossible to define the position of a representative point in the phase space of
the given system more accurately than is allowed by condition (1). In other words, around
any point (g, p) in the (two-dimensional) phase space, there exists an area of order % within
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which the position of the representative point cannot be pinpointed. In a phase space of
2 dimensions, the corresponding “volume of uncertainty” around any point would be
of order A" . Therefore, it seems reasonable to regard the phase space as made up of ele-
mentary cells, of volume ~ A, and to consider the various positions within such a cell
as nondistinct. These cells could then be put into one-to-one correspondence with the
quantum-mechanical states of the system.

It is, however, obvious that considerations of uncertainty alone cannot give us the
exact value of the conversion factor wg. This could only be done by an actual counting
of microstates on one hand and a computation of volume of the relevant region of the
phase space on the other, as was done in the examples of the previous section. Clearly, a
procedure along these lines could not be possible until after the work of Schrédinger and
others. Historically, however, the first to establish the result (2.4.3) was Tetrode (1912) who,
in his well-known work on the chemical constant and the entropy of a monatomic gas,
assumed that

wy = (Y, )

where z was supposed to be an unknown numerical factor. Comparing theoretical results
with the experimental data on mercury, Tetrode found that z was very nearly equal to unity;
from this he concluded that “it seems rather plausible that z is exactly equal to unity, as has

already been taken by O. Sackur (1911).”®

In the extreme relativistic limit, the same result was established by Bose (1924). In his
famous treatment of the photon gas, Bose made use of Einstein’s relationship between the
momentum of a photon and the frequency of the associated radiation, namely

i 3
P=" 3

and observed that, for a photon confined to a three-dimensional cavity of volume V, the
relevant “volume” of the phase space,

/
/ (@3qdBp) = VanpPdp = V(arnh3v?/cd)dv, (4)

would correspond exactly to the Rayleigh expression,
V(anv?/cd)dv, 5)

for the number of normal modes of a radiation oscillator, provided that we divide phase
space into elementary cells of volume 43 and put these cells into one-to-one corre-
spondence with the vibrational modes of Rayleigh. It may, however, be added that a
two-fold multiplicity of these states (g = 2) arises from the spin orientations of the photon

5For a more satisfactory proof of this result, see Section 5.5, especially equation (5.5.22).
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(or from the states of polarization of the vibrational modes); this requires a multiplica-
tion of both expressions (4) and (5) by a factor of 2, leaving the conversion factor h3
unchanged. '

Problems

2,1. Show that the volume element

3N

do = [(dg:dps)
i=1

of the phase space remains invariant under a canonical transformation of the (generalized)

coordinates (g, p) to any other set of (generalized) coordinates (Q, P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation — one in which the
new coordinates Q; and the old coordinates g; transform only among themselves.]

2.2, (a) Verify explicitly the invariance of the volume element dw of the phase space of a single particle
under transformation from the Cartesian coordinates (x,y,z, px, py, pz) to the spherical polar
coordinates (7,6, ¢, pr, Po, Pg)-

(b) The foregoing result seems to contradict the intuitive notion of “equal weights for equal solid
angles,” because the factor siné is invisible in the expression for dew. Show that if we average
out any physical quantity, whose dependence on py and py comes only through the kinetic
energy of the particle, then as a result of integration over these variables we do indeed recover
the factor sin# to appear with the subelement (d6 d¢).

2.3, Starting with the line of zero energy and working in the (two-dimensional) phase space of a classical
rotator, draw lines of constant energy that divide phase space into cells of “volume” k. Calculate the
energies of these states and compare them with the energy eigenvalues of the corresponding
quantum-mechanical rotator.

2.4. By evaluating the “volume” of the relevant region of its phase space, show that the number of
microstates available to a rigid rotator with angular momentum < M is (M/#)2. Hence determine
the number of microstates that may be associated with the quantized angular momentum
M; = /(j(j+ 1)}k, wherej=0,1,2,...or £, 3, 3,.... Interpret the result physically.

[Hint: It simplifies to consider motion in the variables 8 and ¢, with M? = p§ + (p,/sin6)2.]

2,5, Consider a particle of energy E moving in a one-dimensional potential well V(g), such that

av 32
mh‘d—ql <L {m(E - V)}<,

Show that the allowed values of the momentum p of the particle are such that ‘

. -
%pdq: (n+ Z)h'
where 7 is an integer. )

2.6. The generalized coordinates of a simple pendulum are the angular displacement 9 and the angular
momentum mi2§. Study, both mathematically and graphically, the nature of the corresponding
trajectories in the phase space of the system, and show that the area A enclosed by a trajectory is
equal to the product of the total energy E and the time period  of the pendulum.

2.7. Derive (i) an asymptotic expression for the number of ways in which a given energy E can be
distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the

oscillators being (n + %) hw;n=0,1,2,..., and (ii) the corresponding expression for the “volume” of

the relevant region of the phase space of this system. Establish the correspondence between the
two results, showing that the conversion factor wy is precisely V.
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2.8.

2.9.
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Following the method of Appendix C, replacing equation (C.4) by the integral
[o,0]
f e~rdr=2,
0
show that
N

Vay = f / [ (anr2dr) = @z /3Ny,
N

i=
0<Y ri<R

=1

—

Using this result, compute the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of N particles moving in three dimensions. Hence, derive expressions for
the various thermodynamic properties of this system and compare your results with those of

Problem 1.7.
(a) Solve the integral

/f (dxy...dxsn)
N
0<%’ |x|<R
i=1

and use it to determine the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of 3N particles moving in one dimension. Determine, as well, the
number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, wg = h3N,

(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.

The Canonical Ensemble

In the preceding chapter we established the basis of ensemble theory and made
a somewhat detailed study of the microcanonical ensemble. In that ensemble the
macrostate of the systems was defined through a fixed number of particles N, a fixed vol-
ume V, and a fixed energy E [or, preferably, a fixed energy range (E — %A,E-{- %A)]. The
basic problem then consisted in determining the number Q (N, V,E), or I'(N, V, E; A), of
distinct microstates accessible to the system. From the asymptotic expressions of these
numbers, complete thermodynamics of the system could be derived in a straightforward
manner. However, for most physical systems, the mathematical problem of determin-
ing these numbers is quite formidable. For this reason alone, a search for an alternative
approach within the framework of the ensemble theory seems necessary.

Practically, too, the concept of a fixed energy (or even an energy range) for a system
belonging to the real world does not appear satisfactory. For one thing, the total energy
E of a system is hardly ever measured; for another, it is hardly possible to keep its value
under strict physical control. A far better alternative appears to be to speak of a fixed tem-
perature T of the system — a parameter that is not only directly observable (by placing a
“thermometer” in contact with the system) but also controllable (by keeping the system
in contact with an appropriate “heat reservoir”). For most purposes, the precise nature of
the reservoir is not very relevant; all one needs is that it should have an infinitely large
heat capacity, so that, irrespective of energy exchange between the system and the reser-
voir, an overall constant temperature can be maintained. Now, if the reservoir consists of
an infinitely large number of mental copies of the given system we have once again an
ensemble of systems — this time, however, it is an ensemble in which the macrostate of
the systems is defined through the parameters N, V, and T. Such an ensemble is referred
to as a canonical ensemble.

In the canonical ensemble, the energy E of a system is variable; in principle, it can,_

take values anywhere between zero and infinity. The question then arises: what is the
probability that, at any time ¢, a system in the ensemble is found to be in one of the states
characterized by the energy value E,?! We denote this probability by the symbol P, Clearly,
there are two ways in which the dependence of P, on E, can be determined. One consists
of regarding the system as in equilibrium with a heat reservoir at a common temperature T
and studying the statistics of the energy exchange between the two. The other consists of
regarding the system as a member of a canonical ensemble (N, V, T), in which an energy
€ is being shared by « identical systems constituting the ensemble, and studying the

'In what follows, the energy levels E, appear as purely mechanical quantities — independent of the temperature of
the system. For a treatment involving “temperature-dependent energy levels,” see Blcock and Landsberg (1957).
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statistics of this sharing process. We expect that in the thermodynamic limit the final result
in either case would be the same. Once P, is determined, the rest follows without difficulty.

3.1 Equilibrium between a system and a heat
reservoir

We consider the given system A, immersed in a very large heat reservoir A’; see Figure 3.1.
On attaining a state of mutual equilibrium, the system and the reservoir would have a
common temperature, say T. Their energies, however, would be variable and, in principle,
could have, at any time ¢, values lying anywhere between 0 and E©, where E® denotes
the energy of the composite system AO(=A+A). If, at any particular instant of time, the
system A happens to be in a state characterized by the energy value E;, then the reservoir
would have an energy E;, such that

E +E.=EO© = const, (1)

Of course, since the reservoir is supposed to be much larger than the given system, any
practical value of E, would be a very small fraction of E@; therefore, for all practical
purposes,

E E
=0 = (1 -0 ) <L @

With the state of the system A having been specified, the reservoir A’ can still be in any
one of a large number of states compatible with the energy value E;. Let the number of
these states be denoted by Q'(E}). The prime on the symbol Q emphasizes the fact that
its functional form will depend on the nature of the reservoir; of course, the details of
this dependence are not going to be of any particular relevance to our final results. Now,
the larger the number of states available to the reservoir, the larger the probability of the
reservoir assuming that particular energy value E; (and, hence, of the system A assum-
ing the corresponding energy value E;). Moreover, since the various possible states (with
a given energy value) are equally likely to occur, the relevant probability would be directly
proportional to this number; thus,

Pr x Q'(ED) = Q' (E? —E)). 3)

AI
(E5;T)

FIGURE 3.1 A given system A immersed in a heat reservoir A’; in equilibrium, the two have a common
temperature T.
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In view of (2), we may carry out an expansion of (3) around the value E;, = EO®, that is,
around E, = 0. However, for reasons of convergence, it is essential to effect the expansion
of its logarithm instead:

alnQ’

0
InQ'(E.) =Ing' (B ))+( Vel

) E—E®) 4.
E'=E©
~ const — 8'Ey, 4)

where use has been made of formula (1.2.3), whereby

olnQ
- =8; 5
< IE )N,V & ©

note that, in eqliilibrium; g’ = B =1/kT. From (3) and (4), we obtain the desired result:

Pr 0.6 exp(—,BEr). (6)
Normalizing (6), we get
exp(—BEr)
Pr=e—"7—F171v @
" Yexp(—pE)

where the summation in the denominator goes over all states accessible to the system A.
We note that our final result (7) bears no relation whatsoever to the physical nature of the
reservoir A'. -

We now examine the same problem from the ensemble point of view.

3.2 A system in the canonical ensemble

We consider an ensemble of " identical systems (which may be labelled as 1,2,...,),
sharing a total energy &; let E-(r = 0,1,2,...) denote the energy eigenvalues of the systems.
If n, denotes the number of systems which, at any time ¢, have the energy value E;, then
the set of numbers {r;} must satisfy the obvious conditions

Sr=
,

M
Zn,E, =E=NU,
-

where U(= &/V) denotes the average energy per system in the ensemble. Any set {n,}
that satisfies the restrictive conditions (1) represents a possible mode of distribution of the
total energy & among the & members of the ensemble. Furthermore, any such mode can
be realized in a number of ways, for we may effect a reshuffle among those members of
the ensemble for which the energy values are different and thereby obtain a state of the
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ensemble that is distinct from the original one. Denoting the number of different ways of
doing so by the symbol W{n,}, we have

N

Winr}= no'nitng!...”

2
In view of the fact that all possible states of the ensemble, which are compatible with con-
ditions (1), are equally likely to occur, the frequency with which the distribution set {n}
may appear will be directly proportional to the number W{n,}. Accordingly, the “most
probable” mode of distribution will be the one for which the number W is a maximum.
We denote the corresponding distribution set by (rf}; clearly, the set {n*} must also satisfy
conditions (1). As will be seen in the sequel, the probability of appearance of other modes
of distribution, however little they may differ from the most probable mode, is extremely
low! Therefore, for all practical purposes, the most probable distribution set {n}} is the only
one we have to contend with.

However, unless this has been mathematically demonstrated, one must take into
account all possible modes of distribution, as characterized by the various distribution
sets {n,}, along with their respective weight factors W{n,}. Accordingly, the expectation
values, or mean values, (n;) of the numbers n, would be given by

> neWing}

_ (nr}
) = S W

{nr}

3

where the primed summations go over all distribution sets that conform to conditions (1).
In principle, the mean value (n,), as a fraction of the total number , should be a natural
analog of the probability P, evaluated in the preceding section. In practice, however, the
fraction n; /o also turns out to be the same. .

We now proceed to derive expressions for the numbers n* and (#,), and to show that,
in the limit & — oo, they are identical.

The method of most probable values
Our aim here is to determine that distribution set which, while satisfying conditions (1),
maximizes the weight factor (2). For simplicity, we work with In W instead:

InW=In(N1) - > "In(n!). @
r

Since, in the end, we propose to resort to the limit & — oo, the values of n, (which are
going to be of any practical significance) would also, in that limit, tend to infinity. It s,
therefore, justified to apply the Stirling formula, In(n!) ~ nlnn — n, to (4) and write

an=eN'ln¢N'—anlnnr. 5)
r
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1f we shift from the set {r,} to a slightly different set {n; +én.}, then expression (5) would
change by an amount

s(nW)=—->) (nn,+1)én:. (6)
r

Now, if the set {n,} is maximal, the variation §(InW) should vanish. At the sarn.e time,
in view of the restrictive conditions (1), the variations én, themselves must satisfy the

conditions

anrzo

! Q]
> Epsny =0.
-

The desired set {rn*} is then determined by the method of Lagrange maultipliers,? by which
the condition determining this set becomes -

> {—(nnf+1) —a— BESn, =0, )
.

where @ and 8 are the Lagrangian undetermined multipliers that take care of the restrictive
conditions (7). In (8), the variations 87, become completely arbitrary; accordingly, tht? only
way to satisfy this condition is that all its coefficients must vanish identically, that is, for

allr,

Innf =—(e+1)—BE;,

which gives
nt = Cexp(—BEy), €)

where C is again an undetermined parameter. .
To determine C and B, we subject (9) to conditions (1), with the result that

ny _ _exp(—BE) 10)

N Y exp(-BEn)’
]

the parameter 8 being a solution of the equation
&€

ZEr exp(—BEr)
=U=-2L

- L — an
N > exp(—BEr)
T

2For the method of Lagrange multipliers, see ter Haar and Wergeland (1966, Appendix C.1).
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3.43. Consider a system of charged particles (not dipoles), obeying classical mechanics and classical
statistics. Show that the magnetic susceptibility of this system is identically zero (Bohr—van
Leeuwen theorem). _ _

[Note that the Hamiltonian of this system in the presence of a magnetic field H(=V x A) willbe a

function of the quantities pj+ (ej/c)A(ry), and not of the p; _as such. One has now to show that the

_partition function of the system is independent of the applied field.] .

3.44. The expression (3.3.13) for the entropy S is equivalent to Shannon’s (1949) definition of. t_he
information contained in a message I = —)_, P;In(Pr), where P, represents the probability of
message T.

(@) Show that information is maximized if the probabilities of all messages are the same. Any otPt?'r
distribution of probabilities reduces the information. In English, “e” is more common than “z
so P, > P,, so the information per character in an English message is less than_ the optimal
amount possible based on the number of different characters used in an English text.

(b) The information in a text is also affected by correlations between characters in th(_a text. For
example, in English, “q” is always followed by “u”, so this pair of characters contains the same
information as “q” alone. The probability of a character indexed by r followed immediately
by character mdexed by ' is P, = PrPp Gy, where Gy, is the character-pair correlation
function. If pairs of characters are uncorrelated, then G;,» = 1. Show that if characters are
uncorrelated then the information in a two-character message is twice the information ofa
single-character message and that correlations (G, 9é 1) reduce the information content.
[Hint: Use the inequality Inx <x —1.]

(¢) Write a computer program to determine the information per characterina text file by
determining the single-character probabilities Pr and character-pair correlations Gy,
Computers usually use one full byte per character to store information. Since one bytg can
store 256 different messages, the potential information per byte is In256 = 8In2 = 8bits. Shpw
that the information per character in your text file is considerably less than 8 bits and explam
why it is possible for file-compression algorithms to reduce the size of a computer file without
sacrificing any of the information contained in the file.

The Grand Canonical Ensemble

In the preceding chapter we developed the formalism of the canonical ensemble and
established a scheme of operations for deriving the various thermodynamic properties of a
given physical system. The effectiveness of that approach became clear from the examples
discussed there; it will become even more vivid in the subsequent studies carried out in
this text. However, for a number of problems, both physical and chemical, the usefulness
of the canonical ensemble formalism turns out to be rather limited and it appears that a
further generalization of this formalism is called for. The motivation that brings about this
generalization is physically of the same nature as the one that led us from the microcanoni-
cal to the canonical ensemble — it is just the next natural step from there. It comes from the
realization that not only the energy of a system but the number of particles as well is hardly
ever measured in a “direct” manner; we only estimate it through an indirect probing into
the system. Conceptually, therefore, we may regard both N and E as variables and identify
their expectation values, (N) and (E), with the corresponding thermodynamic quantities.
The procedure for studying the statistics of the variables N and E is self-evident. We
may either (i) consider the given system A as immersed in a large reservoir A’ with which it
can exchange both energy and particles or (ii) regard it as a member of what we may call
a grand canonical ensemble, which consists of the given system A and a large number of
(mental) copies thereof, the members of the ensemble carrying out a mutual exchange of
both energy and particles. The end results, in either case, are asymptotically the same.

4.1 Equilibrium between a system
and a particle-energy reservoir

We consider the given system A as immersed in a large reservoir A, with which it can
exchange both energy and particles; see Figure 4.1. After some time has elapsed, the system
and the reservoir are supposed to attain a state of mutual equilibrium. Then, according
to Section 1.3, the system and the reservoir will have a common temperature T and a
common chemical potential u. The fraction of the total number of particles N and the
fraction of the total energy E©® that the system A can have at any time ¢ are, however,
variables (whose values, in principle, can lie anywhere between zero and unity). If, at a
particular instant of time, the system A happens to be in one of its states characterized by
the number N; of particles and the amount E; of energy, then the number of particles in
the reservoir would be Ny and its energy E’, such that

Ny +N.=NO = const. . 4))

Statistical Mechanics
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AI
(N7, ES)

FIGURE 4.1 A statistical system immersed in a particle-energy reservoir.

and
Es+E.=E® =const. 2
Again, since the reservoir is supposed to be much larger than the given system, the values

of N; and E; that are going to be of practical importance will be very small fractions of the
total magnitudes N and E©, respectively; therefore, for all practical purposes,’

Ny N,

v = (1~ ) <1 ©
and

E; E

EW=<1—E—W <1 4

Now, in the manner of Section 3.1, the probability P, that, at any time ¢, the sys-
tem A is found to be in an (IVy, Es)-state would be directly proportional to the number
of microstates Q'(IN},E;) that the reservoir can have for the corresponding macrostate
(N}, E;). Thus,

Prsx Q(N® - N, E® —E). (5)
Again, in view of (3) and (4), we can write

InQ'(N® — N, E® — E;) =InQ'(N®,E®)

alnQ’ olnQ’
el —N)+ [ = —E)+ -
+< aN’ )N’_—_N(U)( » ( oF )E’:E(O)( 2

I
~ Ing (N0, E®) + LNy L

T - k—T,Es} (6)

see equations (1.2.3), (1.2.7), (1.3.3), and (1.3.5). Here, 1/ and T’ are, respectively, the
chemical potential and the temperature of the reservoir (and hence of the given system

Note that A here could well be a relatively small “part” of a given system A®, while A’ represents the “rest” of A©.
That would give a truly practical perspective to the grand canonical formalism.
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as well). From (5) and (6), we obtain the desired result:

Py s o exp (—aN; — BEy), @)
where

a=—u/kT, B=1/kT. @8)

On normalization, it becomes

— exp (—aNy — BEs) .
% exp (—aNy — BEy)’

C)]

s

the summation in the denominator goes over all the (N,,E,)-states accessible to the
system A. Note that our final expression for P, is independent of the choice of the
reservoir. ' :

We shall now examine the same problem from the ensemble point of view.

4.2 A system in the grand canonical ensemble

We now visualize an ensemble of & identical systems (which, of course, can be labeled as
1,2,...,s#) mutually sharing a total number of particles? &N and a total energy N'E. Let
nrs denote the number of systems that have, at any time ¢, the number N, of particles and
the amount E; of energy (r,s =0, 1,2,...); then, obviously,

Z nr’S = CNI, (la)
rs .
Y nrsNy = NN, (1b)
r,s
and
an'sEs - GNE. (].C)

rs

Any set {n;,}, of the numbers n,, which satisfies the restrictive conditions (1), represents
one of the possible modes of distribution of particles and energy among the members
of our ensemble. Furthermore, any such mode of distribution can be realized in W{n, s}
different ways, where

NI

Win; s} = _—H(nr,s!) .
rs

2

2For simplicity, we shall henceforth use the symbols N and E instead of (N} and (E).
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We may now define the most probable mode of distribution, {n}}, as the one that
maximizes expression (2), satisfying at the same time the restrictive conditions (1). Going
through the conventional derivation, see Section 3.2, we obtain for a large ensemble

nrs _ exp(-alNy—BEy) 3)
N Y exp(—aNy— BEs)’
N

T,

compare to the corresponding equation (3.2.10) for the canonical ensemble. Alternatively,
we may define the expectation (or mean) values of the numbers r; 5, namely

Y nrsWings)

{nr,s}

Y7 Wings) '

{nr,s}

4

(nrs) =

where the primed summations go over all distribution sets that conform to conditions (1).
An asymptotic expression for (n,s) can be derived by using the method of Darwin and
Fowler — the only difference from the corresponding derivation in Section 3.2 being that,
in the present case, we will have to work with functions of more than one (complex)
variable. The derivation, however, runs along similar lines, with the result

. {nrs) _ Mrs exp (—aNr — BEy)
J\I;l_rgo N N exp (—aNy — BEy)
S

T

in agreement with equation (4.1.9). The parameters « and 8, so far undetermined, are
eventually determined by the equations

I—V— s

ZNreXP (—aNy — BE;) 3
Y exp(—alN, — BE)  da {
s

s

and

> Esexp (—aNr — BEy) )
F_ s __ 8| _ ) ]
B= S exp (Cab; — BBy 8;9[“;8@( oNr—$ s>] @
TS

where the quantities N and E here are supposed to be preassigned.
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4.3 Physical significance of the various
statistical quantities

To establish a connection between the statistics of the grand canonical ensemble and the
thermodynamics of the system under study, we introduce a quantity g, defined by

g=In Z exp (—aN; — ﬂEs)} ; 1)
rs

the quantity q is a function of the parameters o and 8, and also of all the E;.? Taking the
differential of g and making use of equations (4.2.5), (4.2.6), and (4.2.7), we get

dq = ~Nda ~Fdp - £ Ym0 a, @
s
so that
d(q+aN+ﬁE=ﬁ(%dN+dE—%Z(nr,sm&). 3)
s

To interpret the terms appearing on the right side of this equation, we compare the
expression enclosed within the parentheses with the statement of the first law of thermo-
dynamics, that is,

8Q=dE +5W — udN, @)

where the various symbols have their usual meanings. The following correspondence now
seems inevitable:

1
W =—— (nrs)dEs, w=—a/p, (5)
s
with the result that
d(q+aN + BE) = BsQ. (©)

The parameter 8, being the integrating factor for the heat §Q, must be equivalent to the
reciprocal of the absolute temperature T, so we may write

B=1/kT @
and, hence,
a=—u/kT. (8)

3This quantity was first introduced by Kramers, who called it the g-potential.
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The quantity (g +aN + SE) would then be identified with the thermodynamic variable
S/k; accordingly,

TS+ uN—-E

kT ©)

S -

q=¢—oN-pE=
However, uN is identically equal to G, the Gibbs free energy of the system, and hence to
(E — TS+ PV). So, finally,

pv
g=In {Zexp (—aNy — BEs) t = —. (10)

TS kT
Equation (10) provides the essential link between the thermodynamics of the given sys-
tem and the statistics of the corresponding grand canonical ensemble. It is, therefore, a
relationship of central importance in the formalism developed in this chapter.
To derive further results, we prefer to introduce a parameter z, defined by the relation

z=e %= e"/kT; 11

the parameter z is generally referred to as the fugacity of the system. In terms of z, the
g-potential takes the form

g=ln {Zsze‘ﬂE‘ (12)
s
=In] Y 2Qu(V,T); withQ=1), (13)
Ny=0
S0 we may write
4z, V,T) =n@(z,V, T), (14)
where
Qe V,D =) 27Qn(V,T) (withQ=1). (15)
Nr=0

Note that, in going from expression (12) to (13), we have (mentally) carried out a sum-
mation over the energy values Es, with N; fixed, thus giving rise to the partition function

Qn, (V,T); of course, the dependence of Qy, on V comes from the dependence of the Es.

on V. In going from (13) to (14), we have (again mentally) carried out a summation over all
the numbers N, =0,1,2,---, 00, thus giving rise to the grand partition function @(z,V,T)
of the system. The g-potential, which we have already identified with PV /KT, is, therefore,
the logarithm of the grand partition function.
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It appears that in order to evaluate the grand partition function &(z,V, T) we have to
go through the routine of evaluating the partition function Q(N,V,T). In principle, this is
indeed true. In practice, however, we find that on many occasions an explicit evaluation
of the partition function is extremely hard while considerable progress can be made in
the evaluation of the grand partition function. This is particularly true when we deal with
systems in which the influence of quantum statistics and/or interparticle interactions is
important; see Sections 6.2 and 10.1. The formalism of the grand canonical ensemble then
proves to be of considerable value.

We are now in a position to write down the full recipe for deriving the leading ther-
modynamic quantities of a given system from its q-poftzential. We have, first of all, for the
pressure of the system

Pz, V,T) = kVTq(Z’ V,D= kVTlnC‘-l(Z. v,\D). (16)

Next, writing N for N and U for E, we obtain with the help of equations (4.2.6), (4.2.7),
and (11)

N(z,V,T) =Z[iq(z, v, D] = kT[iq(u, v, T)] an
9z V.T G V.T
and
Uz V T) = _[iq(z 1% :r)] = kT? [iq(z v T)] . (18)
r-¥ 3/3 H ’ Z’V 3T ) ) z’V

Eliminating z between equations (16) and (17), one obtains the equation of state, that is,
the (P, V, T)-relationship, of the system. On the other hand, eliminating z between equa-
tions (17) and (18), one obtains U as a function of N, V, and T, which readily leads to the
specific heat at constant volume as (3U/3T)n,v. The Helmholtz free energy is given by the
formula : :

A=Nu—-PV=NkTlnz-kTIn@Q(z,V,T)

Q@ Vv, 1)

o (19)

=—kTIn

which may be compared with the canonical ensemble formula A = —kTIn Q(N, V, T); see
also Problem 4.2. Finally, we have for the entropy of the system

U-A aq
== s — . 20
S T kT(aT>z,V Nklnz+kq (20)
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4.4 Examples

We shall now study a couple of simple problems, with the explicit purpose of demonstrat-
ing how the method of the g-potential works. This is not intended to be a demonstration of
the power of this method, for we shall consider here only those problems that can be solved
equally well by the methods of the preceding chapters. The real power of the new method
will become apparent only when we study problems involving quantum-statistical effects
and effects arising from interparticle interactions; many such problems will appear in the
remainder of the text.

The first problem we propose to consider here is that of the classical ideal gas. In
Section 3.5 we showed that the partition function Qn(V,T) of this system could be
written as

[Qu(V, TN

1)

where Q1(V, T) may be regarded as the partition function of a single particle in the sys-
tem. First of all, we should note that equation (1) does not imply any restrictions on
the particles having infernal degrees of motion; those degrees of motion, if present,
would affect the results only through Q;. Second, we should recall that the factor N!
in the denominator arises from the fact that the particles constituting the gas are, in
fact, indistinguishable. Closely related to the indistinguishability of the particles is the
fact that they are nonlocalized, for otherwise we could distinguish them through their
very sites; compare, for instance, the system of harmonic oscillators, which was studied
in Section 3.8. Now, since our particles are nonlocalized they can be anywhere in the
space available to them; consequently, the function Q; will be directly proportional
to V:

QuV,T) = Vf(I), 2)

where f(T) is a function of temperature alone. We thus obtain for the grand partition
function of the gas

. x s Vi Nr
Q@ V,N= ) "Qn(V.D= 3 {zflf,—f?}
Nr=0 Nr=0 r
= exp (2Vf (D}, 3

which gives

q(z,V,T) = zVf(T).
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Formula (4.3.16) through (4.3.20) then lead to the following results:

P = zkTf(T), 5)
N = zZVf(D), (6)
U = zVKT?*f(T), )
A= NkTInz — zVKTf(T), ' ®)

and
S = —Nklnz+2VK{Tf (T) + f(D)}. [k ©)

Eliminating z between (5) and (6), we obtain the equation of state of the system:
PV = NKT. (10)

We note that equation (10) holds irrespective of the form of the function f(T). Next,
eliminating z between (6) and (7), we obtain

U = NKTf'(D)/f (D), (11
which gives

7 ! 2 " t 2
C =Nk2Tf(T)f(D+T FFrI@ -l }.

12
Fr (12

In simple cases, the function f(T) turns out to be directly proportional to a certain
power of T. Supposing that f(T) « T", equations (11) and (12) become

U = n(NkT) (11a)
and
Cy = n(Nk). (12a)

Accordingly, the pressure in such cases is directly proportional to the energy density of the
gas, the constant of proportionality being 1/n. The reader will recall that the case n = 3/2
corresponds to a nonrelativistic gas while rn = 3 corresponds to an extreme relativistic one.

Finally, eliminating z between equation (6) and equations (8) and (9), we obtain A
and S as functions of N, V, and T. This essentially completes our study of the classical
ideal gas.

The next problem to be considered here is that of a system of independent, localized
particles — a model which, in some respects, approximates a solid. Mathematically, the
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problem is similar to that of a system of harmonic oscillators. In either case, the micro-
scopic entities constituting the system are mutually distinguishable. The partition function
Qn(V,T) of such a system can be written as

Qn(V, D) = [Qu(V, DIV. 13)

At the same time, in view of the localized nature of the particles, the single-particle par-
tition function Q1(V, T) is essentially independent of the volume occupied by the system.
Consequently, we may write

where ¢ (T) is a function of temperature alone. We then obtain for the grand partition
function of the system

AV, D)= Y k(DN =1-26(D17} (15)
Ny=0
clearly, the quantity z¢(T) must stay below unity, so that the summation over Ny is

convergent. _
The thermodynamics of the system follows straightforwardly from equation (15). We

have, to begin with,
EkT;:q(z,T) =—k7-T1n[1—Z¢(T)}- (16)

Since both z and T are intensive variables, the right side of (16) vanishes as V — co. Hence,
in the thermodynamic limit, P = 0.* For other quantities of interest, we obtain, with the
help of equations (4.3.17) through (4.3.20),

z¢(T)

= ) an
N 1—z¢(T)
_ ZkTZ(ﬁI(T), (18)
1—2z¢(T)
A=NkTInz+ kTIn{l —z¢(T)}, 19)
and
zkT¢'(T) 20) -
S:—Nlclnz——kln{l—z¢(T)}+—1_z¢(1,). (20)
From (17), we get
N 1
=1 . e3))
Z¢(T)—N+1 ~1 N N>»1

41t will be seen in the sequel that P actually vanishes like (InN)/N.
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It follows that
1-2(D) = s = 1 @2
Equations (17) through (20) now give
U/N = kT?¢'(T)/$(D), (18a)
A/N = —kTIn¢(T) + O<1nTN)k ) (19a)
and
S/Nk =Ing(T) + T¢'(T)/¢(T) + o(lnTN). (20a)
Substituting
¢(T) = [Zsinh(hw/Zij]_l | (23)

into these formulae, we obtain results pertaining to a system of quantum-mechanical,
one-dimensional harmonic oscillators. The substitution

¢(T) = kT / ho, (24)

on the other hand, leads to results pertaining to a system of classical, one-dimensional
harmonic oscillators.

As a corollary, we examine here the problem of solid-vapor equilibrium. Consider a
single-component system, having two phases — solid and vapor — in equilibrium, con-
tained in a closed vessel of volume V at temperature T. Since the phases are free to
exchange particles, a state of mutual equilibrium would imply that their chemical poten-
tials are equal; this, in turn, means that they have a common fugacity as well. Now, the
fugacity z, of the gaseous phase is given by, see equation (6),

z ——Ng |
8 Vef(D)!

where Ng is the number of particles in the gaseous phase and Vg the volume occupied by

them; in a typical case, V; ~ V. The fugacity z; of the solid phase, on the other hand, is
given by equation (21): :

(25)

1
o)’
Equating (25) and (26), we obtain for the equilibrium particle density in the vapor phase

Zs ™

(26)

Ng/Vg =f(T)/¢(T). 27)
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Now, if the density in the vapor phase is sufficiently low and the temperature of the system
sufficiently high, the vapor pressure P would be given by
N, f
Puapor = —kaT =kI3 o (28)
To be specific, we may assume the vapor to be monatomic; the function f(T) is then of
the form

f(T) = remkT)32 /13, (29)

On the other hand, if the solid phase can be approximated by a set of three-dimensional
harmonic oscillators characterized by a single frequency w (the Einstein model), the
function ¢ (T) would be

¢(T) = [2sinh(hw/2kT)] 3. (30)

However, there is one important difference here. An atom in a solid is energetically more
stabilized than an atom that is free — that is why a certain threshold energy is required to
transform a solid into separate atoms. Let ¢ denote the value of this energy per atom, which
in a way implies that the zeros of the energy spectra g and s;, which led to the functions
(29) and (30), respectively, are displaced with respect to one another by an amount ¢. A true
comparison between the functions f(T) and ¢(T) must take this into account. As a result,
we obtain for the vapor pressure

2rmkT
2

3/2
Pyapor = kT( ) [2sinh(hw/2kT)3e /T (31)

In passing, we note that equation (27) also gives us the necessary condition for the
formation of the solid phase. The condition clearly is: '

N> V@ (32)

()’

where N is the total number of particles in the system. Alternatively, this means that
T<T,, (33)

where T is a characteristic temperature determined by the implicit relationship

fT) N
=V 34)

Once the two phases appear, the number Ng(T) will have a value determined by equa-
tion (27) while the remainder, N — g, will constitute the solid phase.
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4.5 Density and energy fluctuations in the grand
canonical ensemble: correspondence
with other ensembles

In a grand canonical ensemble, the variables IV and E, for any member of the ensemble,
can lie anywhere between zero and infinity. Therefore, on the face of it, the grand canoni-
cal ensemble appears to be very different from its predecessors — the canonical and the
microcanonical ensembles. However, as far as thermodynamics is concerned, the results
obtained from this ensemble turn out to be identical to the ones obtained from the other
two. Thus, in spite of strong facial differences, the overall behavior of a given physical sys-
tem is practically the same whether it belongs to one kind of ensemble or another. The
basic reason for this is that the “relative fluctuations” in the values of the quantities that
vary from member to member in an ensemble are practically negligible. Therefore, in spite
of the different surroundings that different ensembles provide to a given physical system,
the overall behavior of the system is not significantly affected.

To appreciate this point, we shall evaluate the relative fluctuations in the particle den-
sity n and the energy E of a given physical system in the grand canonical ensemble.
Recalling that

" Nye~aNr—BEs

N= r,sz o oNr—pEs ' | O
s
it readily follows that
Thus
(A_N)fzﬁ_—z_\f:—(g) =kT(%) . 3)
TV T,V

From (3), we obtain for the relative mean-square fluctuation in the particle density

n(=N/V)

Y

In terms of the variable v (= V/N), we may write

(An)Z_kTv2<a(V/u)> _ kT (ov )
V2 n T,V__V(au)T'
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To put this result into a more practical form, we recall the thermodynamic relation
du=vdP —sdT, (6)

according to which du (af constant T) = vdP. Equation (5) then takes the form

@ Vv

(An)2 kT'1/8vY _ kT
(3P>T— 7T Q)

where k7 is the isothermal compressibility of the system.

Thus, the relative root-mean-square fluctuation in the particle density of the given sys-
tem is ordinarily O(N—'/?) and, hence, negligible. However, there are exceptions, like the
ones met with in situations accompanying phase transitions. In those situations, the com-
pressibility of a given system can become excessively large, as is evidenced by an almost
“flattening” of the isotherms. For instance, at a critical point the compressibility diverges,
so it is no longer intensive. Finite-size scaling theory described in Chapters 12 and 14 indi-
cates that at the critical point the isothermal compressibility scales with system size as
tep(Te) ~ NY/% where y and v are certain critical exponents and d is the dimension. For
the case of experimental liquid-vapor critical points, «(T;) ~ N%63, Accordingly, the root-
mean-square density fluctuations grow faster than N'/2 — in this case, like N°82, Thus,
in the region of phase transitions, especially at the critical points, we encounter unusu-
ally large fluctuations in the particle density of the system. Such fluctuations indeed exist
and account for phenomena like critical opalescence. It is clear that under these circum-
stances the formalism of the grand canonical ensemble could, in principle, lead to results
that are not necessarily identical to the ones following from the corresponding canonical
ensemble. In such cases, it is the formalism of the grand canonical ensemble that will have
to be preferred because only this one will provide a correct picture of the actual physical
situation.

We shall now examine fluctuations in the energy of the system. Following the usual
procedure, we obtain '

(AE)ZEITZ—E2=——(2€> = kT? (ﬂ) . )
Z,V aT Z,V

To put expression (8) into a more comprehensible form, we write

) (), (), ()
(5T>z,v~ T /v \ON/)ry\3T /.y’
where the symbol N is being used interchangeably for N. Now, in view of the fact that
0 a
N=—(—Ina@ , U=—<—l (2) , 10)
(e )ﬁ,v T (
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we have

().~ (5) ay
B‘B o,V - do ﬂ,V

(), -4
oT zV T a[,L T,V‘

Substituting expressions (9) and (12) into equation (8) and remembering that the quantity
(0U/0T)n,v is the familiar Cy, we get

and, hence,

—_— oU oU
AE)? =kT?C +kT(—) (—) . (13)
(AB) v ON/ry\ow/ry

Invoking equations (3.6.3) and (3), we finally obtain

2 .
(QE = (A can+ [ (3) ] @Ny. (14
ON /1y

Formula (14) is highly instructive; it tells us that the mean-square fluctuation in the
energy E of a system in the grand canonical ensemble is equal to the value it would
have in the canonical ensemble plus a contribution arising from the fact that now the
particle number N is also fluctuating. Again, under ordinary circumstances, the relative
root-mean-square fluctuation in the energy density of the system would be practically
negligible. However, in the region of phase transitions, unusually large fluctuations in the
value of this variable can arise by virtue of the second term in the formula.

4.6 Thermodynamic phase diagrams

One of the great successes of thermodynamics and statistical mechanics over the last 150
years has been in the study of phase transitions. Statistical mechanics provides the basis
for accurate models for a wide variety of thermodynamic phases of materials and has led
to a detailed understanding of phase transitions and critical phenomena.

Condensed materials exist in a variety of phases that depend on thermodynamic
parameters such as temperature, pressure, magnetic field, and so on. Thermodynamics
and statistical mechanics can be used to determine the properties of individual phases,
and the locations and characteristics of the phase transitions that occur between those
phases. Thermodynamic phases are regions in the phase diagram where the thermody-
namics properties are analytic functions of the thermodynamic parameters, while phase
transitions are points, lines, or surfaces in the phase diagram where the thermodynamic
properties are nonanalytic. Much of the remainder of this text is devoted to using statistical
mechanics to explain the properties of material phases and phase transitions.




