
454 TADASHI ARAI 

cannot expect better results than 4.27 ev so long as we 
do not take account of angular correlation. 

According to our method, we obtain a dissociation 
energy of 4.4,,-,4.6 ev considering only two structures. 
In these calculations, the angular correlation is con­
sidered in the ionic term:B: i because:B: i is made up from 
the exact eigenfunction of the H- ion. The angular 
correlation, of course, becomes large when electrons 
approach each other and this chance is high in the ionic 
structure. If the ionic structure is made up from the 
exact one in order to take account of the angular corre­
lation in the ionic structure, therefore, most of the 
angular correlation energy of 0.45 ev will be included 
in the results. This is the reason why we obtain refined 
results which are better than 4.27 ev and the coefficient 
c of the ionic term is larger than that of the orbital 
treatments. 

In the orbital approaches of the H- ion or He atom, 
the treatment of the configuration interaction far from 
success to take account of the correlation energy9 and 
this situation may be also true in the molecular 
problems. Nevertheless in our method such a difficulty 
is overcome because the ionic term is made up from the 
exact function. This fact is an advantage of the present 
method. We should, here, only take care of the ionic 
structure to be the well-matched function in order to 
make the configuration interaction effective. 

9 G. R. Taylor and R. G. Parr, Proc. Nat!. Acad. Sci. U. S. 38, 
154 (1952); Green, Mulder, Ufford, Slaymaker, Krawitz, and 
Mertz, Phys, Rev. 85, 65 (1952). 
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In this paper, the hydrogen-like functions have been 
used as the best approximate functions for the con­
venience of the calculation. Weinbaum10 has obtained 
a dissociation energy of 4.02 ev using these functions 
in the orbital treatment. This result seems to be not so 
bad when compared with James and Coolidge's result 
of 4.27 ev because both have larger error in the angular 
correlation. Therefore, it seems, that the molecular 
wave function made up from those of the constituent 
atoms or ions are rather favorable even if only a few 
structures are considered, and in our problems, the 
hydrogen-like functions are not bad for the basic 
functions of the best approximate functions. 

Of course, improved orbital functions for the best 
approximate functions and the higher structures may 
be necessary for improving our results. It may be also 
useful to determine the best effective charges Zn and 
Zi within the limit of the present treatment. However 
our method is accompanied with inevitable error 
numerically because of the treatment of the interaction 
operator. Then these higher order refinements may be 
sometimes covered by the error and will be meaning­
less. 
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As a part of an investigation of nonequilibrium phenomena in chemical kinetics a theoretical study has 
been made of the collisional and radiative relaxation of a system of harmonic oscillators contained in a 
constant temperature heat bath and prepared initially in a vibrational nonequilibrium distribution. An 
exact solution has been obtained for the general relaxation equation applicable to this system and expres­
sions have been derived for the relaxation of initial Boltzmann distributions, Poisson distributions, and 
o-function distributions as well as for the relaxation of the moments of the distributions. Using the latter 
result, explicit expressions are given for the relaxation of the internal energy of the system of oscillators and 
for the time dependence of the dispersion of the distributions. 

1. INTRODUCTION 

I T has been recognized for many years that by its 
very nature a chemical reaction must produce a 

perturbation in the initial Maxwell-Boltzmann distri-

* This research was partially supported by the U. S. Air Force 
through the Office of Scientific Research of the Air Research and 
Development Command and by the U. S. Atomic Energy Com­
mission. 

bution of the reactant species.! The extent of the de­
parture from equilibrium will depend upon the relative 
magnitudes of the rates of the elementary chemical 
reactions (i.e., the rate of transformation of reactants 

1 See, e.g., R. H. Fowler and E. A. Guggenheim, Statistical 
Thermodynamics (Cambridge University Press, New York, 1949), 
Chap. XII, or Eyring, Walter, and Kimball, Quantum Chemistry 
(John Wiley and Sons, Inc., New York, 1944), Chap. XVI. 
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to products) and the rates of energy exchange between 
the various atomic and molecular species in the reaction 
system. If the rate of the chemical transformation is 
small compared with the rate of energy exchange, the 
perturbation of the initial equilibrium distribution will 
be small and the reaction system can be discussed in 
terms of equilibrium statistical mechanics. If, however, 
the rate of the chemical transformation exceeds the 
rate of intra- and intermolecular energy exchange, 
there may develop a considerable perturbation of the 
equilibrium Maxwell-Boltzmann distribution of energy 
during the course of the chemical reaction. Under these 
conditions the equilibrium hypothesis underlying the 
present collision and absolute rate theories of chemical 
kinetics may no longer be tenable. Recent experimental 
work on various rapid high-temperature chemical 
reactions has shown quite clearly that there is indeed 
in many cases a considerable perturbation of the initial 
equilibrium distribution of energy during the course of 
the chemical reaction.2 It therefore becomes important 
to study the distribution of energy in a reaction system 
during the course of a chemical reaction so that a 
foundation can be laid for the development of a non­
equilibrium theory of chemical kinetics. 

The specific problem which we wish to consider in 
the above context concerns the relaxation of the dis­
tribution of a system of harmonic oscillators prepared 
initially in nonequilibrium vibrational distributions. 
The oscillators are excited to these distributions either 
by external perturbations, such as irradiation with 
short duration, high intensity light or by the passage 
of a shock wave, or internally by some specific chemical 
reaction. 3 After the external perturbation has been 
removed (i.e., after the light has been turned off or after 
the passage of the shock wave) or after the cessation 
of the reaction, the system of oscillators will relax to 
its final equilibrium distribution by inelastic collisions 
and by radiative transitions. We wish to study in detail 
the dynamic behavior of the distribution and of the 
moments of the distribution of the oscillators among 
their energy levels for various initial nonequilibrium 
distributions. 

Our study of the relaxation of a system of harmonic 
oscillators is based on the following model: 

(a) The oscillators are contained in a large excess of 
(chemically) inert gas which acts as a constant tempera­
ture heat bath throughout the relaxation process. This 
implies that the concentration of the excited oscillators 
is sufficiently small and the energy absorbed by them 
during their excitation is sufficiently small that the 

2 For a more detailed discussion of this point see K. E. Shuler, 
J. Phys. Chern. 57, 396 (1953); 5th Symposium (International) on 
Combustion (Reinhold Publishing Corporation, New York, 1955), 
pp.56-74. 

3 An example of the latter process is the formation of OH in the 
vibrational state v=9 in the reaction H +Oa-->OH +02 studied 
by A. B. Meinel, J. Astrophys. 111,207,433,555 (1950) and by 
McKinley, Garvin, and Boudart, J. Chern. Phys. 23, 784 (1955). 

heat bath remains at its initial equilibrium temperature 
T throughout the relaxation process. 

(b) The total concentration of excited oscillators is 
sufficiently small so that the relaxation process is first 
order with respect to the concentration of oscillators. 
The energy exchange whi.ch controls the relaxation thus 
takes place primarily between the oscillators and the 
heat bath. 

(c) The excited oscillators can transfer their vibra­
tional energy both by collision and by radiation. In the 
collisional transfer of energy, the vibrational energy of 
the excited oscillators can be exchanged with both the 
translational and the vibrational degrees of freedom of 
the heat bath molecules. 

(d) The collisional transition probabilities for transi­
tions between the vibrational levels i and j of the 
harmonic oscillators are to be calculated according to 
the prescription of Landau and Teller.4 According to 
this prescription, the perturbations which induce the 
transitions are linear in the normal coordinate (i.e., 
the internuclear separation in the case of a harmonic 
oscillator) and sufficiently small for a first order per­
turbation calculation. With these assumptions, the 
matrix elements for collisional transitions are identical, 
except for a constant factor, with those for the radiative 
transitions of a harmonic oscillator. The same "selec­
tion rules" will thus hold for collisional transitions as for 
radiative ones in that the collision induced transitions 
of the oscillators will take place only between adjacent 
vibrational levels. The collisional transition probabilities 
per collision, Pi, i are thus given by 

Pi, i+1 = (i+ 1)P1o, 

i+l 
for j~ { 

i-l 
(Ll) 

where P 10 is the collisional transition probability per 
collision for transitions between vibrational levels i= 1 
and i=O. 

We now wish to derive the differential equations 
which govern the relaxation of the ensemble of har­
monic oscillators in our model. It has been pointed out 
by Herzfeld" that an exact energy balance in a relaxa­
tion process of the type discussed here can be obtained 
when either (a) the excited system or the heat bath 
have a nearly continuous array of levels or (b) the 
excited system and the heat bath have equidistant 
energy levels and exchange only vibrational energy. 
Under either of these conditions, a transition -I1E 
between two states in the excited system can be matched 
by a transition of a corresponding energy I1E between 
two states of the heat bath. This latter case can readily 
be realized if one chooses for the relaxation system an 

4 L. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 
(1936). 

6 K. F. Herzfeld in Temperature, Its Measurement and Control 
in Science and Industry (Reinhold Publishing Corporation, New 
York, 1955), p. 233. 
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ensemble of harmonic oscillators of which a small 
fraction are excited to an initial vibrational non­
equilibrium distribution while the large excess of 
unexcited oscillators serves as the heat bath. If we let 

Xn (t) = fraction of excited oscillators in level n 
Yi=concentration of heat bath oscillators in 

level i 

Pn.n+l;i.i_l=probability per collision for the energy 
transfer n~n+ 1 as i~i-l 

the relaxation equation can be written as 

00 

- Xn+1 L YiP n+l. n; i. i+1 
i=O 

00 

-Xn_1 L YiP n-I, n;i. i-IJ (1.2) 
i=O 

where Z is the collision number, i.e., the number of 
collisions per second suffered by the oscillator in the 
level system n=O, 1, ... when the gas density is one 
molecule per unit volume. Using Eq. (1.1), the prob­
abilities P n. n+l; i. i-I for concurrent collisional transitions 
can be written as 

P no n+1;i, i-I = (n+ l)iPIo 

P n, n-I;i, i+1 =n(i+ I)Plo 

so that Eq. (1.2) becomes 

00 00 

(1.3) 

- (n+ l)xn+1 L (i+ I)Yi-nxn_1 L iYiJ (1.4) 
i=O 

n=O, 1,2, .... 

Since we assume that the heat bath remains in its 
initial Boltzmann distribution at temperature T 
throughout the relaxation process we can write, for 
all times t, 

(1.5) 

where N is the total concentration of oscillators in the 
heat bath and where ()=hv/kT and v is the funda­
mental frequency of the oscillators. Substitution of (1.5) 
into (1.4) finally leads to 

dXn (t)/dt= klo(l- e-8)-I{ ne-8xn_1 

- [n+ (n+ l)e-8Jxn+ (n+ l)xn+1) 
n=O, 1, 2, ... (1.6) 

where klo=ZPloN is the collisional transition prob­
ability per second for transitions between levels 1 and ° 
of the oscillators. The set of differential difference 

equations (1.6) governs the relaxation of a system of 
excited harmonic oscillators contained in a harmonic 
oscillator heat bath (with Vn = Vi) when there is only 
vibrational energy exchange between the excited oscil­
lators and the heat bath. 

It is not possible to follow the method used above to 
obtain Eq. (1.6) when the relaxation proceeds by the 
interchange of the vibrational energy of the excited 
oscillators with the translational energy of the heat 
bath. In this case it is not possible to establish internal 
equilibrium by considering only the energy transfer 
between the excited oscillators and the heat bath as 
was done previously since the oscillators will give up 
their excitation energy only in quanta of hv while the 
heat bath has a nearly continuous array of transla­
tional energy states. Furthermore, it is not possible to 
write down simple explicit expressions for the joint 
transition probabilities Pn;i as was done in (1.3), where 
i now refers to the translational energy levels of the 
heat bath, within the framework of the Landau-Teller 
approximation used in our model. It has been shown, 
however, by Rubin and Shuler6 that the set of differen­
tial difference equations governing the relaxation 
process now under discussion can be obtained by the 
method used by Fowler in discussing the equilibrium 
relationship between collisions of the first and second 
kind.7 Using properties (a) to (d) of our model and 
applying the principle of detailed balancing at equi­
librium, Rubin and Shuler showed that the relaxation 
equation for the case when the relaxation proceeds by 
the interchange of the vibrational energy of the excited 
oscillators with the translational energy of the heat 
bath has the form of (1.6) except for the absence of the 
factor (1- e-8)-1 in front of the braces (see Appendix II). 

A third relaxation mechanism involves the inter­
change of radiation between the excited oscillators and 
the heat bath. The relaxation equations for this case 
have been derived by Rubin and Shuler8 by considering 
the interaction of the oscillators with a radiation heat 
bath in equilibrium with the heat bath at the tempera­
ture T. Using the Einstein coefficients A and B for 
spontaneous and induced emission and for absorption 
and Planck's radiation law for the density of the radia­
tion, it could readily be shown that the relaxation equa­
tion for radiative transitions is again of the form of (1.6) 
but with k lo replaced by A 10, the Einstein coefficient for 
spontaneous emission between vibrational levels 1 and ° 
of the oscillators.9 

6 R. J. Rubin and K. E. Shuler, J. Chern. Phys. 25, 59 (1956). 
7 R. H. Fowler, Phil. Mag. 47, 257 (1924). 
8 R. J. Rubin and K. E. Shuler, J. Chern. Phys. 26, 137 (1957). 
9 It should be noted that the case of radiative relaxation could 

also be discussed in terms of the transfer of photons with energy 
hv between the excited oscillators and the heat bath oscillators 
by the method used above for the transfer of vibrational energy 
and without recourse to the radiation field. The exact corre­
spondence between these two relaxation process explains the exact 
correspondence between the equations describing the two processes 
when the appropriate transition probabilities, i.e., k10 or A 10, are 
used in Eq. (1.1). It should also be noted that an internal energy 
balance can be maintained for this relaxation process. 
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The general relaxation equation applicable to the 
relaxation of a system of harmonic oscillators in a 
constant temperature heat bath can finally be written as 

dx,,(t) 
--=K{ne-oxn-J 

dt 
- [n+ (n+ l)e-oJx,,+ (n+ l)Xn+l} 

n=O, 1,2, ... (1.7) 
where 

k1o (1-e-O)-1 for collisional vibration­
vibration exchange 

klO' for collisional vibration-
k= translation energy ex­

change 
A 10 (1-e-8)-1 for radiative energy ex-

change. 

(1.7a) 

It is the object of this paper to obtain an exact solution 
of (1.7) subject to the condition Lx,,(t) = 1 (closed 
system) for various initial distributions x,,(O). 

Rubin and Shuler6 obtained a solution of (1.7) for 
the special case 0«1, which, in essence, corresponds to 
replacing the discrete set of energy levels by a quasi­
continuum, by approximating the set of differential 
difference equations (1.7) by the related partial differ­
ential equation which then admitted of a solution in 
terms of a Fourier development in Laguerre poly­
nomials. The choice of 0«1, made by Rubin and Shuler 
for mathematical convenience, is realized physically 
only for very few molecules and then only at rather 
high temperatures. Thus, for instance, one finds 
0= hv/kT= 60/T for CS2 so that the inequality 8«1 
can be fulfilled for T> 103 OK. For most diatomic spe­
cies, however, 0> 1 at ordinary temperatures (300-
10000 K). Some examples are NO(0=2.73·103/T), 
CO(8= 2.13 . 103/T) , and OH(8= 5.37 '10 3/T), where 
the frequencies v correspond to the electronic ground 
states. For a heat bath at 300oK, one thus finds 8,..,..,10 
to 20. We will show in the appendix that the general 
solution of (1.7), valid for all 0, reduces to the solution 
of Rubin and Shuler when 8--'>0. The qualitative charac­
teristics of relaxation from various initial distributions 
as determined by the small 0 theory are in general 
agreement with the exact results derived below. 

We shall show in Sec. 2 that the exact solution of 
(1. 7) can be written in terms of the generating function 

"" G(z, t)= L z"x,.(t) 
n=0 

and the dimensionless time 1'= Kt(1-e-O) as 

(eO-1) 
G(z,t)=----­

(z-l)e-T
- (z-eO) 

(1.8) 

(1.9) 

where Go(y) =G(y,O) is determined by the initial condi­
tion (distribution) xn(O) and where x,,(t), the fraction 
of the molecules in level n is the coefficient of z" in (1.9). 
We consider in this study the relaxation of three initial 
nonequilibrium distributions which could readily be 
obtained in a physical system and the relaxation of their 
moments: 

(1) An initial Boltzmann distribution with tempera­
ture To¥T for which x,,(O) is given by 

x,,(O) = [1-exp( -Oo)J exp( -nOo) (1.10) 

where 8o=hll/kTo. Substitution of (1.10) into (1.9) 
yields the Boltzmann distribution (for details see 
Sec. 4) 

x,,(t) = [1-exp( - 8)] exp( -n8) (1.11) 
with 

[

e-T(1-e8-00)-eO(1-e-Oo) , 
8=log J. 

e-T (1-e8-8 0)- (1-e-Oo) 
(1.12) 

(1.12a) 

and as 1'--'>00 

The initial Boltzmann distribution (J .10) thus relaxes 
to a final equilibrium Boltzmann distribution via the 
continuous sequence of Boltzmann distributions (1.11). 
Since the transient distribution of the relaxing oscil­
lators is always canonical in this case, it is possible to 
characterize it by a "temperature" cr(t)=ltv/k8Ct). 
To give an indication of the relaxation of this "tem­
perature" we have plotted 8-1 as a function of time 
for various initial and final temperatures To and Tin 
Fig. LIo 

An interesting feature of the curves in Fig. 1 is that 
the relaxation time associated with the temperature 
rise from T 1--,>T2(02<01) is less than that for the corre­
sponding temperature drop Tz--'>Tl (see curves A 
and B). Qualitatively this is not surprising because 
more levels are available for occupation at the higher 
temperature equilibrium than at the lower. The system 
becomes "disordered" faster than it can be ordered. 

(2) An initial Poisson distribution with 

(1.13) 

where a is the mean value ii of the level number n. This 
represents a "peaked" initial distribution, x" (0) , in 
which most of the excited oscillators are found initially 
in levels near n=a. The level population x,,(t) resulting 

10 The persistence of the form of the Boltzmann distribution is 
a consequence of the Landau-Teller transition probabilities. It 
has been shown by Rubin and Shuler, J. Chem. Phys. 24, 68 
(1956), that other choices of transition probabilities will lead to 
a different relaxation behavior. 
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FIG. 1. The "temperature" 'I'k/hv= 8-1 as a function of time l' 

for the relaxation of initial Boltzmann distributions [Eq. (1.12)] 

Curve A : 00=10, 0= 5, To=lT 
Curve B: 00= 5, 0=10, To=2T 
Curve C: 00=20, 0=10, To=iT 
CurveD: 00= 2, 0=10, To=ST. 

from an initial Poisson distribution is found to depend 
on the nth Laguerre polynomial [Eq. (5.6)J. We have 
plotted Xn as a function of T for 0= 3 and a= 15 in Fig. 2. 
Notice that the distribution narrows with time and 
shifts toward the equilibrium distribution as t-H~J. 

We have also plotted logxn vs t for the Poisson distribu­
tion (see Fig. 3) in order to gain some further informa­
tion about the approach to equilibrium. 

(3) An initial I) function distribution with all excited 
oscillators in state m: 

Xn(O) = 1 when n=m 

xn(O)=O when n~m. 
(1.14) 

The level population Xn(t) is given in terms of hyper­
geometric functions [see Eq. (6.5)]. The initially sharp 
distribution broadens and shifts to lower energy states 

0.6 

0.6 

Xft @ 

<D T = 0 

® T = 0.50 
G> T = 1.25 

@T = 2.00 

® T = 3.00 
@T=CD 

24 

FIG. 2. The relaxation of an initial Poisson distribution 
xn(O)=e-aan/n! with a=(n)=1S to a final Boltzmann distribu­
tion with 0=3. The ordinate Xn gives the fraction of oscillators in 
energy level n. 

if m> ii (in a manner similar to that plotted in reference 
6 for the case 0«1). 

(4) We have also obtained (see Sec. 3) a solution 
for the relaxation of the moments of the distribution. 
The transient behavior of the factorial moments of 
xn(t) [Eq. (3.1a)J defined by 

00 

fm(t) = L n(n-l) .. . (n-m+ l)xn(t) 

m= 1, 2, ... (1.15) 
is described by (3.7): 

(1.16) 

The internal energy E(t) of our system of excited oscil­
lators is related to the first momenth by 

. 
x 

00 

E(t)=hv L nXn(t)=hvfr· 
n=O 

n 

CD T- 0 
IZ> T - 0.5 
® T - 1.25 

CD 

(1.17) 

@ T -2.00 
Gl T -3.00 
® T-«I 

FIG. 3. A plot of logxn vs n for the relaxation of the initial 
Poisson distribution shown in Fig. 2. The straight line portions 
of these curyes for high n give a good indication of the adjustment 
of the initial Poisson distribution (at 1'=0) to the equilibrium 
Boltzmann distribution at 1'= 00. 

The combination of Eqs. (1.16) and (1.17) readily 
leads to the remarkably simple expression of Bethe 
and Tellerll 

E(t)- E( 00) 

E(O)-E( 00) 
(1.18) 

for the relaxation of the internal energy where E( 00 ) is 
the internal energy which corresponds to the final 
Boltzmann distribution. It should be noted that accord­
ing to (1.18), the magnitude of the internal energy at 
any time t depends only on E(O) and not on the form 
of the initial distribution xn(O). The relaxation of the 
mean energy of a system of harmonic oscillators is 
therefore determined solely by the amount of energy 
added to the system and not by its distribution. Hence 

11 H. A. Bethe and E. Teller, "Deviations from thermal equi­
librium in shock waves," Ballistic Research Laboratory, Report 
X-117, 1941. See also Rubin and Shuler, reference 6. 
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any description of nonequilibrium distributions (at 
least for the case of harmonic oscillators) which is 
based solely on the magnitude of the internal energy 
E(t) can never give any information (other than n) 
about the distribution Xn(t) associated with this energy. 
From Eq. (1.18) and the definition of T in (1.8) one 
obtains 

(1.19) 

for the relaxation time of the internal energy. 
It is also possible to obtain the time dependence of 

the dispersion (12(t), from Eq. (1.16) where 

(1.20) 

A knowledge of the dependence of the dispersion of the 
distribution with time is of particular interest in con­
nection with "peaked" initial distributions such as the 
a function, Poisson, or Gaussian distributions since it 
gives some information about the "spreading" or 
"contraction" of the distribution as it tends toward 
the equilibrium Boltzmann distribution. 

The "easy" problems of nonequilibrium statistical 
mechanics are those associated with physical systems 
which can be divided into two parts, (a) the large heat 
bath with many degrees of freedom which remains at 
equilibrium (and has the fluctuations expected in a 
system at equilibrium) and (b) the small nonequilib­
rium part with relatively few degrees of freedom which 
relaxes through interactions with the heat bath without 
disturbing the heat bath equilibrium. 

The Einstein theory of Brownian motion is the 
classical example of this type of situation. The large 
Brownian particle with an initial a-function distribu­
tion interacts with the surrounding fluid which remains 
at equilibrium. The theory developed in the present 
paper follows in the same spiritP Mathematically the 
relevant equations associated with these processes are 
linear and can be discussed in considerable detail. 

Those processes which do not permit the postulation 
of an equilibrium heat bath usually lead to nonlinear 
equations (for example the Boltzmann equation for 
the transport theory of gases) and have not been dis­
cussed in any really satisfactory manner. If the Xn'S 
and y/s in our Eq. (1.2) were both in a nonequilibrium 
state (for example by setting Xi= Yi) our differential 
equations would become nonlinear and little could be 
done with them. 

2. GENERAL SOLUTION OF FUNDAMENTAL 
EQUATION 

We solve (1.7) through the introduction of the 
generating function 

00 

G(z,t) = L Znxn(t) (2.1a) 
n=D 

12 The general theory of the "easy" problems has been discussed 
recently by many authors: M. Wang and G. E. Uhlenbeck, Revs. 
Modern Phys. 17, 323 (1945); H. B. Callen and T. A. Welton, 

which is defined so that the coefficient of zn is the frac­
tion of molecules in the nth state at time t. We note that 

aG 00 

_=Z-1 L nznXn(t). 
az n=O 

(2.1b) 

If we multiply (1.7) by zn and sum from n=O to n= cx:l 

we find that G satisfies the first-order partial differen­
tial equation 

1~ {~ } --= (z-1)e-8 -[(z-1)+(1-e8)J+G . 
K at az 

(2.2) 

This equation can be transformed into a somewhat 
simpler one by letting 

y=z-l, X=Kte-8, c=l-eB, 

and 
H(y,X) = (y+c)G. 

Then H satisfies 

(
aH aH) aH aH 

g -, - =--y(y+c)-=o 
ax ay ax ay 

or, if we let h=aH/aX and p2=aH/ay 

g(pI,P2) = h-Y(Y+C)p2=0. 

(2.3a) 

(2.3b) 

(2.4) 

(2.5) 

Following the method of characteristics we con­
sider13 

dy dX 
---=---
ag/ ap2 ag/ api 

or 
dA= -dy/y(y+c) 

whose solution 

yeXc[y+c J-1= constant 

implies that the general solution of (2.4) is 

H(y,X) = 1(y[y+cJ-1eXc ) 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7) 

where 1 is an arbitrary function which is to be deter­
mined from the initial distribution {xn (O)}. 

The general solution of (2.2) is then 

G(z,t) = (Z-eB)-l 
X1{[z-lJ[z-eBJ-1 exp[ -tK(1-e-8)J}. (2.8) 

It is to be noted that the definition of (2.1a) implies 
G(l,t) = LXn(t) = 1. Hence 

1(0)= (1-e8). (2.9) 

The initial distribution xn(O) characterizes G(z,O). 
The function 1 is related to Go(z) =G(z,O) by setting 

Phys. Rev. 83, 34 (1951); P. Bergmann and J. Lebowitz, Phys. 
Rev. 99, 578 (1955); and others. A brief review and bibliography 
of this subject has been prepared by E. Montroll and M. S. Green, 
Ann. Rev. Phys. Chern. 5,449 (1954). 

13 F. S. Woods, Advanced Calculus (Ginn and Company, New 
York, 1934), p. 292. 
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t= 0 in (2.8) so that 

f([z-lJ[z- e9J-l) = (z- e9)Go(z) 
or 

Clearly, if we let 
r= Kt(1-e-9) 

we can express G(z,t) as 

l-e9 
G(z,t) 

(z- e9) - (z-l)cT 

( 
(z-l)e-Te9- (Z-e9») 

XGo • 
(z-l)e-T - (z-e9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

In principle our problem is solved because Go is 
determined by the initial conditions and our Xn(t)'S 
are coefficients of zn in (2.13). As t~oo (and hence as 
r~oo) we have, since G(l,t)= l=Go(l) for all t, 

G(z,oo)= (1-e-9)/(1-ze-9). (2.14a) 

Hence by (2.1a) the equilibrium distribution is 

Then by differentiating (3.4) m times with respect to z 
and setting z= 1 we find 

~ afm =me_9am-1F] . 
K at azm- 1 __ I 

But (3.5) yields 

Hence 

(3.7) 

By using the steady state value of fr 
00 

fr( 00) = L ne-n9 (1-e-9) 
n-O 

(3.8) 

(3.7) is equivalent to 

(3.9) 

Xn(00)=(1-e-li)e-n9 (2.14b) and 

which is the Boltzmann distribution of a set of oscil- fm(r)=fm(O)e- mT+m2fr( 00 )e-Tm fT fm-l(x)emxdx. (3.10) 
lators with 8=hl//kT. 0 

The more familiar type of expansion of the solution Since by (3.1b) fo(t) = 1 we find 
of (1.7) as a linear combination of orthogonal poly-
nomials is presented for completeness in Appendix I. fr (t) = fr (O)e-T + fr ( 00 ) (1- e-T). (3.11) 

3. MOMENTS OF THE LEVEL OCCUPATION 
DISTRIBUTION 

We define the factorial moments of xn(t) by 

00 

fm(t) = L n(n-l)· .. (n-m+ l)xn(t) 

m=l, 2, ... 
00 

foW = L Xn(t) = 1. 
n=O 

Clearly the internal energy of our system is 

E(t) =hl/Lnxn(t) = hl/fr(t). 
In general 

(3.1a) 

(3.1b) 

(3.2) 

The variation of the internal energy with time is ob­
tained by combining (3.2) with (3.11) 

E(t)-E( 00) 

E(O)-E( 00) 
(3.12) 

as has been previously obtained by Bethe and Teller.ll 

Substitution of (3.11) into (3.10) when m= 2 yields 

h(t) = 2R( 00 )+4fr( 00 )[fl(O)-/I( 00 )]e-T 

+[f2(0)-4fr(O)fr( 00 )+2R( 00 )]e-2T. (3.13) 

The dependence of the dispersion of our distribution on 
time is given by 

(J2(t) =( (n- fr)2)AV= h+fr(1-fr) 
(3.3) =(J2( 00 )+[(J2(O)_(J2( 00 )]e-2T 

+[jl(O)-jl (00 )J[1 +2fr( 00 )]e-T(1-e-T) (3.14) 
A differential equation for f m is readily derivable where 

from (2.2), which we write as (3.14a) 

with 

1 aG 
- -= (z-1)e-9F 
K at 

aG 
F=-[(z-l)+(l-eB)]+G. 

az 

(3.4) 

(3.5) 

4. THE RELAXATION OF ONE BOLTZMANN 
DISTRffiUTION TO ANOTHER 

It will now be shown that if our oscillators are ini­
tially distributed in their energy levels according to 
some Boltzmann distribution, then this distribution 
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will persist during the relaxation but its effective tem­
perature will vary monotonically until the temperature 
of the heat bath is achieved. 

Let 

where Oo=hv/kTo, To being the temperature corre­
sponding to the initial distribution. Then 

Go(z) = LZnXn(O) = (1-e-8o)/(1-ze-8o). (4.2) 

(4.1) Hence, (2.13) yields 

so that 
Xn(t)=[l-exp(-e)] exp(-ne) (4.4a) 

where 

e=log {

e-T(1-e8-8o) -e8(1-e-8o)} 

e-T(l-eHo)- (1-e-8o) 
(4.4b) 

and r is given by (2.12), r= Kt[l-exp( -0)]. 
Our distribution (4.4) is that of Boltzmann at all 

times and the "effective temperature" 'I' varies with 
time as 'I'=hv/ke(r). We have plotted l/e as a func­
tion of time for various initial and final temperatures 
in Fig. 1. 

5. INITIAL POISSON DISTRIBUTION 

We now examine the relaxation of the Poisson 
distribution 

where a is the mean value of n. We have 

<Xl 

Go(z) = L Znxn(O)=e-a(l-.) 

so that by (3.3) 

and 
!I(O)=fi=aGo/az=a 

u2= «n-fi)2)Av= a. 

Application of (2.13) yields 

l-e8 

G(z,t)=----­
(z- e8) - (z-l)e-T 

xexp { 

(5.1) 

(5.2) 

(S.3a) 

(S.3b) 

Since the generating function of Laguerre polynomials 
defined by14 

(S.Sa) 

IS 

<Xl 

(l-a)-lexp{ya/(a-l)}=L anLn(Y) (S.Sb) 
n=O 

(4.3) 

we obtain 

(5.6) 

Since Ln(O)=l it is easy to show that as r-H~), Xn(t) 
tends to the final equilibrium Boltzmann distribution 
(2.14b). We have plotted Xn(t) in Fig. 2 for 0=3 and 
a=lS. 

6. ALL MOLECULES INITIALLY IN mTH STATE 

Let 

{
1 if n=m 

xn(O) = 
o otherwise. 

(6.1) 

This sharp distribution broadens and its peak is dis­
placed toward n=O with increasing time. Then 

and 

G(z,t) 

where 

Go(z)=zm 

(1- e8)[z(1-e-T+8)-e8(1- e-T) ]m 

[z(l-e-T)+ (e-T -e8)]m+1 

(l-eB)em8(e-T-l)m[l-az]m 

(e-T -e8)m+l[1-J3z]m+l 

(6.2) 

(6.3) 

(6.4) 

Now, it is well known15 that if [y [ < land [y(l-s) [ < 1 
<Xl 

(l-y)a-l(l-y+sy)-a= L ynF( -n, a, 1; s) (6.5) 
n=O 

F being the hypergeometric function. Hence if we let 
a=-m 

sinh!O 
U=--. 

sinMr 
15 Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher Trans-

14 G. Szego, Orthogonal Polynomials (American Mathematical certdental Functions (McGraw-Hili Book Company, Inc., New 
Society, 1939), p. 96. York, 1953), Vol. 1, p. 82. 
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A standard transformation formula yields 

(l-e8)em8( e-T-l )m+n 

(e-T-e8) e-T-e8 

X[1-u2Jl+m+nF(1+n, l+m, 1; u2). (6.5b) 

Note that as T----'>oo (t large), u----'>O and F----'>l and the 
Boltzmann distribution develops as is required. When 
T>8, (6.5b) converges rapidly and is suitable for 
making calculations. 

At early times we expect the distribution to be close 
to a Gaussian, 

1 
Xn(t)"-'-- exp(n-ii)2/2q2. (6.6) 

(211"q2) + 

Initially ii(O)=m and q2(0)=0. Hence from (3.11) and 
(3.14) 

(6.7a) 

a2( T) = q2( 00 )[1-e-2TJ 
+ [m-jl ( 00 )J[l +2h( 00 )Je-T(l-e-T) (6.7b) 

where 
q2( (0) = h( 00 )[1 +h( oo)J 

and 
h( (0) =e-8(1-c8)-I. 

It is to be noted that the relaxation from any initial 
distribution can be expressed as a linear combination of 
the Xn(t)'S which result from initially sharp distribu­
tions. 

APPENDIX I. FOURIER SERIES SOLUTION 
OF EQ. (1.7) 

For completeness we shall discuss the solution of (1. 7) 
as a linear combination of a certain set of eigenfunc­
tions. This form of solution could be used as the basis 
of a perturbation theory or for the analysis of com­
plicated initial distributions for which Go(z) = G(z,O) 
[see Eq. (2.1)J cannot be summed easily. 

We seek solutions Xn(t) which are a superposition of 
terms of the following type 

apln(p.) exp{ -p.tK(l- e-8)} = apln(p.)cpT, (1.1) 

where p. is a positive number and ap a constant which 
is to be determined from the initial level population 
distribution {xn(O)}. Direct substitution of (1.1) into 
(1.7) yields a difference equation in the numbers 
{In (p.)} 

(e-8-1)p.ln = ne-81n_l 
- {n+ (n+ 1)e-8}ln+ (n+ l)ln+l 

n=O, 1, 2, .... (1.2) 

This set of equations can be solved through the in­
troduction of the generating function 

'" F(w,p.) = L In (p.)wn. (I.3a) 
n-O 

Multiplication of (1.2) by wn and summation with 
respect to n yields, after application of (I.3a) and 

iJF '" 
w-= L nln(p.)wn, 

iJw n=-O 

(I.3b) 

F' (w)/F(w) = p.(w-1)-L (p.+ l)(w- e8)-1 (1.4) 

whose solution is 

F(w,p.) = (l-w)p(l-we-8)-p-l (1.5) 

if 10 is chosen to be 1. Our required functions In(p.) are 
the coefficients of wn in F(w,p.). These functions have 
been studied by Gottlieb and can be shown to be16 

In(p.)=e8PAn{ (:)e-8P } (L6a) 

or 

In{p.)=e-n8 Eo (1-e8)p(:)(:) (L6b) 

where the standard binomial coefficient notation is 
used with 

n rnVp!(n-p)! if 

(J=i 0 if 

L 1 if 

n<p or p<O (1.7) 

p=O. 

The first few of these functions are 

In (0) = e-n8 (L8a) 

In(1) = e-n8{ 1 + (1- e8)n}. (I.8b) 

These functions can be written in various ways in 
terms of hypergeometric functions; for examplel7 

If p. is chosen to be an integer, it is clear by symmetry 
from (I.6b) that 

(1.10) 

A pair of useful orthogonality relations exist when p. 

and n are non-negative integers 

'" {O n~m 
L e-8pln(p)lm(p) = (1.11a) 

. p=-() e-n8 (1- e-8)-1 n=m 

'" {O p.~p 

L en81n(p)ln(p.) = (1.11b) 
_ eP8 (1-e-8)-1 p.=P. 

Gottlieb has also shown that for a fixed complex num­
ber x and large n 

In(x) = (-l)n(l-e-8)-x-{:) +0 (n- Rex-2). (1.12) 

16 M. J. Gottlieb, Am. J. Math. 60, 455 (1938). 
17 Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher Trans­

cendental Functions (McGraw-Hill Book Company, Inc., New 
York, 1953), Vol. 2, p. 225. 
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Hence as n-'>OCJ, In (X)-'>O. This shows that our In(x)'s 
satisfy the physical requirement that the population of 
states characterized by the quantum number n de­
creases as n-'> OCJ for 0 fixed. 

We can now construct a general solution of (1.7) by 
superposition of terms (1.1), 

co 

the vibration of the harmonic oscillators and the 
translational degrees of freedom of the heat bath 
molecules. The formulation presented here is in prin­
ciple analogous to that given by Rubin and Shuler6 but 
is more detailed in that it takes explicit account of the 
matrix elements for the transitions between the trans-
lational "energy levels." 

xn(t) = L a,.ln(jJ.)e-PT (1.13a) Let 
p=O 

co 

= L al'e9"'-n)ll'(n)e-PT 

P~O 

(I.13b) 

where the constants al' are determined in the usual 
manner through the orthogonality relations. We find 

co 

al'= (1-e-8) L xn(O)lp(n) 
n=O 

or alternatively 
00 

al' = (1-e-8)e-p8 L en81n(jJ.)xn(O). 
n=O 

(I.14a) 

(I.14b) 

When xn(O) is chosen to be a Boltzmann distribution, 
one can by repeated use of the generating function 
F(w,}.!) of (1.S) readily obtain Eq. (4.4) for Xn(t). 

Rubin and Shuler6 previously derived the following 
formula for x(n,t)=Xn(t) which is to be valid when B 
is very small; (Ln(x) is the nth Laguerre polynomial) 

00 

x(n,t) = e-n8 L aI'LI'(nO) exp( - }.!Btk lO) (I.1Sa) 
p=O 

where 

ap=B foo x(y,O)LI'(Oy)dy. 
a 

(I.1Sb) 

This result can be obtained from (1.14a) and (I.13b) by 
letting 0-'>0 in certain terms and retaining it in others. 
Gottlieb pointed out that 

lim In(x/B, 0) = Ln(x). 
8-->0 

(1.16) 

If we write Ip(n) = II' (nO/O, 0) and suppose nO is fixed 
while 0-'>0, and if we let 1-exp( -B)~B, (I.14a) 
becomes 

al'~B f. x(y,O)LI'(YO)~O foo x(y,O)LI'(Oy)dy. 
u=O 0 

The conversion of the summation to an integration is 
valid if x(y,O) and LI'(Oy) are slowly varying functions of 
y. Equation (1.13b) reduces to (I.1Sa) if one uses 
(1.16), sets expti}.!= 1 and writes T= tklO(1-e8)~klo0t. 

APPENDIX II. THE RELAXATION EQUATION FOR 
VIBRATIONAL-TRANSLATIONAL 

ENERGY EXCHANGE 

We now wish to derive the analog of the relaxation 
equation (1.6) when the energy exchange is between 

Xn (t) = fraction of excited oscillators in vibrational 
level n 

Yi= concentration of heat bath molecules (or 
atoms) with momentumt Pi 

P n. n+l; i. i-I = joint probability per collision for the en-
ergy transfer nhP-'>(n+ l)hv as P,-7Pi_l. 

The relaxation equation can now be written as [see (1.2)J 

dXn(t) 00 

--= -Z[Xn(L YiPn,n+l;i,i-l 
dt ~o 

00 

+ L y;P n, n-l; i, i+l) 
i=O 

00 

-Xn+l L YiP n+1, n;i, i+l 
i=O 

00 

-Xn-l L YiPn-l,n;i-lJ (1I.1) 
~O 

where Z is again the collision number. The joint 
transition probabilities can now be written as 

P n, n+l;i, i-I =PJo(n+ l)QiC-) 
(II.2) 

P n, n-J;i, i+J =PlOnQiC+) 

where (n+ 1)P1o and nP10 are the vibrational transition 
probabilities (see 1.1) and where the Q's are the trans­
lational transition probabilities to be determined. Sub­
stitution of (11.2) in (II.1) leads to 

dXn(t) 
--=ZPlO (n+l) 

dt 

(II.3) 
+ZPJOn[xn-l L y,QiC-)-Xn L YiQiC+)]. 

i i 

At equilibrium, (i.e., as t-'>OCJ), we have 

° 
(II.4) 

Xn( OCJ) Xn-l (OCJ) 

t The indices i, i± 1 do not represent successive translational 
energy levels but are used to indicate translational levels separated 
by hv. 
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and Eq. (II.3) becomes 

O=ZP lO (n+l)xn( 00 )[cB L y,Qi(+'- L y.Qi(-,] 
i i 

-ZP10nXn_l( 00 ) [e-8 Ly.Qi(+'- Ly,QiH]. 
(II.S) 

i i 

Since the heat bath is assumed to remain at its Max­
well-Boltzmann equilibrium distribution at all times t, 
Yi~f(t) and Yi( 00 )=y •. 

The first two terms in Eq. (II.S) refer to the rate of 
the (vibrational) transition n+=tn+ 1 and the last two 
terms to the rate of the transition n+=tn-l. By the 
principle of detailed balancing at equilibrium, the net 
rate of each of these transitions must be independently 
zero to satisfy (II.S). We thus find that 

L y,Qi(_)=e-e L y.Q.;(+). 
i i 

Substitution of (II.Sa) into (II.3) leads to 

dXn(t) 
--=ZP10 L y,Qi(+){ne----8xn-l 

dt i 

(II.Sa) 

- [n+ (n+ l)e-B]xn+ (n+ l)Xn+l} (II.6) 

which is of the same form as (1.6) except for the re­
placement of k1o(1- e-8)-1 by ZP10 Li y,Q;(+,. To 
evaluate the term in front of the braces in (II.6) we 
write, with Landau and Teller4 

. ( mW2) 
Yi=Yw=2N(m/2kT)2w3 exp ---

2kT 
(II.7) 

for the number of heat bath molecules with momentum 
mw undergoing collisions (N is the total number of 
heat bath molecules) and 

Qi(+, = Qw{+) = Qoe-b ... /w (II.8) 

where Qo is a constant, 11 is the frequency of the oscil­
lator, and where a is a length characteristic of the 
interaction forces in the collisions between the oscil­
lators and the heat bath molecules. Replacing the sum­
mation over i indicated in (II.6) by integration over the 
velocities w one obtains 

dxnU) =klOQO(~ kT)-t exp[_~(_E )t] 
dt 7r E 2 kT 

X {ne----8x"_l-[n+ (n+l)e----8Jxn 

+ (n+l)xn+l} (11.9) 

where k10=ZNP10 has been defined in connection with 
(1.6) and where E=m(27rva)2 with m equal to the effec­
tive mass of the collision system. One thus obtains 
finally 

dXn(t) 
--= klO' {ne-Bxn_l 

dt 

where 
(II.9a) 

(
6 kT)-t [3( E )i] 

klO'=klOQo ;-e- exp -:2 kT (II.9b) 

is the transition probability used in (1.7a) for the 
vibration-translation energy exchange. 

A more accurate evaluation of the joint vibrational­
translational transition probabilities in (11.2) could be 
obtained from the quantum mechanical treatments of 
Jackson and Mott18 and Herzfeld and his co-workers.19 

18 T. M. Jackson and N. F. Mott, Proc. Roy. Soc. (London) 
A137, 703 (1932). 

19 Slawsky, Schwartz, and Herzfeld, J. Chern. Phys. 20, 1591 
(1952) j R. N. Schwartz and K. F. Herzfeld, ibid., 22, 767 (1954); 
see also K. F. Herzfeld in Thermodynamics and Physics of Matter 
(Princeton University Press, Princeton, 1955), Sec. H. 
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