
Solving Linear Equations 
 

3.0 Gaussian Elimination 
 
 Last time we looked at computing the stresses in a simple truss.  To solve for the 
stresses, we need to solve a set of equations with several unknowns.  The number of 
unknowns increases as the number of elements and nodes in the truss increases.  For a 
very complex truss there would be many equations and unknowns. 
 We need a method that is very fast and can be used on a wide range of problems.  
Gaussian elimination meets these requirements.  It has the following attributes: 
 

a. It works for most reasonable problems 
b. It is computationally very fast 
c. It is not to difficult to program 

 
 The major drawback is that it can suffer from the accumulation of round off 
errors. 
 
3.1 Upper Triangular Form (Forward Sweep) 
 
 We can illustrate how it works with the following set of equations.   
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We would like to solve this set of equations for X1 , X2 , and X3 .  We can rewrite the 
equations in matrix form as: 
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 We want to multiply the first equation by some factor so that when we subtract 
the second equations the a21 is eliminated.  We can do this by multiplying it by a21 / a11 .  
This yields: 
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Subtracting the first equation in 3.3 from the second equation in 3.3 then replacing the 
first equation with its original form yields: 
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 We do the same thing for the third row by multiplying the first row by a31 / a11  
and subtracting it from the third row. 
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 We can reduce the complexity of the terms symbolically by substituting new 
variable names for the complex terms.  This yields 
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 Now multiply the second row by b32/b22 and subtracting it from the third row.  
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 Again we simplify by substituting in for the complex terms. 
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 This is what we call upper triangular form.  We started at the first equation and 
worked our way to the last equation in what is called a forward sweep.  The forward 



sweep results in a matrix with values on the diagonal and above and zeros below the 
diagonal. 
 
3.2 Backward Sweep 

 
 We can solve each equation of the upper triangular form by moving through the 
list starting with the bottom equation and working our way up to the top. 
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 This is called back substitution and the process as a whole is called the backward 
sweep. 
 
3.3 Equation Normalization 
 
 You can see from the equations that it is very important for the diagonal 
coefficients to be non-zero.  A zero valued diagonal term will lead to a divide by zero 
error. 
 In fact, there will be fewer problems with accumulated round off error if the 
diagonal coefficients have a larger magnitude than the off diagonal terms.  The reason for 
this is that computers have limited precision.  If the off diagonal terms are much larger 
than the diagonal term, a very large number will be created when the right-hand-side of 
the equation is divided by the diagonal term.  The size of this number dominates the 
precision of the computer and causing smaller values to be ignored when added to the 
larger value.  For example, adding 1.3x1011 to 94.6 in a computer that has 8 digits of 
precision does results in a value of 1.3x1011.  The 94.6 is completely lost in the process.  
This can be seen in the previous example 
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If a11 is small compared to a22 then we could end up with 
 
   Small – large 
 
And loose the value of small (a22) altogether. 
 This problem is solved by using two steps in the processing. 
 

a. Normalize the rows so that the largest term in the equation is 1. 
b. Swap the rows around so that the largest term in any equation occurs on 

the diagonal.  This is called partial pivoting.  
 



Diagonal dominance can usually be improved by moving the rows or the columns 
in the set of equations.  Moving the columns is somewhat more difficult than moving the 
rows because the position of X1, X2, … changes when you move the columns.  If you 
move the columns you must keep track of the change in position of the Xs.   When the 
rows are moved, the Xs stay in the same place so rows can be moved with the added 
complication. 

Moving both rows and columns is called full pivoting and it is the best method for 
achieving diagonal dominance.  We are going to look at partial pivoting because it works 
for many problems and is much simpler to implement.  With partial pivoting, we are only 
going to move the rows.    
 Before we can perform either full or partial pivoting, we must normalize the rows.  
The process is illustrated in the following example.  We start with the equations 
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We normalize each row of the equations by dividing through by the largest term in 
magnitude in that row.  This results in: 
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3.4 Partial Pivoting 
 
 Now we can move the equations around (partial pivoting) so that the ones are on 
the diagonal.  It is important to notice that normalization must be done first because 
without normalization it would be difficult to know how to rearrange the equation.  There 
would be no basis for the row by row comparison. 
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 These are the equations we solve using Gaussian elimination. 
 
3.5 Overall Process 
 
 The overall process becomes 
 

a. Normalize each equation 
b. Move the equations to achieve diagonal dominance (partial pivoting). 



c. Do a forward sweep that transforms the matrix to upper triangular form 
d. Do a backwards sweep that solves for the values of the unknowns. 

 
 This algorithm can be written into very compact and efficient computer 
algorithms and is one of the more common ways of solving large numbers of 
simultaneous linear equations. 
 The following program reads a data file containing a matrix defining a set of 
linear simultaneous linear equations.  The program then executes 4 functions to solve the 
system.  The first function normalizes the equations, the second does partial pivoting to 
achieve diagonal dominance, the third puts the matrix in upper triangular form, and the 
forth function does the back substitution to solve the system of equation.  The program is 
sized to handle up to 100 equations and 100 unknowns. 

Four functions are used to solve the equations.  They are: 
 
normal which normalizes each row of the matrix 
pivot attempts to improve diagonal dominance by exchanging the 

position of rows. 
forelm the forward sweep that puts the matrix into upper triangular form 
baksub which does the back substitution to solve for the unknowns 
 
These routines are very short and efficient. 

 
//  gauss.C - This program tests a series of routines that solve multiple 
//            linear equations using Gaussian elimination. 
 
#include  <fstream.h> 
#include  <iomanip.h> 
#include  <math.h> 
 
// ROUTINES 
 
void    baksub (double a[100][100], double b[100], double x[100], int m); 
void    gauss (double a[100][100], double b[100], double x[100], int m); 
void    normal (double a[100][100], double b[100], int m); 
void    pivot (double a[100][100], double b[100], int m); 
void    forelm (double a[100][100], double b[100], int m); 
void    baksub (double a[100][100], double b[100], double x[100], int m); 
 
void    main (void) 
{ 
        int       size, i, j; 
        double    a[100][100], b[100], x[100]; 
        ifstream  input; 
 
//  Open the file and read the input data.  The equations in the file are 
//  written in an augmented matrix format 
 
        input.open ("gauss.dat"); 
        input >> size; 
 
        for (i = 0; i < size; i++) 
        { 
            for (j = 0; j < size; j++) 
                input >> a[i][j]; 
 



            input >> b[i]; 
        } 
 
        gauss (a, b, x, size); 
 
//  print out the results 
 
        for (i = 0; i < size; i++) 
            cout << "x[" << i << "] = " << x[i] << endl; 
} 
 
//  Here are a series of routines that solve multiple linear equations 
//  using the Gaussian Elimination technique 
 
void gauss (double a[100][100], double b[100], double x[100], int m) 
{ 
 
//  Normalize the matix 
 
        normal (a, b, m); 
 
//  Arrange the equations for diagonal dominance 
 
        pivot (a, b, m); 
 
//  Put into upper triangular form 
 
        forelm (a, b, m); 
 
//  Do the back substitution for the solution 
 
        baksub (a, b, x, m); 
} 
 
//  This routine normalizes each row of the matrix so that the largest 
//  term in a row has an absolute value of one 
 
void normal (double a[100][100], double b[100], int m) 
{ 
        int     i, j; 
        double  big; 
 
        for (i = 0; i < m; i++) 
        { 
            big = 0.0; 
            for (j = 0; j < m; j++) 
                if (big < fabs(a[i][j])) big = fabs(a[i][j]); 
 
            for (j = 0; j < m; j++) 
                a[i][j] = a[i][j] / big; 
 
            b[i] = b[i] / big; 
        } 
} 
 
//  This routine attempts to rearrange the rows of the matrix so  
//  that the maximum value in each row occurs on the diagonal.   
 
void pivot (double a[100][100], double b[100], int m) 
{ 
        int        i, j, ibig; 
        double     temp; 
 



        for (i = 0; i < m-1; i++) 
        {         
            ibig = i; 
            for (j = i+1; j < m; j++) 
                if (fabs (a[ibig][i]) < fabs (a[j][i])) ibig = j; 
 
            if (ibig != i) 
            { 
                for (j = 0; j < m; j++) 
                { 
                    temp = a[ibig][j]; 
                    a[ibig][j] = a[i][j]; 
                    a[i][j] = temp; 
                } 
 
                temp = b[ibig]; 
                b[ibig] = b[i]; 
                b[i] = temp; 
            } 
        } 
} 
 
//  This routine does the forward sweep to put the matrix in to upper 
//  triangular form 
 
void    forelm (double a[100][100], double b[100], int m) 
{ 
        int      j, k, i; 
        double   fact; 
 
        for (i = 0; i < m-1; i++) 
        { 
            for (j = i+1; j < m; j++) 
            { 
                if (a[i][i] != 0.0) 
                { 
                    fact = a[j][i] / a[i][i]; 
                    for (k = 0; k < m; k++) 
                        a[j][k] -= a[i][k] * fact; 
 
                    b[j] -= b[i]*fact; 
                } 
            } 
        } 
} 
 
//  This routine does the back substitution to solve the equations 
 
void    baksub (double a[100][100], double b[100], double x[100], int m) 
{ 
        int      i, j; 
        double   sum; 
 
        for (j = m-1; j >= 0; j--) 
        { 
            sum = 0.0; 
            for (i = j+1; i < m; i++) 
                sum += x[i] * a[j][i]; 
 
            x[j] = (b[j] - sum) / a[j][j]; 
        } 
} 
 


