Math Workshop-Algebra
 (Time Value of Money; TVM)

Finding FVs (moving to the right on a time line) is called compounding.
$\mathrm{FV}_{1}=\mathrm{PV}+\mathrm{INT}_{1}=\mathrm{PV}+\mathrm{PV} * \mathrm{I}=\mathrm{PV}(1+\mathrm{I})=\$ 100(1+10 \%)=\$ 110.00$
$\mathrm{FV}_{2}=\mathrm{FV}_{1}(1+\mathrm{I})=\mathrm{PV}(1+\mathrm{I})(1+\mathrm{I})=\mathrm{PV}(1+\mathrm{I})^{2}=\$ 100(1.10)^{2}=\$ 121.00$
$\mathrm{FV}_{3}=\mathrm{FV}_{2}(1+\mathrm{I})=\mathrm{PV}(1+\mathrm{I})^{2}(1+\mathrm{I})=\mathrm{PV}(1+\mathrm{I})^{3}=\$ 100(1.10)^{3}=\$ 133.10$
In general, $\mathbf{F V}_{\mathbf{N}}=\mathbf{P V}(\mathbf{1}+\mathbf{I})^{\mathbf{N}}$

Financial calculator: TI BA II Plus

Set number of decimal places to display: $2^{\text {nd }}$ FORMAT; use up and down arrows to display DEC=; press 9; press ENTER

Set AOS (Algebraic Operating System) calculation: $2^{\text {nd }}$ FORMAT; down arrow 4 times until you see Chn (if you see AOS then just stop and hit CE/C); $2^{\text {nd }} \mathrm{SET}$ (AOS should display); hit CE/C.

Using $\mathbf{A O S}^{\text {TM }}$ (algebraic operating system), the calculator solves problems according to the standard rules of algebraic hierarchy, computing multiplication and division operations before addition and subtraction operations. (Most scientific calculators use AOS.)
 $8 ; 3+8=11$).

Set END (for cash flows occurring at the end of the year): hit $2^{\text {nd }}$ BGN; $2^{\text {nd }}$ SET will toggle between cash flows at the beginning of the year (BGN) and end of the year (END). Leave it as END.

Set 1 payment per period: hit $2^{\text {nd }} \mathrm{P} / \mathrm{Y} 1$ ENTER.
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
Financial calculators solve this equation: $\mathbf{F V}_{\mathbf{N}} \mathbf{+} \mathbf{P V}(\mathbf{1}+\mathbf{I})^{\mathbf{N}}=\mathbf{0}$. There are 4 variables. If 3 variables are known, the calculator will solve for the 4th.

Return to $\mathrm{FV}_{3}=\mathbf{P V}(1+I)^{\mathbf{3}}=\mathbf{\$ 1 0 0}(1.10)^{\mathbf{3}}=\$ 133.10 \rightarrow$

| INPUTS | 3 | 10 | -100 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | N | $\mathrm{I} Y$ | PV | PMT | FV |
| OUTPUT | | | | | 133.10 |

\rightarrow That is, press 3 N $101 / \mathrm{Y}-100 \ldots . .$.
Compute future value: CPT FV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
The following example is from TI BA II Plus Guidebook.
Example: If you open the account with $\$ 5,000$, how much will you have after 20 years?

Enter number of payments.	20 N	$\mathrm{N}=$	$20.00 \triangleleft$
Enter interest rate.	. 5 TY	1/Y=	$0.50 \triangleleft$
Enter beginning balance.	5000 +/- PV	PV=	-5,000.00 \triangleleft
Compute future value.	CPT [FV	FV=	5,524.48*

In EXCEL, = FV(I, N, PMT, PV)

$$
=\mathrm{FV}(0.10,3,0,-100)=133.10
$$

Question: What's the PV of $\$ 100$ due in 3 years if I/YR $=10 \%$?

$\mathbf{F V}_{\mathbf{N}}=\mathbf{P V}(\mathbf{1}+\mathbf{I})^{\mathbf{N}} \rightarrow \mathbf{P V}=\mathbf{F} V_{\mathbf{N}} /(\mathbf{1}+\mathbf{I})^{\mathbf{N}} \rightarrow \mathrm{PV}=100 /(1+10 \%)^{3} \approx \$ 75.13 \rightarrow$

Compute present value: CPT PV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, $=\mathrm{PV}(\mathrm{I}, \mathrm{N}, \mathrm{PMT}, \mathrm{FV})$

$$
=\operatorname{PV}(0.10,3,0,100) \approx-75.13
$$

Question: Find the number of years (N) to double the present value.

Compute N: CPT N
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, =NPER(I, PMT, PV, FV) $=\operatorname{NPER}(0.20,0,-1,2) \approx 3.801784017$

Question: Find the annual interest rate.

OUTPUT

Compute interest rate: CPT I/Y
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, =RATE(N, PMT, PV, FV)

$$
=\operatorname{RATE}(3,0,-1,2)=25.992105 \%
$$

Question: What's the FV of a 3-year ordinary annuity of \$100 at 10\%?

Ordinary Annuity

The future value of an ordinary annuity with N periods and an interest rate of $\mathrm{I}=$ $\mathrm{FVA}_{\mathrm{N}}=\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-1)}+\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-2)}+\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-3)}+\ldots+\mathrm{PMT}(1+\mathrm{I})^{0}$

$$
\begin{aligned}
& =(\mathrm{PMT} / \mathrm{I})\left[(1+\mathrm{I})^{\mathrm{N}}-1\right] \\
& =(100 / 0.1)\left[1.1^{\wedge} 3-1\right]=331
\end{aligned}
$$

Financial calculators solve this equation: $\mathbf{F V} \mathbf{N}+\mathbf{P V}(\mathbf{1}+\mathbf{I})^{\mathbf{N}}+(\mathbf{P M T} / \mathbf{I})\left[(\mathbf{1}+\mathbf{I})^{\mathbf{N}} \mathbf{- 1}\right]=\mathbf{0}$. There are 5 variables. If 4 variables are known, the calculator will solve for the 5 th.

Compute the future value of ordinary annuity: CPT FV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
$\begin{aligned} \text { In EXCEL }, & =F V(I, N, \text { PMT, PV }) \\ & =F V(0.10,3,-100,0)=331.00\end{aligned}$
Math: $\mathrm{FVA}_{\mathrm{N}}=\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-1)}+\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-2)}+\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-3)}+\ldots+\mathrm{PMT}(1+\mathrm{I})^{0}$
$(1+\mathrm{I}) * \mathrm{FVA}_{\mathrm{N}}=\operatorname{PMT}(1+\mathrm{I})^{\mathrm{N}}+\operatorname{PMT}(1+\mathrm{I})^{(\mathrm{N}-1)}+\mathrm{PMT}(1+\mathrm{I})^{(\mathrm{N}-2)}+\ldots+\mathrm{PMT}(1+\mathrm{I})^{1}$
(2)-(1) $\rightarrow \mathrm{I}^{*} \mathrm{FVA}_{\mathrm{N}}=\mathrm{PMT}(1+\mathrm{I})^{\mathrm{N}}-\mathrm{PMT}$
$\rightarrow \mathrm{FVA}_{\mathrm{N}}=(\mathrm{PMT} / \mathrm{I})\left[(1+\mathrm{I})^{\mathrm{N}}-1\right]$

Question: What's the PV of a 3-year ordinary annuity of \$100 at 10\%?

$$
\begin{aligned}
\mathrm{PVA}_{\mathrm{N}} & =\mathrm{PMT} /(1+\mathrm{I})^{1}+\mathrm{PMT} /(1+\mathrm{I})^{2}+\mathrm{PMT} /(1+\mathrm{I})^{3}+\ldots+\mathrm{PMT} /(1+\mathrm{I})^{\mathrm{N}} \\
& =\mathrm{PMT}\left\{(1 / \mathrm{I})-1 /\left[\mathrm{I}(1+\mathrm{I})^{\mathrm{N}}\right]\right\} \\
& =(100)\left\{(1 / 0.1)-1 /\left(0.1^{*} 1.1^{\wedge} 3\right)\right\} \approx 248.69
\end{aligned}
$$

Compute the present value of ordinary annuity: CPT PV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, = PV(I, N, PMT, FV)

$$
=\operatorname{PV}(0.10,3,100,0) \approx-248.69
$$

Practice: Calculate $\mathrm{PVA}_{\mathrm{N}}=\mathrm{PMT} /(1+\mathrm{I})^{1}+\mathrm{PMT} /(1+\mathrm{I})^{2}+\mathrm{PMT} /(1+\mathrm{I})^{3}+\ldots+\mathrm{PMT} /(1+\mathrm{I})^{\mathrm{N}}$

$$
=\operatorname{PMT}\left\{(1 / \mathrm{I})-1 /\left[\mathrm{I}(1+\mathrm{I})^{\mathrm{N}}\right]\right\}
$$

Question: Find the annual payment for a $\$ 1,000,10 \%$ annual rate loan with 3 equal payments.

Math: PVA $=$ PMT/(1+i) $+\mathrm{PMT} /(1+\mathrm{i})^{2}+\ldots+\mathrm{PMT} /(1+\mathrm{i})^{\mathrm{N}} \ldots \ldots$. (a)
\rightarrow PVA $=\operatorname{PMT}\left[(1 / \mathrm{i})-1 /\left(\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}\right)\right]$
Note: $(1+\mathrm{i}) \mathrm{PVA}=\mathrm{PMT}+\mathrm{PMT} /(1+\mathrm{i})+\ldots+\mathrm{PMT} /(1+\mathrm{i})^{\mathrm{N}-1}$
(b)-(a) $\rightarrow \mathrm{i}^{*}$ PVA $=\mathrm{PMT}-\mathrm{PMT} /(1+\mathrm{i})^{\mathrm{N}}$
\rightarrow PVA $=\operatorname{PMT}\left[(1 / \mathrm{i})-1 /\left(\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}\right)\right]$
$\rightarrow 1,000=\mathrm{PMT}\left[(1 / 0.1)-1 /\left(0.1^{*} 1.1^{\wedge} 3\right)\right]=\mathrm{PMT}^{*}(2.486851991) \rightarrow \mathrm{PMT} \approx 402.11$

Compute the payment per period: CPT PMT
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM

```
In EXCEL, =PMT(I, N, PV, FV)
    =PMT(0.10, 3, 1000, 0)\approx-402.11
```

Question (bond): Find the value of a 10 -year, 10% coupon bond using $r_{d}=10 \%$.

Note: $\mathrm{PVA}=\mathrm{PMT} /(1+\mathrm{i})+\mathrm{PMT} /(1+\mathrm{i})^{2}+\ldots+\mathrm{PMT} /(1+\mathrm{i})^{\mathrm{N}} \ldots \ldots$ (from the previous page)
$\rightarrow \mathrm{PVA}=\mathrm{PMT}\left[(1 / \mathrm{i})-1 /\left(\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}\right)\right]$
\rightarrow Bond value $\mathrm{V}_{\mathrm{b}}=\operatorname{PMT}\left[(1 / \mathrm{i})-1 /\left(\mathrm{i}(1+\mathrm{i})^{\mathrm{N}}\right)\right]+\mathrm{M} /(1+\mathrm{i})^{\mathrm{N}}$; find the following two components!
$P V$ annuity

$$
=\$ \quad 614.46
$$

$$
\text { PV maturity value }=\frac{385.54}{}
$$

$$
\text { Value of bond } \quad=\$ 1,000.00
$$

Compute the present value of bond: CPT PV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, = PV(I, N, PMT, FV)

$$
=\mathrm{PV}(0.10,10,100,1,000)=-1,000.00
$$

Question ($\mathbf{r}_{\mathbf{d}}$ change): What would happen if expected inflation rose by 3%, causing $\mathrm{r}_{\mathrm{d}}=13 \%$?

In EXCEL, $=\mathrm{PV}(\mathrm{I}, \mathrm{N}, \mathrm{PMT}, \mathrm{FV})$

$$
=\mathrm{PV}(0.13,10,100,1,000)=-837.21 \rightarrow \text { The bond value would fall. }
$$

Question (r_{d} change): What would happen if $r_{d}=7 \%$?

Compute the present value of bond: CPT PV
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, $=\mathrm{PV}(\mathrm{I}, \mathrm{N}, \mathrm{PMT}, \mathrm{FV})$

$$
=\operatorname{PV}(0.07,10,100,1,000)=-1,210.71 \rightarrow \text { The bond value would increase. }
$$

Yield to maturity (YTM) is the rate of return earned on a bond held to maturity.
Question (YTM): Find YTM on a $10-$ year, 9% annual coupon, $\$ 1,000$ par value bond selling for $\$ 887$.

INPUTS OUTPUT

Compute YTM: CPT I/Y
Reset TVM calculations: $2^{\text {nd }}$ CLR TVM
In EXCEL, =RATE(N, PMT, PV, FV)

$$
=\operatorname{RATE}(10,90,-887,1000) \approx 0.1091=10.91 \%
$$

Question (YTM): Find YTM on a 10 -year, 9% annual coupon, $\$ 1,000$ par value bond selling for $\$ 1134.20$.

UTS	10		-1134.2	90	1000
	N	I/YR	PV	PMT	FV
OUTPUT		7.08			

In EXCEL, $=$ RATE(N, PMT, PV, FV)

$$
=\operatorname{RATE}(10,90,-1134.20,1000) \approx 0.0708=7.08 \%
$$

Stock valuation-constant growth model

If you buy a stock for price P_{0}, hold it for one year, receive a dividend of D_{1}, then sell it for price P_{1}, your stock return, k, would be:

$$
\begin{gathered}
k=\frac{D_{1}+\left(\rho_{1}-\rho_{0}\right)}{\rho_{0}} \\
k=\underbrace{\frac{D_{1}}{\rho_{0}}+\frac{\left(\rho_{1}-\rho_{0}\right)}{\rho_{0}}}_{\text {dividend yield }}
\end{gathered}
$$

$\rightarrow \mathrm{P}_{0}=\left(\mathrm{D}_{1}+\mathrm{P}_{1}\right) /(1+\mathrm{k})$; a form of present value

$$
P_{o}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+k)^{2}}+\ldots+\frac{D_{n}}{(1+k)^{n}}+\frac{P_{n}}{(1+k)^{n}}
$$

\rightarrow The formula is called the dividend discount model (DDM).
If dividends are assumed to be growing at a constant rate forever and the last dividend paid is, D_{0}, then the model is:

$$
P_{0}=\frac{D_{0}(1+\mathbf{g})}{(1+k)}+\frac{D_{0}(1+\mathbf{g})^{2}}{(1+k)^{2}}+\frac{D_{0}(1+\mathbf{g})^{3}}{(1+k)^{3}}+\ldots \infty
$$

Practice: Show the following result (constant growth DDM; $\mathbf{k}>\mathbf{g}$).

$$
P_{0}=\frac{D_{1}}{k-g}
$$

Hint: Let $\mathrm{r}=(1+\mathrm{g}) /(\mathbf{1}+\mathrm{k})$.

To	Press	Display
Square 6.3^{2}	$6.3{ }^{\text {x }}$	39.69
Find square root: $\sqrt{15.5}$	$15.5 \sqrt{\sqrt{x}}$	3.94
Find reciprocal: 1/3.2	$3.21 / \mathrm{x}$	0.31
Find factorial: 5!	5 2nd [x!]	120.00
Find natural logarithm: In 203.45	203.45 LN	5.32
Find natural antilogarithm: $\mathrm{e}^{.69315}$. 69315 2nd [e^{x}]	2.00

