Math Workshop—Algebra (Time Value of Money; TVM)

Finding FVs (moving to the right on a time line) is called compounding.

 $FV_1 = PV + INT_1 = PV + PV * I = PV(1+I) = \$100(1+10\%) = \$110.00$ $FV_2 = FV_1(1+I) = PV(1+I)(1+I) = PV(1+I)^2 = \$100(1.10)^2 = \$121.00$ $FV_3 = FV_2(1+I) = PV(1+I)^2(1+I) = PV(1+I)^3 = \$100(1.10)^3 = \$133.10$

In general, $\mathbf{FV}_{N} = \mathbf{PV}(\mathbf{1}+\mathbf{I})^{N}$

Financial calculator: TI BA II Plus

Set number of decimal places to display: 2nd FORMAT; use up and down arrows to display DEC=; press 9; press ENTER

Set AOS (Algebraic Operating System) calculation: 2^{nd} FORMAT; down arrow 4 times until you see Chn (if you see AOS then just stop and hit $\overline{CE/C}$); 2^{nd} SET (AOS should display); hit $\overline{CE/C}$.

Using **AOS**[™] (algebraic operating system), the calculator solves problems according to the standard rules of algebraic hierarchy, computing multiplication and division operations before addition and subtraction operations. (Most scientific calculators use **AOS**.)

For example, when you enter $3 + 2 \times 4 =$, the **AOS** answer is 11 (2 × 4 = 8; 3 + 8 = 11).

Set END (for cash flows occurring at the end of the year): hit 2^{nd} BGN; 2^{nd} SET will toggle between cash flows at the beginning of the year (BGN) and end of the year (END). Leave it as END.

Set 1 payment per period: hit 2nd P/Y 1 ENTER.

Reset TVM calculations: 2nd CLR TVM

Financial calculators solve this equation: $\mathbf{FV}_{N} + \mathbf{PV}(\mathbf{1}+\mathbf{I})^{N} = \mathbf{0}$. There are 4 variables. If 3 variables are known, the calculator will solve for the 4th.

Return to FV₃= PV(1+I)³ = \$100(1.10)³ = \$133.10) →
INPUTS 3 10 -100 0	FV
OUTPUT 13	3.10
→That is, press 3 N 10 I/Y -100	
Compute future value: CPT FV	
Reset TVM calculations: 2 nd CLR TVM	

The following example is from TI BA II Plus Guidebook.

Example: If you open the account with \$5,000, how much will you have after 20 years?

Enter number of payments.	20 ℕ	N=	20.00 ⊲
Enter interest rate.	.5 [/Y]	I/Y=	0.50 ⊲
Enter beginning balance.	5000 +/- PV	PV=	-5,000.00 ⊲
Compute future value.	CPT FV	FV=	5,524.48*

In EXCEL, =FV(I, N, PMT, PV) =FV(0.10, 3, 0, -100) = 133.10

Question: What's the PV of \$100 due in 3 years if I/YR = 10%?

In EXCEL, =RATE(N, PMT, PV, FV) =RATE(3, 0, -1, 2)=25.992105% Question: What's the FV of a 3-year ordinary annuity of \$100 at 10%? Ordinary Annuity

 $FVA_{N} = PMT(1+I)^{(N-1)} + PMT(1+I)^{(N-2)} + PMT(1+I)^{(N-3)} + \dots + PMT(1+I)^{0}$ =(PMT/I)[(1+I)^{N}-1] =(100/0.1)[1.1^3 -1] = 331

Financial calculators solve this equation: $\mathbf{FV}_{N} + \mathbf{PV}(\mathbf{1}+\mathbf{I})^{N} + (\mathbf{PMT/I})[(\mathbf{1}+\mathbf{I})^{N}-\mathbf{1}] = \mathbf{0}$. There are 5 variables. If 4 variables are known, the calculator will solve for the 5th.

Math: $FVA_N = PMT(1+I)^{(N-1)} + PMT(1+I)^{(N-2)} + PMT(1+I)^{(N-3)} + ... + PMT(1+I)^0(1)$ (1+I)* $FVA_N = PMT(1+I)^N + PMT(1+I)^{(N-1)} + PMT(1+I)^{(N-2)} + ... + PMT(1+I)^1(2)$ (2)-(1) → $I*FVA_N = PMT(1+I)^N - PMT$ → $FVA_N = (PMT/I)[(1+I)^N - 1]$

Practice: Calculate $PVA_N = PMT/(1+I)^1 + PMT/(1+I)^2 + PMT/(1+I)^3 + ... + PMT/(1+I)^N = PMT \{(1/I) - 1/[I(1+I)^N]\}$

Yield to maturity (YTM) is the rate of return earned on a bond held to maturity.

Question (YTM): Find YTM on a 10-year, 9% annual coupon, \$1,000 par value bond selling for \$887.

=RATE(10, 90, -887, 1000)≈0.1091=<mark>10.91%</mark>

Question (YTM): Find YTM on a 10-year, 9% annual coupon, \$1,000 par value bond selling for \$1134.20.

INPUTS 10		-1134.2	90	1000
N	I/YR	PV	PMT	FV
OUTPUT	7.08			

In EXCEL, =RATE(N, PMT, PV, FV) =RATE(10, 90, -1134.20, 1000)≈0.0708=<mark>7.08%</mark>

Stock valuation—constant growth model

If you buy a stock for price P_0 , hold it for one year, receive a dividend of D_1 , then sell it for price P₁, your stock return, k, would be:

$$k = \frac{D_1 + (P_1 - P_0)}{P_0}$$

or
$$k = \frac{D_1}{P_0} + \frac{(P_1 - P_0)}{P_0}$$

dividend yield capital gains yield
$$\Rightarrow P_0 = (D_1 + P_1)/(1 + k);$$
 a form of present value

$$P_{0} = \frac{D_{1}}{(1+k)} + \frac{D_{2}}{(1+k)^{2}} + \dots + \frac{D_{n}}{(1+k)^{n}} + \frac{P_{n}}{(1+k)^{n}}$$
The formula is called the dividend discount model (DDM)

→The formula is called the dividend discount model (DDM).

If dividends are assumed to be growing at a constant rate forever and the last dividend paid is, D₀, then the model is:

$$P_{o} = \frac{D_{o}(1+g)}{(1+k)} + \frac{D_{o}(1+g)^{2}}{(1+k)^{2}} + \frac{D_{o}(1+g)^{3}}{(1+k)^{3}} + \dots \infty$$

Practice: Show the following result (constant growth DDM; k>g).

$$P_0 = \frac{D_1}{k - g}$$

Hint: Let r=(1+g)/(1+k).

То	Press	Display
Square 6.3 ²	6.3 x ²	39.69
Find square root: $\sqrt{15.5}$	15.5 \\x	3.94
Find reciprocal: 1/3.2	3.2 1/x	0.31
Find factorial: 5!	5 [2nd] [x!]	120.00
Find natural logarithm: In 203.45	203.45 LN	5.32
Find natural antilogarithm: e ^{.69315}	.69315 2nd [e. ^x]	2.00