
Chapter 2 - Static Truss Problem Page 1 of 14

Statics Truss Problem

2.1 Statics

 We are going to start our discussion of Finite Element Analysis (FEA) with
something very familiar. We are going to look at a simple statically determinate truss.
Trusses are characterized by linear elements (beams) which are pinned together at their
ends. The pinned connection offers no resistance to rotation so there is no moment
around the joint.
 Consider the frame shown below. On this frame we assume that elements 1, 2, 4,
and 5 are all equal in length.

The members in the structure are numbered with circles around them. We call

these members elements. The points where the elements connect are called nodes. In the
problem above there are 5 elements and 4 nodes.

We can draw free body
diagrams at the nodes. They are shown
in Figure 2. There is always one force
per element. In the diagram, we are
using the variables F for the forces in
the elements. The subscripts on these
forces refer to the element number.
The variables R represent the reactions.
Their subscripts are assigned
arbitrarily.

We know that the sum of the
forces at each node must equal zero.
There are two equations for each point,
the horizontal equation and the vertical
equation. We can write the equations as:

E

-F5

F5

R3

R2

-F4 F4

F1 -F1

F2

R1

-F2
F3

F3

1
2

4 3

12

3
4

1000

Element
 5

1

2 3

4
Figure 1 - Square truss with constraints and a load.

Figure 2 - Free body diagram of the truss

Chapter 2 - Static Truss Problem Page 2 of 14

Node F1 F2 F3 F4 F5 R1 R2 R3 External Sum
1H - F1 -E = 0
1V - F5 0 = 0
2H F1 +.707F3 0 = 0
2V - F2 -.707F3 0 = 0
3H + F4 0 = 0
3V F2 + R1 0 = 0
4H -.707F3 - F4 + R3 0 = 0
4V +.707F3 + F5 + R2 0 = 0

Figure 3 - The equations defining the forces and reactions written in a matrix form.

Each row in the table shows the equation for summing either the horizontal or
vertical forces about a node. As you know from statics, the forces must sum to zero.

Each row lists all of the unknowns. The equations are written to keep the
unknown terms in their respective columns. The column on the left list the equations
needed to solve the forces in the system. The number in this column refers to the node,
the H for horizontal forces, and V for vertical forces. Empty cells in the equation table
indicate the force or reaction specified in the column does not apply to that particular
node. These empty cells could be filled with zeros.

The coefficients and sign of the coefficients for the element forces can be readily
determined by looking at the direction of the element with respect to the node we are
analyzing. This is shown in the diagram below.

There are several things to notice about the equations above:

1. In this particular problem, there are 5 elements and one unknown force per

element. There are also 3 unknown reactions. This gives us a total of 8
unknowns in the problem. There are 2 equations for each node, a vertical
equation and a horizontal equation which gives us a total of 8 equations. We
can solve this system since we have as many equations as we have unknowns.
In general, problems of this type must satisfy the equation shown below if
they are solvable.

2 * Nodes = Elements + Reactions

Ø

Element

Node

Horizontal Reference

)sin(
)cos(

θ
θ

=
=

tCoefficienVertical
tCoefficienHorizontal

Chapter 2 - Static Truss Problem Page 3 of 14

2. If we add another element as shown
at the right, there will be 8 equations
and 9 unknowns. The problem will
no longer be statically determinate
and cannot be solved using the
technique we are discussing.

3. In this type of problem, there must be

at least 3 reactions. Two reactions
are required to eliminate the X and Y
translation and another reaction is
required to eliminate any rotation of
the object. The basic premise is that
the object cannot move. It is in static
equilibrium.

2.2 Matrix Notation

 The equations above can be rewritten in matrix notation as shown below. Here
we are moving the external forces to the other side of the equal sign which means we
must change its sign.

 (2.1)

Or as:

[] }{}{ EFM =× (2.2)

This structure is common to many types of engineering problems. The left-hand-
side is completely dependent upon the geometry and the right-hand-side upon the driving
forces. If the geometry does not change, we can examine many load cases without

12

3 4

External
Force E

Element
 5

1

2
3

4

6

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

=

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−
−

0
0
0
0
0
0
0
000,1

01010707.00
10001707.00
00100010
00001000
00000707.10
00000707.01
00010000
00000001

3

2

1

5

4

3

2

1

R
R
R
F
F
F
F
F

Matrix based upon
shape of the
structure

Forces and
Reactions

External Forces

Figure 4 - Statically indeterminate truss.

Chapter 2 - Static Truss Problem Page 4 of 14

changing the left-hand-side of the equation. This can lead to solution efficiencies we will
discuss later.

Problems like this can easily be solved in MATLAB. If we define M as the
matrix and E as the loading forces on the right hand side of the equations, we can solve
with:

M\E
 -1000
 -1000
 1414
 0
 0
 1000
 -1000
 1000

Referring to equation 2.1 we see that:

 F1 = -1000
 F2 = -1000
 F3 = 1,414
 F4 = 0
 F5 = 0
 R1 = 1000
 R2 = -1000
 R3 = 1000

The force subscript refers to the element the force is acting on. A negative value

is a compressive force and a positive value is a tensile force.
We can divide these forces by the cross sectional area of the elements to compute

the stresses in each element.

AF /=σ (2.3)

We can compute the total displacement of the length of the element with the

equation:

AE
LF

E
LntDisplaceme ==
σ (2.4)

Where:
 L = the length of the element
 F = the force on the element
 σ = the stress in the element
 A = the cross sectional area of the element
 E = Young’s modulus for the element material

12

3 4

1000

Element
 5

1

2 3

4

Chapter 2 - Static Truss Problem Page 5 of 14

2.2 Developing a Systematic Method for Solving

This type of problem lends itself to a computer solution but if you generate the
matrix by hand, it will be a very slow process to solve a large problem. A more
systematic method is needed. We will re-examine the problem we just solved to see if
we can develop such a system.

First, we number the nodes and define their coordinates. We will place the origin
for the coordinate system at node 3 with X in the horizontal direction and Y in the
vertical. We could place this coordinate system anywhere but this is a convenient
location. The placement of the coordinate system is shown in the figure below.

We can now define this problem with three tables. The first will contain the nodal
coordinates, the second will specify which two nodes are connected by each element, and
the third will specify where the reactions are located and their direction. These tables are
shown below.

Node Coordinates
Node X Y

1 10 10
2 0 10
3 0 0
4 10 0

Table 1 - Coordinates of
each node.

Element Nodal
Connectivity

Element From
Node

To
Node

1 2 1
2 3 2
3 2 4
4 3 4
5 4 1

Table 2 - Table showing
which notes the elements
connect.

Reactions at Nodes

Reaction Node Direction
1 3 Y
2 4 Y
3 4 X

Table 3 - Table showing
which node the reaction is
applied and the direction of
the reaction.

At this point we have defined the nodes, elements, and reactions. We can form
the matrix defining the truss geometry. It will be a square matrix with 2 equations or

1
2

3 4

1000

Element
 5

1

2 3

4
X

Y

Figure 5 - Diagram of the truss showing the coordinate system.

Chapter 2 - Static Truss Problem Page 6 of 14

rows per node. The first row for each node will define the horizontal forces on that node
and the second row will define the vertical forces. All of the forces will come from
elements connecting to the node or reactions at the node. External forces will be stored
in a separate array.

We can construct the matrix by first filling it with zeros. This is illustrated below.
We fill it with zeros so that we can add the forces imposed by each element into the
proper column. This initial matrix is shown below.

 F1 F2 F3 F4 F5 R1 R2 R3

1H 0 0 0 0 0 0 0 0
1V 0 0 0 0 0 0 0 0
2H 0 0 0 0 0 0 0 0
2V 0 0 0 0 0 0 0 0
3H 0 0 0 0 0 0 0 0
3V 0 0 0 0 0 0 0 0
4H 0 0 0 0 0 0 0 0
4V 0 0 0 0 0 0 0 0

Table 4 - The truss geometry matrix with all of the equation coefficients set to zero.

The first column lists the nodes. The H stands for horizontal forces and the V
stands for vertical forces. The top row lists the forces and reactions. Each force is
associated with an element. The zeros are the actual matrix.

Now we can go through all of the elements adding their contribution to this
matrix. First we use the node and element tables (Tables 1 and 2) to compute the length
of each element.

() ()22

tofromtofromn yyxxL −+−= (2.5)

Where:
 Ln = the length of element n
 Xfrom = the x coordinate for the “from node” for element n
 Yfrom = the y coordinate for the “from node” for element n
 Xto = the x coordinate for the “to node” for element n
 Yto = the y coordinate for the “to node” for element n

The horizontal and vertical components for the “from node” can be computed

with:

n

fromto

elementfrom L
XX

H
−

=,
 (2.6)

n

fromto

elementfrom L
YY

V
−

=,
 (2.7)

Chapter 2 - Static Truss Problem Page 7 of 14

The horizontal and vertical components for the “to node” can be computed with:

n

tofrom

elementto L
XX

H
−

=,
 (2.8)

n

tofrom

elementto L
YY

V
−

=,
 (2.9)

We continue applying these formulas to all of the elements. The values of H and

V are added into each element’s column in the matrix shown in Table 4.
Next we add in the reaction forces. In each reaction column, add in a value of the

reaction. Since the reactions are purely in the X and Y direction, all values will be either
1 or 0. For example, reaction 1 is applied at node 3 and it only works in the Y or vertical
direction. We will place a 0 in the 3H row, R1 column since there is not horizontal
component for this reaction and a 1 in the 3V, R1 column since there is a vertical
reaction. We continue this process for all of the reactions. This completes the geometry
matrix and we move on to the external forces vector.

The external forces vector is the vector on the right hand side of the equation. It
defines the horizontal and vertical forces applied at each node. Only external forces are
considered. Reactions and the forces caused by elements are handled by the matrix on
the left hand side of the equation. If two different forces are applied to a node, the
horizontal and vertical components are added and the values are placed in this vector.

Once this vector is in place, you can solve the set of equations for the forces in the
elements and the reaction forces as was demonstrated earlier in the numerical example.

2.3 Writing a General Program

Most programs except for the simplest are too complex for us to keep the entire
program and all of its logical interactions in our mind at one time. Since we can keep the
entire program in our minds at one time, the entire writing process becomes a frustrating
and time consuming affair with many false starts and failed attempts. The problem is not
that you cannot write a program. The problem is that you cannot keep the entire design
in your mind long enough to write the program.

A simple way to overcome this problem is to break the program into parts and
treat each part as a smaller program. This process is called hierarchical decomposition.
It is a divide and conquer strategy that is applicable to computer programs as well as
engineering designs. If the problem is too large, you cannot get your mind around it, and
if you cannot get your mind around it, you cannot solve the problem.

When you break the program into parts, try to create no more than 6 or 7 parts.
Experiments have shown that most people cannot keep more than 6 or 7 things in mind at
one time. You want a simple structure – one that you can easily keep in mind. If you
divide the program into too many parts, you will not be able to keep them all in your
mind at one time and will not be able to easily write the program.

Chapter 2 - Static Truss Problem Page 8 of 14

We can illustrate this approach with a program to compute the stresses in a static
truss. Assume there is a data file that defines the truss. The structure becomes:

Figure 6 - Initial hierarchical decomposition of the Truss program.

Here, we have taken the Truss program and divided it into 4 smaller modules.

We can think of each of these modules as smaller, simpler programs. Some of these
modules may be more complex than others but that is not important. We now look at
each of the modules and ask the question: “Do I understand all of the inputs and outputs
for each of these modules and the logical interactions that must take place inside each
module?” If the answer is yes, we are finished with the definition of that module. If the
answer is no, we repeat the process for module dividing it into simpler parts.

The “Open Data File” is very simple and can be written in one line of code but the
other modules are more complex. We will divide each of them.

The “Read Data” module can be divided into four smaller modules.

Figure 7 - Decomposition of the "Read data" module.

If we let the “Read data” routines read in the data and place this data into Matlab

data structures, then the “Compute Forces” module is a very simple one line program.
There is no need to divide it into smaller parts.

The “Report Forces” module can be divided into two parts as shown below.

PROGRAM
TRUSS

Open
Data File

Read
Data

Compute
Forces

Report
Forces

Read Data

Read Node
Data

Read
Element
Data

Read
Reaction
Data

Read
External
Force Data

Chapter 2 - Static Truss Problem Page 9 of 14

Figure 7 - Decomposition of the "Report forces" module.

Now that we have divided each of the module into smaller modules, we then

repeat the process asking the question: “Do I understand all of the inputs and outputs for
each of module and the logical interactions that must take place inside each module?” If
the answer is no, we must repeat the process to create simpler lower level modules.
Eventually, we will get to a place where all of the lowest level modules are very simple
and can be easily understood. I think we have reached that point with the Truss program.

Program Construction

The next step is to write the program using the hierarchical diagram we have

created. Write the code for one of the boxes at a time starting at the top of the
hierarchical structure starting with a function statement marking the first line of code and
a comment marking the end of the program.

 function truss (file_name)
 .
 .
 .
 % End of program

Most programmers find it very useful to put in comments defining each of the

boxes in the hierarchical decomposition. There would be a comment saying “Open Data
File” followed by “Read Data”, “Compute Forces”, and “Report Forces”. Go through the
entire program laying out the structure. These comments will help you keep the structure
in mind as you write the program.

Next, write the “Open Data File” code. This is a simple one. It consists of only
one line.

One of the major mistakes people make when writing a program or creating an
engineering design is to write too many lines without testing what they have done. As
soon as you have written the “Open Data File” code, run the program and test it. The file
id returned by the fopen statement should be positive number. If you are getting a -1
value, the file is not being opened. Did you misspell a variable name or did you make a
mistake with the file name when you ran the program? Fix this problem before
continuing with the development.

It is very important to test the program every few lines of code. Write a few lines
of code then test it. If there is a mistake, you do not have to look through mountains of

Report forces

Forces in
elements

Reaction
forces

Chapter 2 - Static Truss Problem Page 10 of 14

code to find it. It is more than likely in the last few lines of code you have written.
Everything else has already been tested.

Continue writing a few lines of code and testing it until you have completed the
program.

2.4 The completed Program

The complete Matlab program for computing the forces in trusses is shown
below. It follows the diagrams shown above and was written with the methodology
discussed. Using this methodology, the program only took an hour or so to write.

% truss - this program uses a matrix method to solve for the forces in
% the members of a statically determinate truss. It also
% computes the reaction forces.
%
% The program is started by typing
%
% truss('input_data_file.txt')
%
% at the MATLAB prompt. In this case the input data file is
% named input_data_file.txt Any file name can be used. The
% file is a common text file and can be created with NOTEPAD
%
% Written by: Robert Greenlee

function truss(file_name);

% OPEN DATA FILE

fid = fopen(file_name, 'r');

% READ DATA - READ NODE DATA - First read the number of nodes in the
truss

Number_nodes=fscanf(fid, '%d', 1);

% Read the coordinates for each node

for i=1:Number_nodes
 Node=fscanf(fid, '%d', 1);
 Coordinate(Node, 1)=fscanf(fid, '%g', 1);
 Coordinate(Node, 2)=fscanf(fid, '%g', 1);
end

% READ DATA - READ ELEMENT DATA - Now read the number of elements and
the
% element definition

Number_elements=fscanf(fid, '%d', 1);
M=zeros(2*Number_nodes, 2*Number_nodes);

Chapter 2 - Static Truss Problem Page 11 of 14

for i=1:Number_elements
 Element=fscanf(fid, '%d', 1);
 Node_from=fscanf(fid, '%d', 1);
 Node_to=fscanf(fid, '%d', 1);

 dx=Coordinate(Node_to,1)-Coordinate(Node_from,1);
 dy=Coordinate(Node_to,2)-Coordinate(Node_from,2);
 Length=sqrt(dx^2 + dy^2);

 M(2*Node_from-1,Element) = dx/Length;
 M(2*Node_to-1, Element) = -dx/Length;
 M(2*Node_from, Element) = dy/Length;
 M(2*Node_to, Element) = -dy/Length;
end

% READ DATA - READ REACTION DATA - Now read in the reactions

Number_reactions = fscanf(fid, '%d', 1);

if (2*Number_nodes ~= (Number_elements + Number_reactions))
 error('Invalid number of nodes, elements, and reactions');
 end

for i=1:Number_reactions;
 Reaction = fscanf(fid, '%d', 1);
 Node=fscanf(fid, '%d', 1);
 Direction = fscanf(fid, '%s', 1);
 if ((Direction == 'y') || (Direction == 'Y'))
 M(2*Node, Number_elements+Reaction)=M(2*Node,
Number_elements+Reaction)+1;
 elseif ((Direction == 'x')||(Direction == 'X'))
 M(2*Node-1, Number_elements+Reaction)=M(2*Node-1,
Number_elements+Reaction)+1;
 else
 error('Invalid direction for reaction')
 end
end

% READ DATA - READ EXTERNAL FORCE DATA - Now read in the external
forces

External=zeros(2*Number_nodes,1);
Number_forces=fscanf(fid, '%d', 1);

for i=1:Number_forces
 Node =fscanf(fid, '%d', 1);
 Force=fscanf(fid, '%g', 1);
 Direction = fscanf(fid, '%g', 1);
 External(2*Node-1)=External(2*Node-1)-Force*cos(Direction*(pi/180));
 External(2*Node) =External(2*Node) -Force*sin(Direction*(pi/180));
end

External

% COMPUTE FORCES - Solve the system of equations

Chapter 2 - Static Truss Problem Page 12 of 14

A=M\External;

% REPORT FORCES - FORCES IN THE ELEMENTS

for i = 1:Number_elements
 fprintf('Element %d = %g \n', i, A(i))
 end

% REPORT FORCES - REACTION FORCES

for i = 1:Number_reactions
 fprintf('Reaction %d = %g \n', i, A(Number_elements + i))
 end

end % End of program

2.4 The Input Data File

The input data file is shown below. The format is very general and almost any
type of truss can be defined with this file.

4 % The number of nodes in the truss
1 10 10 % Node number, X coordinate, Y coordinate
2 0 10 % for each node
3 0 0
4 10 0
5 % The number of elements in the truss
1 1 2 % Element number, Node from, Node to
2 2 3 % for each element
3 2 4
4 3 4
5 4 1
3 % The number of constraints in the truss
1 3 Y % Constraint number, Node, direction
2 4 Y % for each constraint
3 4 X
1 % The number of external forces
1 1000 180 % Node number, Force magnitude, Force Direction
 % for each external force

You can create an input file for each truss you want to analyze using NOTEPAD.
The TRUSS program is run using

 truss(‘data.txt’)

where “data.txt” is the name of the data file defining the problem you are analyzing.

Chapter 2 - Static Truss Problem Page 13 of 14

PROBLEMS

1. In the problem above, how many equations will be generated?

2. In the problem above, how many unknowns are there?

3. In the problem above, each element is 10 feet long. Construct the matrix you

would solve to find the forces in the elements and the reactions. Use the element
and node numbering shown.

4. In the problem above, solve for the forces in the elements and the reactions using

a manual technique. Use the node and element numbering shown. Element 1 is 5
feet long, element 2 is 4 feet long, and element 3 is 3 feet long. You can use
either Matlab or your calculator to solve the system of equations. Show all other
work.

1 2

3 30◦
10,000 lbs

1

2

3

R2

R1

R3

1

2

3

4

5

6

7

1

2

3

4

5

10,000 lbs 8,000 lbs

4,000 lbs
R1

R2

R3

Chapter 2 - Static Truss Problem Page 14 of 14

5. Modify the attached Matlab program so that Young’s modulus and the cross
sectional area of each element is defined in the input file. Compute the stresses
then use the area and Young’s modulus to print a table showing

Element From To Force Stress Length
Number Node Node Change

Use the problem drawn in Problem 1 and assume each element is 10 feet long to
demonstrate that your program works. Assume each element has a cross sectional
area of 2 and Young’s modulus of 30,000,000.

