

Have We Had an Impact?

Have We Had an Impact?

Thickness of Earth's Atmosphere

The Earth's atmosphere is very thin. At 7 miles high you are above 75% of the atmosphere

3 Forms of Heat Transfer

Conduction

- Convection
- Radiation

Space is a vacuum. The earth can only gain or loose heat through radiation.

Oceans are dark

and reflect little energy back to space – 90% absorption

Heat Reflection

Forested areas are lighter and reflect more back to space

Heat Reflection

Desert areas reflect more light

Heat Reflection

Ice reflects the most amount of light back to space – 10% absorption

Atmosphere Absorbs Sun's Energy

- Nitrogen 78% (not a green house gas)
- Oxygen 21 % (not a green house gas)
- H₂O Up to 4% (green house gas)
- CO₂ trace (green house gas)
- Methane trace (green house gas)

Measuring CO₂ in Air

- 1958 International Geophysical Year
- Charles David Keeling
- Mauna Loa Hawaii
 - High altitude clean air
 - Far away from industrial output

Ice Coring at Vostok Antarctica

Measure CO₂ and Temperature

- Measure CO₂ in small bubbles
- Measure isotope of Oxygen O₁₈
 Heaver than normal Oxygen O₁₆
 - Water with O_{18} heaver than normal water

IPCC – Report 4

- 2500 Scientific expert reviewers
- 600 contributing authors
- 450 lead authors
- 113 countries
- 6 years of work

What Is the Future?

- IPCC IS92a business as normal 1% increase in CO₂ per year
- A1F1 The future is heavily dependent upon fossil fuels
- A1T Most energy comes from non fossil sources
- A1B A balanced approach with fossil and non fossil fuels

More Scenarios

- A2 World remains culturally divided and population in underdeveloped countries continues to grow
- B1 World cultures converge and population peaks at mid century
- B2 Emphasis on local solution to problems – population continue to grow but not as fast as A2

Projected Global Temperatures

0	ROWTH OF WORL	D POPULATION	
9 8	dillion at 2	20507	
\$.3	isillisn ai	2003	

Current Food Shortages

- Price of food increasing
- Rice tripled in price
- Army guards rice fields in Viet Nam
- Corn going to bio fuel not food
- Food riots in poorer countries
- World Bank spending money directly on food no time for economic development

Sea Level Rise

- Estimated to be 1 2 feet by 2100
- Estimate based on thermal expansion of oceans
- Includes some melting from glaciers, Greenland, and Antarctica
- Greenland and Antarctica melting at the 1993 2003 rate

Greenland Glacier Melting

Sea Level Rise

- Small increase places people around the world in danger from storm surges
- Rise could be several meters if Greenland and Antarctica melt faster than estimated
- Many coastal areas would be flooded

Positive Feedback Loop

- Warming causes something that caused further warming
- Arctic Melting
- Ice reflects 90% of sunlight
- Water absorbs 90% of sunlight
- Ice melts water absorbs more sunlight melts more ice

What Can We do?

- Stop using fossil fuels?
- Carbon sequestration?
- Hydrogen?
- Solar Power?
- Wind Power?
- Nuclear Power?
- Geothermal Power?

Nuclear Power

- IV Generators much more efficient
- Still produce radioactive waste where do you put it
- Still produces plutonium how do you keep it from being used in bombs

Transportation

- Bio Fuels Do they produce CO₂ also?
- Ethanol burning in existing engines
- Hydrogen fuel cell
- Electric using battery technology

Ethanol

- Can burn in existing engines
- 34% less energy than gasoline
- Run much higher compression ratios to increase efficiency
- Largely produced by corn in US
- If all corn grown in US were converted to ethanol it would make up 12% of our gasoline needs

More Corn Based Ethanol

- It would take 75% of all cultivated land on the earth to make enough ethanol to replace US gasoline consumption
- It takes 1 unit of fossil fuel to produce 1.3 units of ethanol
- The corn required to produce 25 gallons of ethanol would feed a person for a year.
- New technology using cellulose technology is more efficient

Hydrogen

- Where does it come from?
- Can we create it without creating CO₂
- Is waiting for hydrogen technology just another way to stall?

Current Hydrogen Production

- 48% from Natural Gas
- 30% from oil
- 18% from coal
- 4% from electrolysis poor efficiency
- High temperature electrolysis 50% more efficient
- Up to 30% of energy used for compression

Hydrogen Fuel Cell vs. Battery

Your Challenge

- Engineers determine the shape of the future
- You cannot dream your father's dream
 - Different problems
 - Different solutions
- Don't be afraid to see a different future

