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Mohr's Circles for
Unidirectional Tensile
Stress {a) and Pure
Torsion (b}

MACHINE DESIGN - An integrated Approach

5.2 FAILURE OF BRITTLE MATERIALS UNDER STATIC LOADING

Brittle materials fracture rather than yield. Brittle fracture in tension is considered
10 be due to the normal tensile stress alone and thus the maximum normal-stress theory
is applicable in this case. Brittle fracture in compression is due to some combination
of normal compressive siress and shear stress and requires a different theory of failure.
To account for all foading conditions a combination of theories is used.

Fven and Uneven Materials

Some wrought materials, such as fully hardened tool steel, can be brittle. These mate-
rials tend 1o have compressive strengths equal to their tensile strengths and so are called
even materials. Many cast materials, such as gray cast iron, are brittle but have com-
pressive strengths much greater than their tensile strengths. These are called uneven
materials. Their low tensile strengih is due o the presence of microscopic flaws in the
casting, which, when subjected to tensile loading, serve as nuclei for crack formation.
But when subjected to compressive stress, these flaws are pressed together, increasing
(he resistance to slippage from the shear stress. Gray cast irons typically have compres-
sive strengths 3 to 4 times their tensile strengths, and ceramics have even larger ratios,

Another characieristic of some east, brittle materials is that their shear streagih
van be greater than their tensile sivength, falling between iheir compressive and ten-
sile values. This is quite different than ductile materials, in which the shear strengih 1s
about one-half the tensile strength. 'The effects of the stronger shear strength in cast ma-
terials can be seen in their failure characteristics in the tension and forsion tests. Fig-
wre 2-3 (p. 613 shows a ductile-stcel tensite specimen whose failure plane is at 457 io
the applied tensile stress, indicating a shear failure occurnred, which we also know to be
true frem the distortion-energy theory. Figure 2-5 {p. 62) shows a brittle cast-iron wen-
sile specimen whose failure plane is normal to the applied tensile stress, indicating tha
a tensile failure occwrred. The Mohr’s circle for this stress state is shown in Figure 5-1a.
repeated here, and is the same for both specimens. The different faiture mode s due
to the difference in relative shear and tensile strengihis between the two naerials,

Figure 2-8 (p. 64) shows two torsion-test specimens. The Molr’s civele for the
stress state in both specimens is shown in Figure 5-1b, repeated here. 'the ductile-sicel
specimen fails on a plane normal to the axis of the applied torque. The applied stress
here is puse shear acting in a plane normal to the axjs. The applied shear stress 1s also
the maximum shear stress, and the failure is along the maximure shear plane because
the ductile nuaterial is weakest in shear. The brittle, cast-iron specimen fails in a spival
fushion along planes inclined 457 to the specimen axis. The failure is on the plancs of
maximum (principal) normal siress because this material is weakest in tension.

Figure $-10 shows Mohe’s circles for both compression and tensile tests of an ever
material and an wneven materigl, The lines tangent to these circles constitete failure
lines for all combinations of applied stresses between the two circles. The area enclosed
by the circles and the failure lines represents a safe zone. In the case of the even mate-
rial, the failure lines are independent of the normal stress and are defined by the maxi-
mum shear strength of the material. This is consistent with the maximum shear-stress
theory for ductile materials (which tend also to be even materials). For the uneven
material, the failure tines are a function of both the normal stress ¢ and the shear stress T,
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Mohr's Circles for Both .(.Tdm.preséiéh and Tensile Tests Showing the Failure Envelopes for (a) Even and (b) Uneven Materials

For the compressive regime, as the normal compressive stress component becomes
mereasingly negative {L.e., more compression), the material’s resistance 1o shear stress
increases. This is consistent with the idea expressed above that compression makes i
more difficull for shear shippage 1o occur along fault lines within the material’s inter-
nal flaws. The equation of the failure line can be found for any material from the test
data shown in Figuse 5-10. The slope |1 and the intercept t; can be found from geom-
etry using only the radii of the Mohr’s circles from the tensile and compression iests.

The interdependence between shear and normal siress shown in Figure 5-105 is con-
firmed by experiment for cases where the compressive stress is dominant, specifically
where the principal siress having the largest absolute value is compressive. However,
experiments also show that, in lensile-stress-dominated situations with uneven, britile
raterials, failure is due Lo tensile stress alone. The shear stress appears not to be a factor
in uneven materials if the principal stress with the fargest absolute value is tensile.

These observations lead to the Coulomb-Mohr theory of brittle faiture, which is an ad-
apiation of the maximum normal-stress theory. Figure 3-11 shows the two-dimensional
case plotted on the ¢, o3 axes and normalized to the vitimate tensile strength, Sy, The
maximum nornal-stress theory is shown for an even material as the dotted square of
hatf-dimensions £S5, This could be used as the ailure criterion for a brittle material
in static loading if its compressive and wensile strengths were equal (an even maierial}.

The maximum normal-stress theory envelope is also shown (gray-shaded) for an
uneven material as the asymmetric square of half-dimensions S, -S,,. This failure
envelope is only valid in the first and (hird quadrants as it does not account for the in-
terdependence of the normal and shear stresses shown in Figure 5-10, which affects the
second and fourth quadranis. The Coulomb-Mehr envelope (light-color shaded area)
attempts 1o account for the inlerdependence by comecting opposite cormers of these two
quadrants with diagonals. Note the similarity of the shape of the Coutomb-Mohr hexa-
gon (o the maximum-shear-theory hexagon for ductile materials in Figure 5-5 (p, 280),
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Coulomb-Mehr, Modified-Mohy, and Maximum Normal-Siress Theories for Uneven Bifttle Materfals

The enly differences are the Coulomb Mobr’s asymmelry due o the uneven malerial
propertics and its use of witimaie (fracture) shengths instead of yield strengihs,

Figure 5-12 shows some gray cast-iron experimental test data superposed on the
theorefical failure envelopes. Note ihat the failures in the fivst quadrant fit the maxi-
mum normal-siress theory ine {which is coincident witk the other theories), The fail-
ures in the fourth quadrant fall inside the maximum normal-stress line (indicating iis
unsultability} and also falt well ouwside the Coutomb-Mohr line (indicating its conser
vative nature). This observation leads 1o a modification of the Coulomb-Mohr theory
to make it better fit the observed data.

The Moditied-Mohr T

The actual failure data i Figure 5-12 follow the even materials’ maximum normal-stress
theery envelope down 1o a poini S, S, below the oy axis and then follow a siraigh
fine 1o 0, -8, This set of lines, shown as the combined light- and dark-color shaded
portions of Figure 5-11 {also marked by colored dots), is the modified-Maoly {ailure.
theory envelope, {1 s the preferied failuve theory for uneven, britile swaerials in siatic
loading.

If the 2-I> principal stresses are ordered oy > 03, 09 = 0, then only the first and
fourth quadrants of Figure 5-12 need to be drawn, as shown in Figure 5-13, which plots
the stresses normalized by N/S,, where N s the safety factor, Figure 5413 also depicts
three plane-stress conditions labeled A, B, and C. Point A vepresenis any stress state in
which the two nonzero principal stresses, o), oy are positive, Failure will oeeur when
the load line OA crosses the failure envelope at A" The safery factor for this situation
can be expressed as

S
N == SAL (5.12a)
a
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Biaxial Fracture Data of Gray Cast fron Compared lo Various Failure Criteria (From #1ig 7.13, 5. 255,
Mechanical Behavior of Materials by N. . Dowling, Prentice-Hall, Foglewood Clifls, NS, 1993, Data from R, C.
Grassi and [, Corned, "Fracture of Gray Cast fron Tubes ander Biaxial Stresses, ™ ). App Mach, v. 16, 0178, 1949)

I vhe two nonzero principal stresses have opposite sign, thenr two possibilities ox-
ist for failure, as depicted by points B and € in Figure 5-13. The only difference be-
tween these (wo points is the relative values of thelr two stress compoenents oy, oy, The
load line OFF exits the failure envelope at B above the point S, S5, and the safety fac-
tor Tor this case is given by cquation 5,1 2¢ above,

¥ the stress state is as depicted by point O then the intersection of the load line OC
wnd the failure envelope oceurs at C' below point 8, -8, The safety factor can be
found by solving for the intersection between the oad ine OC and the failure line, Write
the equations for thesa lines and solve simultancousty (o get the maedified Mobr equation.

SlSucl
m'JGi ’ qm(ﬁi + 0‘3)

Hoihe siress state is in the fourth quadrant, boih equations 5,12q and 5,126 should be
checked and the smaller vesulting safety factor used,

A 15.128)

IS

Compare equation 5.12b 1o the less-aceurate equation for the unmodified Costomb-
Mohr theory (which s not recommended for use).

To use the preferred modified Mohr theory of equaiion 5.12h, it would be conve-
nient to kave expressions for an effective stress that would account for all the applied
stresses and allow direer comparisen 10 @ malerial-sirength property, as was done for
ductile materials with the von Mises stress, Dowlingl?! devetops a set of expressions
for this effective stress involving the three principal stresses:”
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See reference B for a compiete
derivation for both two- and
three-dimensional Coulomb-Maohr
and modified-Mohr theories and
ihe effective siiess.
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The largest of the set of six values (Cy, Cy, Cy, plus the three principal sivesses) is the
desired effective stress as suggested by Dowling.

& = MAX(C|,C;,C3,01,04,03)
(5.12d)
G=0 if MAX<0

where the signed function MAX denotes the algebraically argest of the six supplied ar-

guments. I all of the arguments are negalive, then the effective stress is zero.
This modified-Mohr effeciive stress can now be compared 1o the ultimate tensile
strength of the material 1o determine a safely factor,

S
N oo ilin ({‘J 12 (.’)

G

This approach atlows easy compulerizaiion of the process,



