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2D Triangular Elements 
 
4.0 Two Dimensional FEA 
 

Frequently, engineers need to compute the stresses and deformation in relatively 
thin plates or sheets of material and finite element analysis is ideal for this type of 
computations.  We will look at the development of development of finite element scheme 
based on triangular elements in this chapter.  We will follow basically the same path we 
used in developing the FEA techniques for trusses. 

In both cases, we developed an equation for potential energy and used that 
equation to develop a stiffness matrix.  In the development of the truss equations, we 
started with Hook’s law and developed the equation for potential energy. 

 
xkF Δ=        (3.1) 
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From here we developed linear algebraic equations describing the displacement of 
the nodes (end points) on the truss elements to define a stiffness matrix 
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We used this elementary stiffness matrix to create a global stiffness matrix and 

solve for the nodal displacements using 3.38. 
 

FKQ =        (3.38) 
 

We are going to use a very similar development to create FEA equations for a two 
dimensional flat plate. 

 
4.1 Potential Energy 

 
 The potential energy of a truss element (beam) is computed by integrating the 
force over the displacement of the element as shown in equation 3.2.  We will use the 
same idea but express it in a slightly different manner since we are not working with a 
one dimensional object such as a beam. 
 If we apply forces to a thin plate, the plate will deform and in the process store 
potential energy much the same way a spring will when an external force is applied. If we 
look at a small element of material in a plate that has been deformed, we can use the 
stress, σ  to represent the force in the material and the strain, ε  to represent the 
displacement of the material.  The product of these can be integrated over the volume to 
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compute the potential energy due to external forces applied to the object.  This is shown 
in the equation 4.1. 
 

dVU T
V σε∫=

2
1        (4.1) 

 
In 4.1 we are integrating over the entire volume.  Since we are studying a flat 

plate of constant thickness, we can rewrite the equation as 
 

tdAU T
A σε∫=

2
1        (4.2) 

 
where:   ε  is the strain in a differential element of the plate 
   σ  is the stress in a differential element of the plate 
   t is the thickness of the plate (we assume it is a constant) 
   A is the area of the plate 
 
In this equation, we are expressing the volume as the area of the plate times the thickness 
of the plate.  We will use this equation for potential energy to develop the stiffness matrix 
for triangular elements in a thin plate.  Our goal in this development is to replace both 
the stress and strain terms with linear equations for nodal displacement. 

Equation 4.2 involves both the stress and strain which we do not know.  In the 
following development, we will eliminate both of these terms replacing them with the 
stiffness matrix and material properties. 

 
4.2 FEA Elements 
 

We can take a thin plate and divide it into triangles as shown in Figure 1 below. 
 

 

Node

Element

Fixed Boundary

Point Force

Figure 1  Triangular elements used to approximate a flat plate. 
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The triangles share vertices with other triangles.  The vertices are nodes and triangles are 
elements.  We will use the elements and nodes to approximate the shape of the object and 
to compute the displacement of points inside the boundary of the object. 

The object is fixed along part of the boundary and does not move.  External forces 
are applied at points.  These external forces may arise from simple point forces, tractions 
or forces applied along a length of the boundary, or body forces such as gravity.  
Regardless of the source, all forces are applied at the nodes only.  Tractions, and body 
forces may be distributed across several nodes but they are still applied at the nodes. 
 
4.3 Two dimensional Stress – Strain Relationship 
 

Previously we looked at using finite elements to solve for the nodal displacements 
along a one dimensional truss member.  We derived the equation 

 
εσ E=        (3.22) 

 
Where  σ  is the stress 
  ε  is the strain 
  E  is Young’s modulus 
 
For the two dimensional case, this becomes a little more complex.  If we look at a 

two dimensional element, we have 
 

 
 
 
The stresses shown in the figure above can be used to write strain equations. 
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Figure 2  Element showing both normal and shear stresses 
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( )

xyxy E
τνγ +

=
12       (4.5) 

 
 

 Where:  σ  is the axial stress 
   ε  is the axial strain 
   τ  is the shear stress 
   γ  is the shear strain 
   E  is Young’s modulus 
   ν  is Poisson’s ratio 
    

We use the equations above to solve for the stress.  First we solve 4.4 for yσ  
resulting in 

xyy E νσεσ +=       (4.6) 
 

Substituting this into equation 4.3 yields 
 

( )
E

E
E

xyx
x

νσενσ
ε

+
−=      (4.7) 

or 
xyxx EE σνενσε 2−−=      (4.8) 

Solving for xσ  gives us 

( )( )yxx
E νεε
ν

σ +
−

= 21
     (4.9) 

For the other equations 

( )( )xyy
E νεε
ν

σ +
−

= 21
     (4.10) 

and 

( ) xyxy
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τ
+

=
12

      (4.11) 

 
We can write this in vector form as 
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or 
εσ D=        (4.13) 

where 
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At this point, we are about half way to developing the stiffness matrix for the 

triangular mesh.  We can use equation 4.13 to rewrite equation 4.2 so that 
 

tdAU T
A σε∫=

2
1       (4.2) 

becomes 
 

tdADU T
A εε∫=

2
1       (4.15) 

 
We have eliminated the stress term in the equation.  We will go on from here to 
eliminate the strain term and develop the stiffness matrix. 

 
 

4.4 2D Triangular Elements 
 

In the two dimensional truss problem, we computed the displacements of the 
nodes and we will do the same here.  We will have displacements in the X and Y 
directions and we will number them as shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 

12 −jQ

jQ2

Node j 

Figure 3  Diagram showing the numbering of nodal displacements. 
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For a single triangle we have 
 

 
Figure 4  Diagram of a triangle showing the numbering of the displacements of its nodes. 
 

We can write the local displacement vectors for each triangle as 
 

{ }Tqqqqqqq 654321=      (4.16) 
 

For the whole object the global vectors can be written as 
 

{ }T
nQQQQQ ...321=       (4.17) 

 
Which includes all of the qn  terms. 
 
4.5 Shape Functions 
 

We are going to compute the displacement of the nodes at the triangle vertices but 
we also need to compute the displacement for points inside the triangle.  We will use 
shape functions to interpolate the nodal displacements to compute the displacements of 
arbitrary points inside the triangles. 

We will start by moving only one point on the triangle and holding the other two 
fixed.  We can draw both the deformed and non-deformed triangles on top of one another 
as shown in Figure 5. 

 

q1 

q2 q3 

q4 

q5 

q6 
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Figure 5  Triangle in both non-deformed and deformed states. 

 
From the diagram above, it is easy to see that points near nodes 2 and 3 will not 

move as far as points near node 1 when the triangle deforms.  We assume the 
deformation is linear and we can compute the displacement inside the triangle using an 
interpolation technique based on areas.  The area of a triangle is 

 

HeightBaseArea ×=
2
1      (4.18) 

 
We are holding two points fixed and moving the third, so the base of the triangle 

base remains fixed and only the height is changing.  This makes the change in area a 
linear function with its only variable being the change in height of the triangle or the 
displacement of the node. 

All three nodes of the triangle can be displaced and we will write three linear 
functions to describe the displacement of an interior point due to the displacement of each 
of the triangles points.  The displacement of the interior node will be computed by 
summing the displacement due to each three triangle nodes. 

The interior point in Figure 6 divides the triangle into 3 regions. 
 
 
 
 
 
 
 
 
 
 
 

 
 
All 3 nodal points may move and the motion of the interior point is some combination of 
their displacement.  Let A1, A2, and A3 be the areas of each of triangular regions and A 

Node 1 in its 
original position 

Node 1 in its 
deformed position 

2 

3 

Fixed 

1 

3 

2 

A1 A2 

A3 

Point 

Figure 6  Interior point divides a triangle into 3 regions. 
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the total area of the element.  We can see from the diagram that the area of the triangle is 
equal to the sum of A1, A2, and A3.  This is shown in Equation 4.19. 

 
321

AAAA ++=       (4.19) 
 

We can derive shape functions 
 

A
AN 1

1 = , 
A
AN 2

2 = , and 
A
AN 3

3 =     (4.20) 

 
The displacement of the interior point can be computed with the equations 4.21 

and 4.22.  The displacement u is in the X direction and v is in the Y direction. 
 

53321 1
qNqNqNu ++=      (4.21) 

634221 qNqNqNv ++=      (4.22) 
 

The shape functions are not independent of one another because: 
 

1321 =++ NNN       (4.23) 
 

Knowing two of the shape functions makes it possible to compute the third.  
Because of this we can let 

 
ξ=1N , η=2N , and ηξ −−=13N     (4.24) 

 
Substituting these equations into 4.21 and 4.22 yields 
 

( ) ( ) 55351 qqqqqu +−+−= ηξ     (4.25) 
  ( ) ( ) 66462 qqqqqv +−+−= ηξ     (4.26) 

 
We can use these same shape functions to compute the coordinates of a point 

interior to the triangle where x1, y1, x2, y2, and x3, y3 are the coordinates of the triangle’s 
vertices and x and y are the coordinates of an arbitrary point inside the triangle. 

 
332211 xNxNxNx ++=      (4.27) 

332211 yNyNyNy ++=      (4.28) 
 

Making the substitution to ξ  and η  gives us 
 

( ) ( ) 33231 xxxxxx +−+−= ηξ     (4.29) 
and 
 

( ) ( ) 33231 yyyyyy +−+−= ηξ     (4.30) 
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These equations can be used to compute the shape functions.  Given some point in 
the triangle (See Figure 7).  We know x1, y1, x2, y2, x3, y3, and x, y so we solve equations 
4.29 and 4.30 for ξ  and η .  If we know the displacements at the nodes, we can use the 
same shape functions to compute the displacement for the point at x, y. 
 
4.6 Elementary Solid Mechanics 

 
If we have a small element of material 
 

 
Figure 8  Displacement in a small element of material. 

 
And u and v are the displacements across the element, then we can write the strain as 
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x 
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x1, y1 

Point 
x3, y3 
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Figure 7  Using the coordinates of a point in the triangle to compute the shape functions for the point.

Strain in the X direction 

Strain in the Y direction 

Shear strain 
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We have equations for u and v but these equations are expressed in terms of ξ  and η  not 
x and y.  But, using the chain rule 
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∂
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ηηη ∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ y

y
ux

x
uu       (4.33) 

 
We can write this in matrix form as 
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or 
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We can use equations 4.29 and 4.30 to compute the derivatives in the matrix 

above. 
 

31 xxx
−=

∂
∂
ξ

       (4.36) 

32 xxx
−=

∂
∂
η

       (4.37) 

31 yyy
−=

∂
∂
ξ

       (4.38) 

32 yyy
−=

∂
∂
ξ

       (4.39) 

 
We can simplify the equations somewhat by letting 
 

jiij xxx −=        (4.40) 
and 

jiij yyy −=        (4.41) 
 

Substituting equations 4.36 through 4.41 into equation 4.35 yields 
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From linear algebra we know that if 
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We also know that the Jacobian of a matrix is defined as 
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and incidentally, the area of the triangle can be defined as 
 

JArea det
2
1

=       (4.46) 

 
Putting this together gives us 
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Or by multiplying through 
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We can now use equation 4.25 to compute the remaining derivatives on the right 

hand side of equation 4.47 
 

( ) ( ) 55351 qqqqqu +−+−= ηξ      (4.25) 
 

so 
 

( ) ( )( )53135123det
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∂     (4.50) 

 

( ) ( )( )
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∂
∂     (4.51) 

 
Using a similar process for v we find that 
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From equation 4.26 we can again compute the derivatives on the right hand side 

of equation 4.52 
 

( ) ( ) 66462 qqqqqv +−+−= ηξ      (4.26) 
 

Resulting in 
 

( ) ( )( )64136223det
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v

−−−=
∂
∂     (4.53) 

 

( ) ( )( )
64136223det
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∂
∂     (4.54) 

 
So the strain defined in equation 4.31  
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Becomes 
 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )⎪⎭

⎪
⎬
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⎪
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⎪
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J
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We can simplify this equation by combining terms.  There are many relationships 

we can make using the x and y terms by realizing that 
 

2112 yyy −=        (4.56) 
 

Now adding and subtracting 3y  from the right hand side 
 

323112 yyyyy +−−=      (4.57) 
 

so 
 

231312 yyy −=        (4.58) 
 

Using this type of substitution allows us to rewrite equation 4.55 as 
 

⎪
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⎪
⎬
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⎪
⎩

⎪
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++
++
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J
ε  (4.59) 

 
Writing the equation in matrix form we get 
 

Bq=ε        (4.60) 
 

Where B is a 3x6 element strain displacement matrix relating 3 strains to 6 nodal 
displacements. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

122131132332

211332

123123

000
000

det
1

yxyxyx
xxx

yyy

J
B     (4.61) 

 
 

Substituting Equation 4.60 into our potential energy equation 4.14 
 

tdADU T
A εε∫=

2
1        (4.15) 
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gives us 
 

DBqtdABqU TT
A∫=

2
1       (4.62) 

 
If we are looking at a single triangle we can rewrite this equation as 
 

dADBqtBqU e
TT

ee ∫=
2
1       (4.63) 

 
The thickness of the plate t is a constant as are the matrices B and D.  We can move these 
outside the integral resulting in 
 

( )qdADBtBqU ee
TT

e ∫=
2
1       (4.64) 

 
We recognize the integral dAe∫  as just the area of the triangle so our equation 

becomes 
 

DBqBAtqU T
ee

T
e 2

1
=        (4.65) 

 
We can now represent the stiff matrix for the triangle as 
 

DBBAtk T
eee =        (4.66) 

 
With this substitution, our potential energy U becomes 
 

qkqU e
T

e 2
1

=         (4.67) 

 
We can sum these individual triangles to compute the strain energy over the entire 

plate giving us the equation 
 

qkqU e
T

e
∑= 2

1        (4.68) 

 
or 
 

KQQU T

2
1

=         (4.69) 
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In this equation Q is the global displacement vector which is the sum of all the 
local displacement vectors and K is the global stiffness matrix which is the sum of all the 
local stiffness matrices. 

We now have what we need to solve for the displacements in our familiar 
equation 

 
FKQ =        (3.38) 

 
 

4.7 Computing Displacements 
 

The displacements in a two dimensional plate can be computed using a technique 
similar to the one used for trusses.  There are several steps involved in this computation 
which is outlined below.  This type of computation is very systematic and makes an 
excellent candidate for a computer program. 

 
1. The first step is called meshing.  It divides the plate being studied into a non-

overlapping mesh of triangles.  These triangles should be roughly the same 
size and should be as close to equilateral as possible.  They must also share 
vertices so that all triangles that share a side also share vertices.  This process 
can be done by hand but most modern finite element software will create this 
mesh automatically. 

 
The triangles and their vertices are numbered.  The triangles are called 
elements and the vertices nodes.  They correspond to the elements and nodes 
in the finite element truss problem we examined in the previous chapter. 
 

2. The next step is to compute the stiffness matrix for each triangle.  It is 
computed using the equation  

 
DBBAtk T

eee =      (4.66) 
 

where: =et  thickness of the triangle. 
  =eA   area of the triangle 
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23132313det xyyxJ −=       (4.70) 

 

JAArea e det
2
1

==       (4.46) 
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     (4.14) 

 
The terms 12x  and 12y  can be computed from the coordinates of the vertices 
with the relationships 
 

2112 xxx −=       (4.71) 
 
and 
 

2112 yyy −=       (4.72) 
 

3. The stiffness matrix ek for each triangle is summed in the global stiffness 
matrix K.  The degrees of freedom (DOFs) of the nodes are used to determine 
which row and column of the global stiffness matrix to use when summing the 
local stiffness matrix.   This global stiffness matrix is symmetric. 

 
4. The global stiffness matrix is then used to write equation 3.38, 

 
FKQ =       (3.38) 

 
where K is the global stiffness matrix, Q is the displacement vector we want 
to compute, and F is a vector defining the external forces applied at each node.  
This is the same type of problem we solved for computing the nodal 
displacement in trusses. 
 

5. Our next step before actually solving the problem is to apply the constraints 
used to fix the plate in space.  We apply these constraints by removing the 
rows and columns in the problem above which are associated with the fixed 
DOF.  This reduces the size of the problem and changes it from a singular 
problem which has no solution to one we can solve. 

 
6. The final step is to solve the problem for the displacement of the triangular 

nodes.  The problem can be solved with Gaussian elimination or other 
techniques. 

 
 

4.8 Computing Stresses 
 

At this point we have computed the nodal displacements of the triangles but we 
have not computed the stresses in the plate.  Looking back through the development we 
have the equation for stress 



Chapter 4 – 2D Triangular Elements Page 17 of 24

εσ D=        (4.13) 
 

Where 
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     (4.14) 

 
We also know that 
 

Bq=ε        (4.60) 
 
We can put these equations together to create an equation we can use to computed 

the stresses.  It is 
 

DBq=σ        (4.73) 
 
This equation can be expanded to create 
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which we will solve for the stresses.  We use the displacements for the nodes of a triangle 
to compute the stresses for the triangle.  The odd numbered displacements are the 
horizontal displacements and the even numbered displacements are the vertical 
displacements.  There are six displacements in the equation because there are 6 degrees 
of freedom for each triangle. 

The question is, where is this stress?  It cannot be placed at one of the nodes 
because all of the nodal displacements are used to compute the stress.  The stress we have 
computed is actually the stress over the entire triangle.  Remember that we assumed that 
the displacements in the triangle varied linearly across the triangle and we came up with a 
linear interpolation function to compute this displacement.  We know from equation 4.13 
that the stress is a function of the strain and from equation 4.31 we see that the strain 
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is a function of the derivative of the displacements.  The shape function we are using 
interpolates the displacements with linear functions so the derivative strain must be a 
constant for each triangle.  We call this a first order or constant strain mesh. 

If the strain is a constant, the stress is also a constant and if the stress is a constant 
for each triangle, there must be a stress discontinuity at the triangle boundaries. 

Well, we know from a physical stand point this is not the case.  The stress is a 
smooth continuous function across the triangle boundaries.  So what do we do? 

Here we fudge a little.  We assume the stress we have computed is near the center 
of gravity of the triangle and that it does transition smoothly to the center of the next 
triangle.  This is not exactly what we have computed but it is a reasonable approximation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The problem we are facing is similar to approximating the area under a curve with 

rectangles as shown in Figure 9.  We know from calculus that we can improve the 
approximation by decreasing the size of the rectangles.  The same holds true for 
computing the stresses in the plate.   If we decrease the size of the triangles thus 
increasing their number, the accuracy of our computations will improve.  There is a trade 

Figure 9 - A curve approximated with rectangles. 
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off.  Increasing the number of triangles significantly increases the time to solve the 
problem but is reduces the error involved in the computations. 

Another way to improve the accuracy of the computations is to improve the way 
we are interpolating the displacements across the triangles.  In our current development 
we used a linear function to interpolate this displacement but we could use a higher order 
polynomial.  This is exactly what Mechanica does.  Instead of creating more triangles, it 
increases the order of the interpolating polynomial.  If the polynomial order, used as an 
interpolating function has order quadratic or above the stress will not be a constant across 
the triangle. 
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4.9 Example 
 
Consider the small plate shown below.  The plate is welded in place on the left 

side to a very stiff support and rests against a surface on its bottom edge that prevents it 
from moving vertically.  A force is applied at the top right corner of the plate.  We will 
use the finite element method we just created to compute the displacements and stresses 
in the plate. 

The plate is made of steel with a thickness of 0.5 inches. 
 

psiE 61030×=  
25.0=v  

 
There are two elements and the stiffness matrices for each element can be 

computed with the equation: 
 

DBBAtk T
eee =        (4.66) 

 
Where 
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for both elements and 
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can be applied to each of the elements. 
 
For Element 1 
 

  13232313det yxyxJ −=    
60323det =×−×=J     
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DBBDBBAtk TT )3)(5.0(111 ==  

 
 
 

We use local node numbers to define B.  Later on, when we create the global 
stiffness matrix we will translate these local node numbers to global node numbers. 
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Notice that the stiffness matrix is symmetric. 
 
For Element 2 
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We combine these two elemental stiffness matrices into a global stiffness matrix 
by expanding them to 8x8 matrices and adding them.  This is the same procedure we used 
in the finite element analysis of a truss. 
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We eliminate the DOFs 2, 5, 6, 7, and 8 because the nodes are constrained and there are 
no displacements associated with these DOFs. 
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Our reduced stiffness matrix becomes 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

4.102.
0983.45.
2.45.983.

107K
        

 
We are solving the equation 
 

FKQ =           
 

so our problem becomes. 
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Solving we get 
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We can now compute the stress at each node with: 
 

DBq=σ  
 

so 
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For element 2 the stress is 
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