Greek Letters		Common Usages		
Αα	Alpha	α : Constant in regression/statistics: $y = \alpha + \beta x + \epsilon$; also type I error		
Ββ	Beta	β : Coefficient in regression/statistics, often subscripted to indicate different coefficients: y =		
		$\alpha + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$; also type II error; related, $1 - \beta$ is called the "power" of a statistical test.		
Γγ	Gamma	Γ : A particular statistical distribution; also used to denote a game.		
Δδ	Delta	Δ : Means "change" or "difference", as in the equation of a line's slope: $\frac{\Delta y}{\Delta x} = \frac{y_1 - y_2}{x_1 - x_2}$.		
Ea	Engilon	 δ: Known in game theory as the "discount parameter" and is used for repeated games. ε: "Error term" in regression/statistics; more generally used to denote an arbitrarily small, 		
Εε	Epsilon	positive number.		
€	(Variant Epsilon)	This version of epsilon is used in set theory to mean "belongs to" or "is in the set of": $x \in \mathbf{X}$; similarly used to indicate the range of a parameter: $x \in [0, 1]$. " $x \notin \emptyset$ " means "the element x does <i>not</i> belong to the empty set".		
Zζ	Zeta			
Ηŋ	Eta			
Θθ	Theta	θ : The fixed probability of success parameter in a Binomial Distribution and related distributions.		
θ	(Script Theta)			
Iι	Iota			
Κκ	Kappa			
Λλ	Lambda	$\lambda = n\theta$: Parameter in the Poisson Distribution.		
Μμ	Mu	μ : In statistics, the mean of a distribution. In game theory, often used as the probability of belief.		
Nν	Nu			
Ξξ	Xi			
Oo	Omicron			
Ππ	Pi	Π : Product symbol, as in $\prod_{i=1}^{5} i = 60$.		
		π : Mathematical constant (3.14159); also used in game theory to denote an actor's belief as a probability.		
Ρρ	Rho	ρ: Correlation coefficient in some statistical analyses.		
Σσ	Sigma	Σ : Summation symbol, as in $\sum_{i=3}^{5} i = 12$.		
		σ : Standard Deviation of a distribution; also used to denote an actor's mixed strategy. σ^2 : Variance of a distribution.		
ς	(Final Sigma)			
Tτ	Tau			
Yυ	Upsilon			
Фф	Phi	$\Phi(z)$: The cumulative density function (cdf) for the standard normal distribution. $\phi(z)$: The probability density function (pdf) for the same.		
φ	(Script Phi)			
Χχ	Chi	χ^2 : A particular statistical distribution.		
Ψψ	Psi			
Ωω	Omega	Ω : The "positive definite matrix" in regression/statistics.		
ω	(Variant Omega)	-		
Φφ φ Χχ Ψψ Ωω	Phi (Script Phi) Chi Psi Omega	$\phi(z)$: The probability density function (pdf) for the same. χ^2 : A particular statistical distribution.		

Mathematical Constants

$e \approx 2.718281828$ $\pi \approx 3.141592653$ $i = \sqrt{-1}$ (imaginary numbers)	
---	--

Mat	hematical Symbols	Usage
!	Factorial	$n! = \prod_{i=1}^{n} i; \text{ e.g., } 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
^	"carrot" or "hat"	$3^2 = 3^2 = 9$. Also used in statistics to denote estimates: $\hat{\sigma}$
x	<i>x</i> "bar"	Sample mean of $\mathbf{X} = (\Sigma x)/n$, where <i>n</i> is the number of observations.
\forall	All	$\forall x$; for all <i>x</i> , something is true.
Е	Exists	$\exists x = 1$; there exists some x equal to 1.
\rightarrow	Implies	$p \rightarrow q$; if p is true (or occurs), then q is true (or will occur).
	Therefore	Indicating a logical result: $p \rightarrow q$ and $q \rightarrow r$, $\therefore p \rightarrow r$.
	Given, Conditional	$P(\mathbf{E} \mathbf{F})$; The probability of \mathbf{E} given (or within the set of) \mathbf{F} .
	Absolute Value	-x = x
~	Not	~C; not to cooperate. (Also used in geometry to mean "similar".)
\leq	Less than or equal to	
2	Greater than or equal to	
x	Infinity	
±	Plus or minus	
x	Proportional to	$x \propto 1/f$
∂	Derivative	Calculus notation; $\frac{\partial}{\partial x}(y = mx + b) = m$
≠	Not equal to	
≡	Identically equal to	$x \equiv x$; sometimes a way proving something; also a way of denoting a definition.
≈	Approximately equal to	$\pi \approx 3.14$
$\Re, \mathbf{R}, \text{or}$	Set of Real Numbers	
Ø	Empty Set	$\mathbf{X} = \emptyset$; The set X is empty. $\mathbf{X} \neq \emptyset$; The set X is not empty.
\cap	Conjunction; And	$\{1, 2, 3, 4\} \cap \{4, 5, 6, 7\} = \{4\}$
U	Union; Or	$\{1, 2, 3, 4\} \cup \{4, 5, 6, 7\} = \{1, 2, 3, 4, 5, 6, 7\}$
	Square root	$\sqrt{2} \approx 1.414; \sqrt{4} = 2$
P(·)	Probability of	$P(HH) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$; the probability of landing two heads in successive coin flips; sometimes $Pr(\cdot)$.
L	Likelihood	Used in Maximum Likelihood Estimation in statistics.
L(·)	Lottery (in game theory)	L(<i>B</i> , <i>W</i> ; <i>p</i>) is a lottery between winning one's best outcome, <i>B</i> , with probability <i>p</i> and "winning" one's worst outcome, <i>W</i> , with probability $1 - p$.
E(·)	Expectation of	$E(\mathbf{X}) = \Sigma x \cdot P(x)$; also as expected utility: $EU(L(1, 0; \frac{1}{4})) = 1 \cdot \frac{1}{4} + 0 \cdot \frac{3}{4} = \frac{1}{4}$.
ln or LN	Natural log	$(\ln(x) = b) \equiv (e^{b} = x)$, where e is the mathematical constant.
lim	Limit	$\lim_{x\to\infty} \frac{1}{x} = 0$; The limit of $1/x$ as x goes to (or approaches) infinity equals zero.
ſ	Integral	Calculus notation; $\int x dx = \frac{1}{2}x^2$ and $\int_{a}^{b} \frac{1}{a+b} dx = \frac{b-a}{a+b}$
т	Jacobian	The mentionian metains & Determinant of a Local Security
J	Jacobian	J : a particular matrix; <i>J</i> : Determinant of a Jacobian matrix.

$\frac{p}{\therefore p \cup q}$		Rules of Logic Addition
$\frac{p}{q}$		Conjunction
$\frac{p \cap q}{\therefore p}$		Simplification
$ \begin{array}{c} $		Elimination
$\frac{(p)}{p}$		Double Negation
$\frac{\sim (p \cup q)}{\therefore \sim p \cap \sim q}$	$\frac{\sim (p \cap q)}{\therefore \sim p \cup \sim q}$	De Morgan's Rule
$\frac{\mathbf{p} \to \mathbf{q}}{\therefore \mathbf{\sim} \mathbf{p} \cup \mathbf{q}}$	$\frac{\mathbf{p} \to \mathbf{q}}{\therefore \sim (\mathbf{p} \cap \sim \mathbf{q})}$	Implication
$\frac{p \to q}{p}$		Modus Ponens
$\frac{p \rightarrow q}{\sim q}$ $\frac{\sim q}{\sim p}$		Modus Tollens
	$\frac{\neg q \rightarrow \neg p}{\therefore p \rightarrow q}$	Contrapositive or Transposition
$p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$		Chain Rule
$p \leftrightarrow q$ $\therefore p \rightarrow q$ $\therefore q \rightarrow p$	$p \to q$ $q \to p$ $\therefore p \leftrightarrow q$	Biconditional