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Testing the Constant Strain Mesh 
 

5.0 Principal Stresses 
 

Previously we developed the FEA mathematics for a constant strain triangular mesh.  
This method is applicable to problems that can be idealized as two dimensional plates.  All 
constraints and loads must be in the plane of the plate. 

We developed the equation 
 

DBq=σ         (4.73) 
 

or expanding 
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for computing the stresses for each triangular element.  

We used a linear equation to interpolate the displacements and this yielded a constant 
strain or stress across each triangular element.  Knowing that this is only an approximation, we 
decided to place the computed stress near the centroid of the triangle. 

Equation 4.74 indicates we are computing two axial stresses and a shear stress.  These are 
illustrated in Figure 1 below. 

 
 
 

The axial and shear stresses vary with the orientation of the small element and we can 
compute these with Mohr’s circle. 
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Figure 1 - Material element showing the axial and shear stresses. 
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5.1 Mohr’s Circle 
 
Mohr’s circle is a graphical method for computing axial and shear stresses in the element 

of material shown in Figure 1.  The circle is plotted on a coordinate system with the axial 
stresses plotted along the horizontal axis and the shear stresses plotted along the vertical axis. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The stresses computed in Equation 4.74 are plotted by plotting the point defined by 

{ }
xyy τσ ,  and { }

xyx τσ −, .  This defined two points on the circle. 

We know that the circle is centered (point C) on the σ axis so we can compute the 
coordinates of this point by averaging the two axial stresses. 

 
( ) 2/yxC σσ +=        (5.1) 

 
The distance R from point C to the circle can be computed with Pythagoras’s formula.  

The hypotenuse of the triangle is the distance from the center point to the circle.  One leg of the 
triangle is xyτ  and the other can be computed as: 
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The distance R is computed with equation 5.3. 
 

22

xyAR τ+=        (5.3) 

 
The principal stresses, where the circle crosses the axial stress axis σ can be computed 

with: 
 

RC +=1σ         (5.4) 
 

and 
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Figure 2 - Mohr's circle drawn from the computed stresses. 
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RC −=2σ        (5.5) 
 

These points are shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The circle represents various orientations of the element shown in Figure 1.  Each degree 

of rotation of the element is represented by two degrees on Mohr’s circle.  When an element is 
oriented so that all of the stresses are axial, the stresses in the element will relate to the principal 
stresses.  The maximum shear stresses occur when the element is oriented 45 degrees from the 
principal stress orientation.  On Mohr’s circle, this corresponds to the top and bottom of the 
circle.  The maximum shear stresses can be computed with: 

 
R=maxτ          (5.6) 

 
 

5.2 Von Mises Stress 
 
As designers, it is usually important to limit the stresses so that our designs do not deform 

permanently.  Richard von Mises and several other researchers studied this problem and 
determined that the material will yield when the distortion energy per unit of volume equals the 
tension yield stress of the material.  We call this measure of distortion energy, the von Mises 
stress.  It can be computed with: 
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Figure 3 - Mohr's circle with principal stresses. 
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Equation 5.9 shows what is commonly called the von 
Mises stress.  It can be computed with the axial and shear 
stresses computed in Equation 4.74. 

It is important to keep the von Mises stress below the 
yield stress of the material we are using in our design.  If the 
von Mises stresses go beyond the yield stress, the object we 
are designing will permanently deform. 

An example of a stress strain curve is shown in Figure 
5.  The FEA method we have developed only works in the 
linear range of the curve.  If the von Mises stress is below the 
“Yield Point” stress, the material will be in the linear elastic 
range. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.3 Testing the Method 

 
One way to test the method we have developed is to write a program based on the method 

then compare the results with that produced by other programs.  We will look at a rectangular 
plate that is fixed at one end and free on the other.  We will place a 1000 pound load on the free 
end. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 - Richand von Mises 
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Figure 5 - Typical stress / strain curve for many metals. 

1000 Lbs

Figure 6 - Plate with elements shown. 
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The plate is 3 inches wide, 2 inches high and 0.5 inches thick.  The modulus of elasticity 
is 30x106 and Poison’s ratio is 0.25.  We will divide the plate into 16 elements.  The actual data 
is shown in the two tables below.  The table labeled “Nodal Coordinates” gives the node 
numbers and the coordinates of the node.  The table labeled “Element Connectivity” defines each 
triangular element and the three nodes defining its vertices. 
  

 
 
  

 
 
  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
The von Mises stresses are shown below in Figure 7 below.  The method we developed 

assumed a linear shape function and this implied that the stress and strain were constant across 
each element.  We know that the stress is not constant across the entire element so we assume 
that it applies to the center of each triangle near where the stresses are shown in the figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nodal Coordinates 
Node X Y 

1 0 0 
2 0.75 0 
3 1.5 0 
4 2.25 0 
5 3 0 
6 0 1 
7 0.75 1 
8 1.5 1 
9 2.25 1 
10 3 1 
11 0 2 
12 0.75 2 
13 1.5 2 
14 2.25 2 
15 3 2 

 Element Connectivity 
Element Node 1 Node 2 Node 3

1 1 7 6 
2 1 2 7 
3 2 8 7 
4 2 3 8 
5 3 9 8 
6 3 4 9 
7 4 10 9 
8 4 5 10 
9 6 7 11 
10 7 12 11 
11 7 8 12 
12 8 13 12 
13 8 9 13 
14 9 14 13 
15 9 10 14 
16 10 15 14 

1000 Lbs 
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Figure 7 - Plate with von Mises stresses shown. 
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The same problem was solved using ANSYS, a commercial finite element program.  
ANSYS allows the exact same shape of elements to be defined but it uses a different algorithm.  
ANSYS uses a quadratic shape function which should produce a more realistic solution than the 
method we developed in class.  The ANSYS results and the results from our class developed 
method are shown in the table below. 

 
 

Elem Class ANSYS 

9 2672 2672 

10 4657 4620 

11 2642 2725 

12 3382 3287 

13 2218 2454 

14 2592 2124 

15 1492 1948 

16 4794 4467 

 
 
As you can see from the table above, the solutions using the method we developed 

compare quite well with the ANSYS solutions.  The solutions match very well on the left side of 
the cantilever but diverge from the ANSYS solutions as we move closer to the point load.  There 
will be a force concentration at this point and the quadratic elements used in ANSYS handle this 
stress concentration better than our constant strain elements.  As you move farther away from 
this high stress area, the stresses match very closely.   

 
 

5.4 Homework 
 

Using the method we developed in class, write a Matlab program to compute the 
displacements at each node, and the stresses, principal stresses, and von Mises stresses for each 
element in the constant strain mesh.  Test your program using the problem solved in the notes.  
Secondly, test your program using the plate problem shown above.  Email the program to me 
when you have finished.  

You should be able to write this program by modifying the previous FEA Truss program.  
The overall structure is the same.  The only difference is the method used to form the global 
stiffness matrix.  The individual element stiffness matrices are a little more complex than they 
were in the FEA Truss program. 

In the FEA Truss program, it was not necessary to actually generate the stiffness matrix 
for each element.  It was easy enough to add the terms of the individual stiffness matrix directly 
to the global stiffness matrix without actually forming the individual matrix. 

The individual stiffness matrix for the elements in the Constant Strain Mesh program are 
more complex and it will probably be easier to create the element stiffness matrix then go 

Elem Class ANSYS

1 2672 2672 

2 4620 4620 

3 2725 2725 

4 3287 3287 

5 2454 2454 

6 2124 2124 

7 1948 1948 

8 1298 1298 
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through the matrix term by term adding them to the global stiffness matrix.  As soon as you use 
the elemental stiffness matrix, you can discard it by using the variables for the next element. 

The program that you create will read data from a file as did the other programs you have 
written.  The format for the input date file is shown below. 

 
30e6    Young's Modulus 
.25    Poisson's ratio 
0.5    Plate thickness 
15    Number of Nodes 
1  0.0    0.0  Nodal Data 
2  0.75   0.0 
3  1.50   0.0 
4  2.25   0.0 
5  3.00   0.0 
6  0.0    1.0 
7  0.75   1.0 
8  1.50   1.0 
9  2.25   1.0 
10 3.0    1.0 
11 0.0    2.0 
12 0.75   2.0 
13 1.50   2.0 
14 2.25   2.0 
15 3.0    2.0 
16    Number of Elements 
1   1   7   6  Element Data 
2   1   2   7 
3   2   8   7 
4   2   3   8 
5   3   9   8 
6   3   4   9 
7   4  10   9 
8   4   5  10 
9   6   7  11 
10  7  12  11 
11  7   8  12 
12  8  13  12 
13  8   9  13 
14  9  14  13 
15  9  10  14 
16 10  15  14 
6    Number of constraints 
1   1  X   constraint at node 1 
2   1  Y 
3   6  X   constraint at node 6 
4   6  Y 
5   11 X   constraint at node 11 
6   11 Y 
1    Number of loads 
15  1000  -90  Load at node 15 
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The output from the program is shown below. 
 
>> Plate('Bigtest.txt') 

 
Youngs Modulus = 3e+007 
Poisons Ratio = 0.25 
Plate Thickness = 0.5 
Nodal Displacements 
 Node            DX             DY 
   1              0              0 
   2    -0.000116461   -0.000117267 
   3     -0.00019675   -0.000296573 
   4    -0.000241064   -0.000516959 
   5    -0.000247554   -0.000731622 
   6              0              0 
   7   -9.66529e-007  -9.63957e-005 
   8   -3.01734e-006   -0.000278868 
   9   -7.11942e-006   -0.000510546 
   10  -1.32574e-005    -0.00075542 
   11              0              0 
   12    0.000118135   -0.000115888 
   13    0.000202327   -0.000296892 
   14    0.000258718   -0.000537295 
   15    0.000308076   -0.000874441 
 
Element Stresses 
Element  Stress X        Stress Y           Shear     Principal 1     Principal 2       VM Stress 
1        -41.2386           -10.3        -1542.33        -1568.18         1516.63         2671.65 
2        -4802.01            -574         -490.35        -4858.14        -518.222         4620.88 
3         79.4727             646        -1533.62        -1196.82         1922.31          2725.5 
4        -3284.03            -290        -544.103        -3379.84        -194.034         3287.12 
5        -33.3778             523        -1382.05        -1165.03         1654.48            2454 
6        -1839.41            -267        -718.838        -2118.56         11.6892         2124.43 
7        -210.582             140        -1110.66         -1159.8         1088.97         1947.81 
8        -467.294            -831        -623.059        -1298.04            0.00         1298.04 
9        -41.2386           -10.3        -1542.33        -1568.18         1516.63         2671.65 
10        4884.49             636        -424.987         594.258         4926.59         4657.98 
11       -243.439            -646        -1490.33        -1948.37         1059.31         2642.39 
12           3448             321        -431.938         262.691         3506.57         3382.88 
13       -319.218            -621        -1242.71        -1721.69         781.932         2218.53 
14        2192.01            -254        -656.396        -419.465            2357         2592.31 
15       -475.883            -921         -727.94        -1459.94         62.6006         1492.22 
16        1153.76      -3.28e+003        -1538.35        -3763.47         1635.03         4794.83 


