Greek Letters		Common Usages
A α	Alpha	α : Constant in regression/statistics: $\mathrm{y}=\alpha+\beta \mathrm{x}+\varepsilon$; also type I error
B β	Beta	β : Coefficient in regression/statistics, often subscripted to indicate different coefficients: $y=$ $\alpha+\beta_{1} x_{1}+\beta_{2} X_{2}+\varepsilon$; also type II error; related, $1-\beta$ is called the "power" of a statistical test.
$\Gamma \gamma$	Gamma	Γ : A particular statistical distribution; also used to denote a game.
$\Delta \delta$	Delta	Δ : Means "change" or "difference", as in the equation of a line's slope: $\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ δ : Known in game theory as the "discount parameter" and is used for repeated games.
E ε	Epsilon	ε : "Error term" in regression/statistics; more generally used to denote an arbitrarily small, positive number.
ϵ	(Variant Epsilon)	This version of epsilon is used in set theory to mean "belongs to" or "is in the set of": $x \in \mathbf{X}$; similarly used to indicate the range of a parameter: $x \in[0,1]$. " $x \notin$ " means "the element x does not belong to the empty set".
Z ζ	Zeta	
$\mathrm{H} \mathrm{\eta}$	Eta	
$\Theta \theta$	Theta	θ : The fixed probability of success parameter in a Binomial Distribution and related distributions.
ϑ	(Script Theta)	
It	Iota	
Кк	Карpa	
$\Lambda \lambda$	Lambda	$\lambda=n \theta$: Parameter in the Poisson Distribution.
$\mathrm{M} \mu$	Mu	μ : In statistics, the mean of a distribution. In game theory, often used as the probability of belief.
$\mathrm{N} V$	Nu	
$\Xi \xi$	Xi	
Oo	Omicron	
$\Pi \pi$	Pi	П: Product symbol, as in $\prod_{i=3}^{5} i=60$. π : Mathematical constant (3.14159...); also used in game theory to denote an actor's belief as a probability.
$\mathrm{P} \rho$	Rho	ρ : Correlation coefficient in some statistical analyses.
$\Sigma \sigma$	Sigma	Σ : Summation symbol, as in $\sum_{i=3}^{5} i=12$. σ : Standard Deviation of a distribution; also used to denote an actor's mixed strategy. σ^{2} : Variance of a distribution.
\checkmark	(Final Sigma)	
$\mathrm{T} \tau$	Tau	
Yu	Upsilon	
$\Phi \phi$	Phi	$\Phi(z)$: The cumulative density function (cdf) for the standard normal distribution. $\phi(z)$: The probability density function (pdf) for the same.
φ	(Script Phi)	
$\mathrm{X} \chi$	Chi	χ^{2} : A particular statistical distribution.
$\Psi \psi$	Psi	
$\Omega \omega$	Omega	$\Omega:$ The "positive definite matrix" in regression/statistics.
ϖ	(Variant Omega)	

Mathematical Constants

$\mathrm{e} \approx 2.718281828 \ldots$	$\pi \approx 3.141592653 \ldots$	$i=\sqrt{-1}$ (imaginary numbers)

Mathematical Symbols		Usage
!	Factorial	$n!=\prod_{i=1}^{n} i ; \text { e.g., } 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
\wedge	"carrot" or "hat"	$3 \wedge 2=3^{2}=9$. Also used in statistics to denote estimates: $\hat{\sigma}$
$\overline{\mathbf{X}}$	x "bar"	Sample mean of $\mathbf{X}=(\Sigma x) / n$, where n is the number of observations.
\forall	All	$\forall x$; for all x, something is true.
\exists	Exists	$\exists x=1$; there exists some x equal to 1 .
\rightarrow	Implies	$p \rightarrow q$; if p is true (or occurs), then q is true (or will occur).
\therefore	Therefore	Indicating a logical result: $p \rightarrow q$ and $q \rightarrow r, \therefore p \rightarrow r$.
1	Given, Conditional	$\mathrm{P}(\mathbf{E} \mid \mathbf{F})$; The probability of \mathbf{E} given (or within the set of) \mathbf{F}.
\|	Absolute Value	$\|-x\|=x$
\sim	Not	$\sim \mathrm{C}$; not to cooperate. (Also used in geometry to mean "similar".)
\leq	Less than or equal to	
\geq	Greater than or equal to	
∞	Infinity	
\pm	Plus or minus	
\propto	Proportional to	$x \propto 1 / f$
∂	Derivative	Calculus notation; $\frac{\partial}{\partial x}(y=m x+b)=m$
\#	Not equal to	
三	Identically equal to	$x \equiv x$; sometimes a way proving something; also a way of denoting a definition.
\approx	Approximately equal to	$\pi \approx 3.14$
$\mathfrak{R}, \mathbf{R}, \text { or }$	Set of Real Numbers	
\varnothing	Empty Set	$\mathbf{X}=\varnothing$; The set \mathbf{X} is empty. $\mathbf{X} \neq \varnothing$; The set \mathbf{X} is not empty.
\bigcirc	Conjunction; And	$\{1,2,3,4\} \cap\{4,5,6,7\}=\{4\}$
\cup	Union; Or	$\{1,2,3,4\} \cup\{4,5,6,7\}=\{1,2,3,4,5,6,7\}$
\checkmark	Square root	$\sqrt{2} \approx 1.414 ; \sqrt{4}=2$
$\mathrm{P}(\cdot)$	Probability of	$\mathrm{P}(\mathrm{HH})=1 / 2 \cdot 1 / 2=1 / 4$; the probability of landing two heads in successive coin flips; sometimes $\operatorname{Pr}(\cdot)$.
L	Likelihood	Used in Maximum Likelihood Estimation in statistics.
$\mathrm{L}(\cdot)$	Lottery (in game theory)	$\mathrm{L}(B, W ; p)$ is a lottery between winning one's best outcome, B, with probability p and "winning" one's worst outcome, W, with probability $1-p$.
$\mathrm{E} \cdot$)	Expectation of	$\mathrm{E}(\mathrm{X})=\Sigma x \cdot \mathrm{P}(x)$; also as expected utility: $\mathrm{EU}(\mathrm{L}(1,0 ; 1 / 4))=1 \cdot 1 / 4+0 \cdot 3 / 4=1 / 4$.
\ln or LN	Natural log	$(\ln (x)=\mathrm{b}) \equiv\left(\mathrm{e}^{\mathrm{b}}=\mathrm{x}\right)$, where e is the mathematical constant.
lim	Limit	$\lim _{x \rightarrow \infty} \frac{1}{x}=0$; The limit of $1 / x$ as x goes to (or approaches) infinity equals zero.
\int	Integral	Calculus notation; $\int x d x=\frac{1}{2} x^{2}$ and $\int_{a}^{b} \frac{1}{a+b} d x=\frac{b-a}{a+b}$
J	Jacobian	J: a particular matrix; J: Determinant of a Jacobian matrix.

Rules of Logic

p		Addition
$\therefore \mathrm{p} \cup \mathrm{q}$		
p		Conjunction
q		
$\therefore \mathrm{p} \cap \mathrm{q}$		
$\mathrm{p} \cap \mathrm{q}$		Simplification
$\therefore \mathrm{p}$		
$\therefore \mathrm{q}$		
$\underset{\sim}{p} \cup \underset{\sim}{q}$		Elimination
$\therefore \mathrm{q}$		
$\sim(\sim p)$		Double Negation
$\therefore \mathrm{p}$		
$\sim(\mathrm{p} \cup \mathrm{q})$	$\sim(\mathrm{p} \cap \mathrm{q})$	De Morgan’s Rule
$\therefore \sim \mathrm{p} \cap \sim \mathrm{q}$	$\therefore \sim p \cup \sim q$	
$\mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	Implication
$\therefore \sim \mathrm{p} \cup \mathrm{q}$	$\therefore \sim(\mathrm{p} \cap \sim \mathrm{q})$	
$\begin{aligned} & \mathrm{p} \rightarrow \mathrm{q} \\ & \mathrm{p} \end{aligned}$		Modus Ponens
$\therefore \mathrm{q}$		
$\mathrm{p} \rightarrow \mathrm{q}$		Modus Tollens
$\sim \mathrm{q}$		
$\therefore \sim p$		
$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{q} \rightarrow \sim \mathrm{p}$	Contrapositive or Transposition
$\therefore \sim \mathrm{q} \rightarrow \sim \mathrm{p}$	$\therefore \mathrm{p} \rightarrow \mathrm{q}$	
$\mathrm{p} \rightarrow \mathrm{q}$		Chain Rule
$\mathrm{q} \rightarrow \mathrm{r}$		
$\therefore \mathrm{p} \rightarrow \mathrm{r}$		
$\mathrm{p} \leftrightarrow \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	Biconditional
$\therefore \mathrm{p} \rightarrow \mathrm{q}$	$\mathrm{q} \rightarrow \mathrm{p}$	
$\therefore \mathrm{q} \rightarrow \mathrm{p}$	$\therefore \mathrm{p} \leftrightarrow \mathrm{q}$	

