
Chapter 1 - Matrix Algebra Review Page 1 of 12

Matrix Algebra Review

1.0 Matrix Multiplication

 Matrix multiplication is a relatively simple operation where the rows of the first matrix
are multiplied times the columns of the second matrix. It can be formally defined by letting A be
an m (rows) by n (columns) matrix and B an n by p matrix. The product AB is an m by p matrix
defined by:

∑
=

=
n

k
kjikij baC

1
 where i = 1, 2, 3, …, m j = 1, 2, 3, …, p (1.1)

It is very important to note that the product of two matrices is defined only when the

columns in the first matrix is equal to the number of rows in the second matrix.
We can illustrate this with two 3 x 3 matrices. The results are shown below.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++++++
++++++
++++++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

irhogliqhngkiphmgj
freodlfqendkfpemdj
crboalcqbnakcpbmaj

rqp
onm
lkj

ihg
fed
cba

 (1.2)

 In matrix notation we can write:

[] [] []CBA =× (1.3)

which is an equivalent statement. Note that in general, matrix multiplication is not commutative
so that:

[] [] []CAB ≠× . (1.4)

 You can easily prove this by multiplying matrix [B] times [A]. The product will not be
equal to [C]. For the two matrices to be equal, each term of the two matrices must be equal.
 We can illustrate this with MATLAB or OCTAVE1 by defining two matrices A and B
then multiplying them together. Let

A=[1,2,3;4,5,6;7,8,9] (1.5)
 1 2 3
 4 5 6
 7 8 9

B=[1,3,5;9,7,5;2,6,4] (1.6)

 1 3 5
 9 7 5
 2 6 4

1 OCTAVE is an open source program that is almost identical to MATLAB. You can download if for free from
http://octave.sourceforge.net/ . Documentation can be found at http://www.gnu.org/software/octave/doc/interpreter/
.

Chapter 1 - Matrix Algebra Review Page 2 of 12

A*B (1.7)

 25 35 27
 61 83 69
 97 131 111

We can reverse the order the matrices and show that order is important.

B*A (1.8)
 48 57 66
 72 93 114
 54 66 78

It is very obvious from the two MATLAB/OCTAVE examples above that the

relationship shown in equation 1.4 is correct.

1.1 Matrix Transpose

 A matrix transpose is created by swapping the rows and columns of a matrix. This is
shown below.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ifc
heb
gda

ihg
fed
cba T

 (1.9)

The superscript T indicates the transpose operation.
 With MATLAB/OCTAVE, the transpose of a matrix is very easy to create by adding an
apostrophe after the name of the matrix. We can illustrate this with the matrix defined in 1.5.

A’ (1.10)
 1 4 7
 2 5 8
 3 6 9

1.2 Identity Matrix

 The identity matrix is a special matrix composed on 1s on the diagonal and 0s
everywhere else.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
010
001

 (1.11)

 The identity matrix has a property similar to the scalar number 1. Any matrix multiplied
by the identity matrix is equal to itself. This is shown below. [I] is the identity matrix and [M] is
any other matrix.

[] [] []MMI =× (1.12)

Chapter 1 - Matrix Algebra Review Page 3 of 12

or

[] [] []MIM =× (1.13)

I=[1,0,0;0,1,0;0,0,1] (1.14)
 1 0 0
 0 1 0
 0 0 1

A*I (1.15)
 1 2 3
 4 5 6
 7 8 9

I*A (1.16)
 1 2 3
 4 5 6
 7 8 9

The identity matrix is a special matrix and the order of multiplication does not matter as
shown above.

1.3 Matrix Inverse

 If the matrix [B] is the inverse of [A] then:

[] [] []IAB =× (1.17)

Another way of stating this is:

[] [] []IAA =×−1 (1.18)

The -1 superscript indicates the inverse of a matrix.
 The inverse of a matrix cannot be easily created with simple row column operations as
could the transpose of a matrix but it does have important uses. In solving problems that can be
represented mathematically as shown in equation (1.19)

[] }{}{ EFM =× (1.19)

We can multiply both sides by the inverse of [M]

[] [] [] }{}{ 11 EMFMM ×=×× −− (1.20)

or

[] }{}{ 1 EMF ×= − (1.21)

Chapter 1 - Matrix Algebra Review Page 4 of 12

which simplifies solving the equations to a simple matrix – vector multiplication. This can be a
useful technique if the forces are needed for many different load cases.

We can illustrate this with either MATLAB or OCTAVE. Here the inverse is computed
with the built in function inv().

inv(B) (1.22)
 -0.01667 0.15000 -0.16667
 -0.21667 -0.05000 0.33333
 0.33333 0.00000 -0.16667

B*inv(B) (1.23)
 1.00000 0.00000 -0.00000
 -0.00000 1.00000 0.00000
 0.00000 0.00000 1.00000

inv(B)*B (1.24)
 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 0.00000 1.00000

The two answers are very close but not exactly the same. The difference is caused by the
computer truncating decimal digits.

1.4 Row and Column Vectors

 Matrices with a single column or row are called vectors. If they have only one column
they are called a column vector and if they only have one row, they are called a row vector.

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

c
b
a

 }{ cba (1.25)

 You will frequently see a column vector written as {a b c}T where the transpose of a
row vector is a column vector.

1.5 Vector – Vector Multiplication

 Vectors are multiplied using equation 1.1 just like any other matrix. This is shown in the
following example.

}{ cfbead
f
e
d

cba ++=
⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫
× (1.26)

In this case, we are multiplying a row vector times a column vector. The results are a scalar
quantity. You cannot multiply two row or two column vectors. Remember, the number of
columns in the first matrix must equal the number of rows in the second matrix.

Column
Vector

Row
Vector

Chapter 1 - Matrix Algebra Review Page 5 of 12

We can illustrate vector multiplication with MATLAB by defining two vectors. First we
define a row vector

D=[9, 6, 2] (1.27)
 9 6 2

Next we define a column vector. We do this by separating the elements with semi-colons.

E=[5; 4; 3] (1.28)
 5
 4
 3

Multiplying

D*E (1.29)
 75

In this case, the results of the multiplication are the scalar number 75. If we change the
order of the vectors we will get a completely different result.

E*D (1.30)
 45 30 10
 36 24 8
 27 18 6

In this case, the result is a matrix. Here again, you can duplicate these results using equation 1.1.

1.6 Matrix Vector Multiplication

 A vector can be multiplied by a matrix. The result is a vector as shown below.

⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

++
++
++

=
⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ilhkgj
flekdj
clbkaj

l
k
j

ihg
fed
cba

 (1.31)

We can illustrate this with MATLAB/OCTIVE by multiplying the matrix A times the

vector E defined above in equations 1.5 and 1.28 respectively.

A*E (1.32)
 22
 58
 94

 Here the result is a column vector. We can also multiply a vector times a matrix. This is
illustrated by multiplying the transpose of E times A. Note that E is a column vector and the
transpose of E is a row vector.

E’*A (1.33)
 42 54 66

Chapter 1 - Matrix Algebra Review Page 6 of 12

1.7 Gaussian Elimination

 Many problems in engineering require solving large systems of linear equations. This is
especially true with finite element solutions to stress and heat transfer problems. In finite
element work, it is not uncommon to have problems with thousands of equations.
 There are several methods for solving systems of equations with and some methods being
better than others. The two major requirements are that the method is very fast and can be used
on a wide range of problems. Gaussian elimination meets these requirements. It has the
following attributes:

a. It works for most reasonable problems
b. It is computationally very fast
c. It is not to difficult to program

 The major drawback is that it can suffer from the accumulation of round off errors.

1.8 Upper Triangular Form (Forward Sweep)

 We can illustrate how it works with the following set of equations.

3333232131

2323222121

1313212111

dXaXaXa
dXaXaXa
dXaXaXa

=++
=++
=++

 (1.34)

We would like to solve this set of equations for X1 , X2 , and X3 . We can rewrite the equations
in matrix form as:

3

2

1

333231

232221

131211

d
d
d

aaa
aaa
aaa

 (1.35)

 We want to multiply the first equation by some factor so that when we subtract the
second equations the a21 is eliminated. We can do this by multiplying it by a21 / a11 . This yields:

3

2

11

121

333231

232221

11

2113

11

2112
21

d
d
a

da

aaa
aaa
a
aa

a
aaa

 (1.36)

Subtracting the first equation in 3.3 from the second equation in 3.3 then replacing the first
equation with its original form yields:

Chapter 1 - Matrix Algebra Review Page 7 of 12

3

11

121
2

1

333231

11

2113
23

11

2112
22

131211

0

d
a

dad

d

aaa
a
aaa

a
aaa

aaa

−−− (1.37)

 We do the same thing for the third row by multiplying the first row by a31 / a11 and
subtracting it from the third row.

11

131
3

11

121
2

1

11

3113
33

11

3113
32

11

2113
23

11

2112
22

131211

0

0

a
dad

a
dad

d

a
aaa

a
aaa

a
aaa

a
aaa

aaa

−

−

−−

−− (1.38)

 We can reduce the complexity of the terms symbolically by substituting new variable
names for the complex terms. This yields

3

2

1

3332

2322

131211

0
0

e
e
d

bb
bb
aaa

 (1.39)

 Now multiply the second row by b32/b22 and subtracting it from the third row.

22

232
3

2

1

22

3223
33

2322

131211

00

0

b
ebe

e
d

b
bbb

bb
aaa

−−

 (1.40)

 Again we simplify by substituting in for the complex terms.

3

2

1

33

2322

131211

00
0

f
e
d

c
bb
aaa

 (1.41)

 This is what we call upper triangular form. We started at the first equation and worked
our way to the last equation in what is called a forward sweep. The forward sweep results in a
matrix with values on the diagonal and above and zeros below the diagonal.

1.9 Backward Sweep

 We can solve each equation of the upper triangular form by moving through the list
starting with the bottom equation and working our way up to the top.

Chapter 1 - Matrix Algebra Review Page 8 of 12

3333 / cfX = (1.42)

2232222 /)(bXbeX −= (1.43)

1131321211 /)(aXaXadX −−= (1.44)

 This is called back substitution and the process as a whole is called the backward sweep.

1.10 Equation Normalization

 You can see from the equations that it is very important for the diagonal coefficients to be
non-zero. A zero valued diagonal term will lead to a divide by zero error.
 In fact, there will be fewer problems with accumulated round off error if the diagonal
coefficients have a larger magnitude than the off diagonal terms. The reason for this is that
computers have limited precision. If the off diagonal terms are much larger than the diagonal
term, a very large number will be created when the right-hand-side of the equation is divided by
the diagonal term. The size of this number dominates the precision of the computer and causing
smaller values to be ignored when added to the larger value. For example, adding 1.3x1011 to
94.6 in a computer that has 8 digits of precision does results in a value of 1.3x1011. The 94.6 is
completely lost in the process. This can be seen in the previous example

11

2112
22 a

aaa − (1.45)

If the diagonal term a11 is small compared to the diagonal term a22 then we could end up with

 Small – large

And loose the value of small (a22) altogether.
 This problem is solved by using two steps in the processing.

a. Normalize the rows so that the largest term in the equation is 1.
b. Swap the rows around so that the largest term in any equation occurs on the

diagonal. This is called partial pivoting.

Diagonal dominance can usually be improved by moving the rows or the columns in the
set of equations. Moving the columns is somewhat more difficult than moving the rows because
the position of X1, X2, … changes when you move the columns. If you move the columns you
must keep track of the change in position of the Xs. When the rows are moved, the Xs stay in
the same place so rows can be moved without the added complication.

Moving both rows and columns is called full pivoting and it is the best method for
achieving diagonal dominance. We are going to look at partial pivoting because it works for
many problems and is much simpler to implement. With partial pivoting, we are only going to
move the rows.

1.11 Row Normalization

 Before we can perform either full or partial pivoting, we must normalize the rows. The
process is illustrated in the following example. We start with the equations

Chapter 1 - Matrix Algebra Review Page 9 of 12

2.2
2.4
1.7

06.03.2.0
3.222.79.4

2.39.85.0

−
−
−

 (1.46)

We normalize each row of the equations by dividing through by the largest term in magnitude in
the row of the matrix. The values in the vector at the right are not considered when selecting the
maximum value. The maximum value for a row is selected from the coefficients of the matrix.
In this case, we will divide the first row by 8.9, the second row by 22.3 and the third row by 0.2.
This results in:

11
18834.
79775.

3.15.1
132287.21973.

35955.100562.

−
−

−
 (1.47)

1.13 Partial Pivoting

 Now we can move the equations around (partial pivoting) so that the ones are on the
diagonal. It is important to notice that normalization must be done first because without
normalization it would be difficult to know how to rearrange the equation. There would be no
basis for the row by row comparison.

18834.
79775.

11

132287.21973.
35955.100562.

3.15.1

−
−
−

 (1.48)

 These are the equations we solve using Gaussian elimination.

1.14 Upper Triangular Form

The next step in the solution process is to put the matrix into upper triangular form. We
will call this the forwards sweep. We will multiply the top row by 0.00562/1 and subtract it from
the second row. This will place a zero in the first column of the second row. We will then
repeat the process by multiplying the first row by 0.21973/1 and subtraction it from the third
row. The resulting matrix is shown below.

2284.2
1798.
11

9341.2899.0
3347.9916.0

3.15.1

−−
−
−

 (1.49)

We complete the process by multiplying the second row by -.2889/-.9916 and subtracting

it from the third row. This leaves zeros in both the first and second columns of the third row.
The resulting matrix is shown below.

Chapter 1 - Matrix Algebra Review Page 10 of 12

2813.2
1798.
11

8339.00
3427.9916.0

3.15.1

−
−
−

 (1.50)

1.15 Back Solving

The back sweep is the last stage in the solving process. Here we solve for the unknown.
The process starts with the last equation or row of the matrix and works up a row at a time till it
reaches the top row.

7357.28339./2813.23 −=−=X (1.51)

1268.19916./)7357.23427.1798(.2 −=−−×−=X (1.52)
6517.111/))7357.23(.)1268.115.(11(1 =−×−−×−−=X (1.53)

1.16 Overall Process

 The overall process becomes

a. Normalize each equation
b. Move the equations to achieve diagonal dominance (partial pivoting).
c. Do a forward sweep that transforms the matrix to upper triangular form
d. Do a backwards sweep that solves for the values of the unknowns.

 This algorithm can be written into very compact and efficient computer algorithm and is
one of the more common ways of solving large numbers of simultaneous linear equations.

1.17 MATLAB / OCTAVE

 Both MATLAB and OCTAVE can be used to solve this problem using Gaussian
elimination. We will define the equations as matrix A and the values of the equations as vector
B. This is shown below.

A=[0.5,-8.9,3.2;4.9,-7.2,22.3;0.2,-.03,.06] (1.54)
 0.5 -8.9 3.2
 4.9 -7.2 22.3
 0.2 -0.3 0.6

B=[7.1; 4.2; 2.2] (1.55)
 7.1
 4.2
 2.2

 We can solve these simply by dividing A by B using the “\” symbol.

A\B (1.56)
 11.6517
 -1.1268
 -2.7357

Chapter 1 - Matrix Algebra Review Page 11 of 12

Another way to solve this system of equations it to use the inverse of the matrix as

prescribed in equation 1.21. Using that method, we would write:

inv(A)*B (1.57)
 11.6517
 -1.1268
 -2.7357

This gives us the same answer using another method. In this latter case, MATLAB /
OCTAVE does not use Gaussian elimination to solve the problem.

 PROBLEMS

In each of the problems below use either MATLAB or OCTAVE to compute (AB)T and

BTAT. Are they equivalent?

1. ⎥
⎦

⎤
⎢
⎣

⎡
−

=
201
132

A ,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

11
10
11

B

2. By hand, compute the transpose of the matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

342
961
243

Solve the following equations using Gaussian elimination. Do not use row normalization or
pivoting for these solutions.

3. 4.

6
0
2

621
422
231

13
12
1

16166
17188
342

5. Put the following system of equations into upper triangular form. Do not use partial
pivoting or row normalization.

7
3
8

523
126
243

−−

Chapter 1 - Matrix Algebra Review Page 12 of 12

Use the back solving method to solve the following systems of equations.

6. 7.

16
13
7

400
250
341

36
30
28
50

9000
3600
3420
7361

Rewrite the following system of equations using row normalization and partial pivoting.

8. 9.

6
6

2

621
201

231
−−

10
2
22

541
504
125

−

−

10. Solve the following system of equations using Gaussian elimination. Demonstrate
equation normalization and partial pivoting. Show all work.

16532
1328
1764
12336

4321

4321

4321

4321

−=−++
−=−−+
−=−++
−=+−−

XXXX
XXXX
XXXX
XXXX

Solve the following system of equations using MATLAB or OCTAVE.

11. 12.

24252
52732

0242
6423

4321

4321

4321

4321

=−++
−=+−+

=+−+
−=−++

XXXX
XXXX

XXXX
XXXX

2
5
4

36

8636
11264
2438

4394

−
−−

−−
−

13.

16
9
31

2

10314
31234
6492
5268 −

−
−
−

