
Solving Linear Equations

3.0 Gaussian Elimination

 Last time we looked at computing the stresses in a simple truss. To solve for the
stresses, we need to solve a set of equations with several unknowns. The number of
unknowns increases as the number of elements and nodes in the truss increases. For a
very complex truss there would be many equations and unknowns.
 We need a method that is very fast and can be used on a wide range of problems.
Gaussian elimination meets these requirements. It has the following attributes:

a. It works for most reasonable problems
b. It is computationally very fast
c. It is not to difficult to program

 The major drawback is that it can suffer from the accumulation of round off
errors.

3.1 Upper Triangular Form (Forward Sweep)

 We can illustrate how it works with the following set of equations.

3333232131

2323222121

1313212111

dXaXaXa
dXaXaXa
dXaXaXa

=++
=++
=++

 (3.1)

We would like to solve this set of equations for X1 , X2 , and X3 . We can rewrite the
equations in matrix form as:

3

2

1

333231

232221

131211

d
d

d

aaa
aaa

aaa

 (3.2)

 We want to multiply the first equation by some factor so that when we subtract
the second equations the a21 is eliminated. We can do this by multiplying it by a21 / a11 .
This yields:

3

2

11

121

333231

232221

11

2113

11

2112
21

d
d
a

da

aaa
aaa
a
aa

a
aa

a

 (3.3)

Subtracting the first equation in 3.3 from the second equation in 3.3 then replacing the
first equation with its original form yields:

3

11

121
2

1

333231

11

2113
23

11

2112
22

131211

0

d
a

da
d

d

aaa
a
aa

a
a
aa

a

aaa

−−− (3.4)

 We do the same thing for the third row by multiplying the first row by a31 / a11
and subtracting it from the third row.

11

131
3

11

121
2

1

11

3113

11

3113

11

2113
23

11

2112
22

131211

33320

0

a
dad

a
da

d

d

a
aaa

a
aaa

a
aa

a
a

aa
a

aaa

−

−

−−

−− (3.5)

 We can reduce the complexity of the terms symbolically by substituting new
variable names for the complex terms. This yields

3

2

1

3332

2322

131211

0
0

e
e

d

bb
bb

aaa

 (3.6)

 Now multiply the second row by b32/b22 and subtracting it from the third row.

22

232
3

2

1

22

3223
33

2322

131211

00

0

b
eb

e

e

d

b
bb

b

bb

aaa

−−

 (3.7)

 Again we simplify by substituting in for the complex terms.

3

2

1

33

2322

131211

00
0

f
e

d

c
bb

aaa

 (3.8)

 This is what we call upper triangular form. We started at the first equation and
worked our way to the last equation in what is called a forward sweep. The forward

sweep results in a matrix with values on the diagonal and above and zeros below the
diagonal.

3.2 Backward Sweep

 We can solve each equation of the upper triangular form by moving through the
list starting with the bottom equation and working our way up to the top.

3333 / cfX = (3.9)

2232222 /)(bXbeX −= (3.10)

1131321211 /)(aXaXadX −−= (3.11)

 This is called back substitution and the process as a whole is called the backward
sweep.

3.3 Equation Normalization

 You can see from the equations that it is very important for the diagonal
coefficients to be non-zero. A zero valued diagonal term will lead to a divide by zero
error.
 In fact, there will be fewer problems with accumulated round off error if the
diagonal coefficients have a larger magnitude than the off diagonal terms. The reason for
this is that computers have limited precision. If the off diagonal terms are much larger
than the diagonal term, a very large number will be created when the right-hand-side of
the equation is divided by the diagonal term. The size of this number dominates the
precision of the computer and causing smaller values to be ignored when added to the
larger value. For example, adding 1.3x1011 to 94.6 in a computer that has 8 digits of
precision does results in a value of 1.3x1011. The 94.6 is completely lost in the process.
This can be seen in the previous example

11

2112
22 a

aa
a − (3.12)

If a11 is small compared to a22 then we could end up with

 Small – large

And loose the value of small (a22) altogether.
 This problem is solved by using two steps in the processing.

a. Normalize the rows so that the largest term in the equation is 1.
b. Swap the rows around so that the largest term in any equation occurs on

the diagonal. This is called partial pivoting.

Diagonal dominance can usually be improved by moving the rows or the columns
in the set of equations. Moving the columns is somewhat more difficult than moving the
rows because the position of X1, X2, … changes when you move the columns. If you
move the columns you must keep track of the change in position of the Xs. When the
rows are moved, the Xs stay in the same place so rows can be moved with the added
complication.

Moving both rows and columns is called full pivoting and it is the best method for
achieving diagonal dominance. We are going to look at partial pivoting because it works
for many problems and is much simpler to implement. With partial pivoting, we are only
going to move the rows.
 Before we can perform either full or partial pivoting, we must normalize the rows.
The process is illustrated in the following example. We start with the equations

2.2
2.4

1.7

06.03.2.0
3.222.79.4

2.39.85.0

−
−

−

 (3.13)

We normalize each row of the equations by dividing through by the largest term in
magnitude in that row. This results in:

11
18834.

79775.

3.15.1
132287.21973.

35955.100562. −

−
−

−−

 (3.14)

3.4 Partial Pivoting

 Now we can move the equations around (partial pivoting) so that the ones are on
the diagonal. It is important to notice that normalization must be done first because
without normalization it would be difficult to know how to rearrange the equation. There
would be no basis for the row by row comparison.

18834.
79775.

11

132287.21973.
35955.100562.

3.15.1

−
−

−−

−

 (3.15)

 These are the equations we solve using Gaussian elimination.

3.5 Overall Process

 The overall process becomes

a. Normalize each equation
b. Move the equations to achieve diagonal dominance (partial pivoting).

c. Do a forward sweep that transforms the matrix to upper triangular form
d. Do a backwards sweep that solves for the values of the unknowns.

 This algorithm can be written into very compact and efficient computer
algorithms and is one of the more common ways of solving large numbers of
simultaneous linear equations.
 The following program reads a data file containing a matrix defining a set of
linear simultaneous linear equations. The program then executes 4 functions to solve the
system. The first function normalizes the equations, the second does partial pivoting to
achieve diagonal dominance, the third puts the matrix in upper triangular form, and the
forth function does the back substitution to solve the system of equation. The program is
sized to handle up to 100 equations and 100 unknowns.

Four functions are used to solve the equations. They are:

normal which normalizes each row of the matrix
pivot attempts to improve diagonal dominance by exchanging the

position of rows.
forelm the forward sweep that puts the matrix into upper triangular form
baksub which does the back substitution to solve for the unknowns

These routines are very short and efficient.

// gauss.C - This program tests a series of routines that solve multiple
// linear equations using Gaussian elimination.

#include <fstream.h>
#include <iomanip.h>
#include <math.h>

// ROUTINES

void baksub (double a[100][100], double b[100], double x[100], int m);
void gauss (double a[100][100], double b[100], double x[100], int m);
void normal (double a[100][100], double b[100], int m);
void pivot (double a[100][100], double b[100], int m);
void forelm (double a[100][100], double b[100], int m);
void baksub (double a[100][100], double b[100], double x[100], int m);

void main (void)
{
 int size, i, j;
 double a[100][100], b[100], x[100];
 ifstream input;

// Open the file and read the input data. The equations in the file are
// written in an augmented matrix format

 input.open ("gauss.dat");
 input >> size;

 for (i = 0; i < size; i++)
 {
 for (j = 0; j < size; j++)
 input >> a[i][j];

 input >> b[i];
 }

 gauss (a, b, x, size);

// print out the results

 for (i = 0; i < size; i++)
 cout << "x[" << i << "] = " << x[i] << endl;
}

// Here are a series of routines that solve multiple linear equations
// using the Gaussian Elimination technique

void gauss (double a[100][100], double b[100], double x[100], int m)
{

// Normalize the matix

 normal (a, b, m);

// Arrange the equations for diagonal dominance

 pivot (a, b, m);

// Put into upper triangular form

 forelm (a, b, m);

// Do the back substitution for the solution

 baksub (a, b, x, m);
}

// This routine normalizes each row of the matrix so that the largest
// term in a row has an absolute value of one

void normal (double a[100][100], double b[100], int m)
{
 int i, j;
 double big;

 for (i = 0; i < m; i++)
 {
 big = 0.0;
 for (j = 0; j < m; j++)
 if (big < fabs(a[i][j])) big = fabs(a[i][j]);

 for (j = 0; j < m; j++)
 a[i][j] = a[i][j] / big;

 b[i] = b[i] / big;
 }
}

// This routine attempts to rearrange the rows of the matrix so
// that the maximum value in each row occurs on the diagonal.

void pivot (double a[100][100], double b[100], int m)
{
 int i, j, ibig;
 double temp;

 for (i = 0; i < m-1; i++)
 {
 ibig = i;
 for (j = i+1; j < m; j++)
 if (fabs (a[ibig][i]) < fabs (a[j][i])) ibig = j;

 if (ibig != i)
 {
 for (j = 0; j < m; j++)
 {
 temp = a[ibig][j];
 a[ibig][j] = a[i][j];
 a[i][j] = temp;
 }

 temp = b[ibig];
 b[ibig] = b[i];
 b[i] = temp;
 }
 }
}

// This routine does the forward sweep to put the matrix in to upper
// triangular form

void forelm (double a[100][100], double b[100], int m)
{
 int j, k, i;
 double fact;

 for (i = 0; i < m-1; i++)
 {
 for (j = i+1; j < m; j++)
 {
 if (a[i][i] != 0.0)
 {
 fact = a[j][i] / a[i][i];
 for (k = 0; k < m; k++)
 a[j][k] -= a[i][k] * fact;

 b[j] -= b[i]*fact;
 }
 }
 }
}

// This routine does the back substitution to solve the equations

void baksub (double a[100][100], double b[100], double x[100], int m)
{
 int i, j;
 double sum;

 for (j = m-1; j >= 0; j--)
 {
 sum = 0.0;
 for (i = j+1; i < m; i++)
 sum += x[i] * a[j][i];

 x[j] = (b[j] - sum) / a[j][j];
 }
}

