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Abstract

Methodological diversity is praised in some circles for providing a larger set of tools to the researcher,
but it is possible that different tools provide different answers to the same question. How do our method-
ological choices affect the answers we get? One area of methodological diversity that provides some
similarity to large-N statistical analysis is boolean analysis. We analyze data from both approaches. We
start by examining simulated rare-events data sets following logistic or boolean logics, analyzing them
separately, and then comparing results. When the data generation process is known, we find that both
statistical and boolean approaches provide largely the same results. When the data generation process
is not known, however, the results are dependent on the choices researchers make. We then examine
civil-war onset using both approaches. We find that large-N, rare-events data sets present challenges to
both statistical and boolean approaches. While these challenges have been largely resolved in statistical
studies, boolean approaches have yet to establish best practices. We offer suggestions from our study
regarding how boolean analysis can tackle large-N, rare-events data sets. We also summarize the findings
of boolean analysis regarding civil-war onset and compare these findings with extant statistical findings
in the literature.

∗Prepared for the annual Fall Research Conference of the Association for Public Policy Analysis & Management, November
6-8, 2014, in Albuquerque, NM. We thank Colin Hannigan for research assistance on this paper.
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We examine two methodologies that can be used to study rare events: logistic regression and Boolean
analysis. The impetus for this comparison is straightforward: do the two techniques give the same results
when applied to the same question? The answer to this question is important to users of each technique. If
the answer is “No”, we would all do well to understand where the deviation arises. If the answer is “Yes,
practitioners of each technique could collaborate more freely and, when the occasion arose, use the other
technique to overcome an obstacle within their more accustomed technique.

In this paper, we construct simulated datasets to be analyzed by each method. The simulated data
allow us to know what the real relationship is. It also provided us with an opportunity to embed problems
that each technique is supposed to be good at. For example, we included U-shaped and inverted-U shaped
relationships that are discoverable using logistic analysis. We also included datasets with multiple interaction
terms that are discoverable using Boolean analysis. Finally, we started with an eye toward examining civil
war onset using each technique. While we did not get to this component of the research agenda, we did
simulate datasets having rare events (less than 10% positive cases). This allows us to examine how the
techniques handle such data.

The Methodologies

In this section, we separately review what each type of methodology entails.

Logistic Analysis

Logistic regression (or logit) is one of a large set of limited-dependent variable statistical techniques. Logit
is an appropriate technique if we can only observe the presence or absence of an event (such as civil war).
Logistic analysis tests whether the included independent variables are correlated with the dependent variable.
If they are (via significance), then we interpret the signs of their coefficients in terms of increasing (for positive
coefficients) or decreasing (for negative coefficients) the likelihood of the dependent variable occurring. We
can also calculate the overall likelihood (or probability) of the dependent variable occurring for a specific
case given the values of the independent variables for that case. This case may be within the sample, in
which case we are assessing the extent to which the model would have predicted that case correctly. If we
believe that the model is generalizable, then we can use the values of the independent variables for cases not
included in the model to generate predicted probabilities for those “out-of-sample” cases. This can be done
by not including all cases in the analysis that generates the coefficients to assess the generalizability of the
model. This can also be done using new cases to make real-time predictions, though this is seldom done in
political science.

Having described the basic ideas of logistic analysis, we now describe it mathematically. The observed
values of the dependent variable are 1 for the presence of the event and 0 for the absence of the event:
y ∈ {0, 1}. The independent variables, x1, x2, · · · , xm, can be continuous or dichotomous variables. The
estimated coefficients for each independent variable is given by β1, β2, · · · , βm and β0 is the estimated “con-
stant” of the model (representing the baseline predicted probability when all independent variables equal
zero). The estimated predicted probability of an event occurring is given by equation 1.

y∗ =
1

1 + e−(β0+β1x1+β2x2+···+βmxm)
(1)

The predicted probabilities are also used to classify cases as as predicted to occur or not. Specifically,
the discrete prediction, ŷ, is given by:

ŷ =

{
1 if y∗ ≥ 0.50

0 if y∗ < 0.50

An observed case is considered to be correctly predicted by the model when y = ŷ.
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Qualitative Comparative Analysis

Social scientists, in the pursuit of rigorous methods that enable us to have confidence in the conclusions we
draw, have our hands tied. We cannot hold variables constant in a laboratory for most of the questions
for which we seek answers. We usually cannot conduct randomized, or controlled, experiments. If we
are fortunate, nature gives us a natural experiment, where the experimental conditions are determined by
exogenous factors outside of the researchers control.1 In this instance, two populations exist in near similar
conditions, and one of the populations naturally receives a treatment that the researcher happens to be
interested in knowing the effects of. However, these are observational studies that cannot be created at will.

To get around the problem of having no social science laboratory, researchers frequently turn to quanti-
tative analysis. Statistical techniques allow social science researchers to evaluate large amounts of data to
identify trends and patterns. Quantitative analysis can help us understand not only the magnitude of the
causal relationship we are evaluating; it also gives us confidence that the effect in the sample population
we are observing is not by chance, but rather can be applied to the universe of cases in our population.
However, there are drawbacks to quantitative analysis.2 The one that concerns us here is the problem of
rare events. Quantitative analysis works best with large numbers of observations (greater than 50), but what
if the events we are interested in happen only rarely? Again, the hands of the social scientist are seemingly
bound.

The response within the quantitative methods camp has been to develop innovative uses of statistical
analysis that can adequately handle a small- or medium-N research design. Case study researchers, on the
other hand, have advocated for smaller studies that emphasize within-case analysis and paired comparisons.
Then, they argue, it is only a matter of getting the case selection right. But single-case studies, rich in
detail as they may be, are difficult to generalize from, and paired comparisons may still suffer from poor case
selection, particularly if the universe does not provide appropriately comparable cases. There is, however,
another approach. Qualitative comparative analysis (QCA) is uniquely suited for medium-N research designs.
They have the added advantage of disentangling causal heterogeneity, limited diversity, and equifinality, all
three of which are reasonable expectations given the complexity of the social world.

QCA, also known as set-theoretic methods or configurational comparative methods (CCM), is based on
Boolean algebra and formal logic and allows for the systematic comparison of cases. QCA and set-theoretic
methods can be defined as “approaches to analyzing social reality in which (a) the data consists of set
membership scores; (b) relations between social phenomena are modeled in terms of set relations; and (c)
the results point to sufficient and necessary conditions and emphasize causal complexity in terms of INUS
and SUIN causes.”3 Causal complexity entails equifinality, conjunctural causation and causal asymmetry.
Equifinality means that there are potentially many paths to one outcome. Conjunctural causation refers
to the way in which factors exert a causal effect on an outcome, i.e. in combination with other specified
factors. This is sometimes referred to as multiple conjunctural causation, “a nonlinear, non-additive, non-
probabilistic conception that rejects any form of permanent causality and that stresses equifinality (different
paths can lead to the same outcome), complex combinations of conditions, and diversity.”4 Causal asymmetry
implies that the presence and absence of an outcome may have different explanations. Whereas a symmetric
understanding of X → Y should lead us to conclude that ∼ X → ∼ Y , an asymmetric understanding of
X → Y would not permit that conclusion. The outcomes Y and ∼ Y could have entirely different causal
conditions.

Theoretically, there are a number of reasons to expect that a set-theoretic approach, with its emphasis
on causal complexity, is appropriate for civil war onset. It is reasonable to assume that cases of civil war
onset can be characterized by equifinality (multiple causal paths), not unifinality (one causal path). Simply
put, civil wars may occur in different places for different reasons, and QCA/set-theoretic approaches are
uniquely suited for detecting this. It is also reasonable to assume that the causal conditions of civil wars
are best characterized as conjunctural, not additive. Causal additivity is when a cause can be said to have

1The study of the 1854 cholera outbreak in London is considered the first natural experiment.
2Cite those chapters from RSI (Brady, Bartels and Rogowski).
3Schneider and Wagemann 2012, p. 6.
4Rihoux and Ragin, p. 17.
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an independent effect on the outcome: “the strength of its effect is not altered by the presence or absence
or level of other causes.”5 Statistical analysis is a powerful tool for identifying a set of causal variables that
have an independent effect on the outcome and explain as much of the variation as possible. However, if
a variables causal effect is not independent but dependent on the presence or absence of other variables
(i.e., conjunctural), then a set-theoretic approach is more appropriate.6 It may be that some proposed
causal conditions of civil war onset, such as ethnolinguistic fragmentation, negative change in GDP, and
an autocratic state do not by themselves lead to civil war, but only when in the presence of each other.
Additionally, civil war onset may best be characterized by causal asymmetry, not causal symmetry. The
causal conditions that explain the outcome of civil war onset may be entirely different from the set of
conditions that explain non-civil war onset. For these reasons, we have good reasons to expect, from a
theoretical standpoint, that a set-theoretic approach might be appropriate for studying civil war onset.

However, the problem rare events poses for statistical analysis is potentially confounding for QCA as
well. The reason for this is the nature of the subset relationship between the causal factor(s) and outcome
of rare events that QCA is meant to evaluate. A rare event is one in which a particular phenomenon could
potentially occur in a large number of cases, but happens significantly less frequently. Civil war onset is
considered a rare event because, given the large number of cases in which they could occur, civil wars occur
only rarely. For evaluating the potential subset relationship between the putative causes of civil war onset
and the outcome of civil war, this poses a problem because the subset of civil wars will be extremely small,
relative to the superset of causal conditions. This can effect coverage and consistency scores, the means by
which we interpret QCA results.

Sufficient Conditions

The information QCA gives us concerning the subset relationship take the form of coverage and consistency
scores. Consistency scores for sufficient conditions indicate the degree to which the posited subset relationship
exists. Consistency scores for sufficiency must be adequate before moving to interpret coverage scores.
Consistency scores are derived by summing all cases where both the outcome and cause are present and
dividing them by the sum of all cases where the outcome is present. If there are many cases that display
the cause but not the outcome, but relatively few cases that display both the cause and the outcome, the
consistency will be low. This represents a subset relationship where the causal condition set is not fully
subsumed by the outcome set, and is expressed as:

Consistency of X as a sufficient condition for Y =
Number of cases where X = 1 and Y = 1

Number of cases where X = 1
(2)

We have reason to expect that consistency scores for rare events will be naturally low because the
numerator in the equation above should be much larger than the denominator. This makes consistency
scores difficult to interpret. While Schneider and Wagemann indicate that the preferable threshold for
sufficient conditions should 0.75, this is not practical for rare events because the outcome occurs only rarely,
relative to all the causal conditions.7 To address this, two techniques will be used. First, sufficiency tests will
be run on the data sets with all cases using a low threshold for consistency (0.1 and 0.2). Then, sufficiency
tests will be run on the data sets with only positive cases to increase the consistency scores. Results from
all sufficiency tests will be compared.

Coverage scores for sufficiency indicate the relationship in size between the causal condition(s) and the
outcome. Typically, when the cause and outcome sets are close in size, the relationship is considered an
empirically important one. For instance, if we are evaluating 30 cases that feature outcome Y, and the causal
condition X explains 27 of those cases (90%), this is considered to be a high coverage score. The coverage

5Ragin 2000 p. 95.
6While statistical analysis provides a way to introduce interaction models, these tend to be highly collinear if specific

conditions are not met (Ragin 1987). Additionally, while third- and fourth-order interaction terms are rare, set-theoretic
approaches often detect combinations of three or more causal conditions (Schneider and Wagemann 2012).

7Schneider and Wagemann 2012, pp. 123-129.
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score is a measurement of the ratio between cases where the outcome is present, and cases where both the
outcome and the cause are present, and is expressed as:

Coverage of X as a sufficient condition for Y =
Number of cases where X = 1 and Y = 1

Number of cases where Y = 1
(3)

Coverage scores take into account how many cases have high membership in the outcome set (Y), but
low membership in the causal condition set (X). A case with a high score on the outcome set, but low
score on the causal condition set would lower the coverage score because it indicates an instance where the
outcome occurred by other means. However, because equifinality is assumed in QCA, low coverage scores
are acceptable, though they explain only a small portion of the outcome. However, for the purposes of
interpreting coverage for generated data sets, only causal conditions with higher than 0.60 coverage scores
will be included in the solution formula.

Necessary Conditions

Consistency scores for necessary conditions are a measure of the extent to which the posited subset rela-
tionship exists, and are substantively similar to consistency scores for sufficiency. In both cases, consistency
scores must be evaluated before coverage scores. The degree to which the subset relationship of necessity
exists is a matter of the ratio of cases where both the cause and outcome is present, and cases where the
outcome is present and the cause is absent. This is expressed as:

Consistency of X as a necessary condition for Y =
Number of cases where X = 1 and Y = 1

Number of cases where Y = 1
(4)

If the consistency score is satisfactory, the researcher should then move to determine coverage scores.
For the purposes of this paper, the consistency threshold will be low, 0.60. Coverage scores for necessary
conditions indicate the extent to which a necessary cause is relevant, or a non-trivial one. A trivial necessary
cause is one that is present irrespective of the outcome. Air, for instance, is a trivial necessary cause of social
revolutions. Coverage scores for necessity are the ratio between cases where the cause is present and cases
where both the cause and outcome are present, and is expressed as:

Coverage of X as a necessary condition for Y =
Number of cases where X = 1 and Y = 1

Number of cases where X = 1
(5)

Coverage scores for necessity are similar to consistency scores for sufficiency. Rare events, however, will
naturally have low coverage scores because a rare class of events is already a small subset of the cases
evaluated. This makes the coverage score difficult to interpret. For the purposes of this paper, coverage
scores will be reported, but they are expected to be so small as to be uninterpretable.

Simulated Data and Analysis

To compare logistic and QCA analyses in a controlled setting, we generated random datasets with specified
characteristics. Each dataset has 1000 observations, five independent variables (uniformily distributed on
[0, 1]), and one dichotomous dependent variable. The choice to have the independent variables bounded
between zero and one was made to facilitate the use of QCA without then having to make more arbitrary
decisions regarding transforming the independent variables. While logistic analysis can have continuous
variables with any range, QCA requires its causal factors to be on the unit interval.

Each dataset also represents a rare-events dataset in which the dependent variable has a low occurrence,
with an average mean of 5.6% across all datasets. (The lowest mean occurrence of the dependent variable is
4.9% and the highest mean is 6.7%.)

The formula by which the dependent variable was generated (i.e., the link function) represents the
distinguishing feature of each dataset. That is, an intermediary linear equation (of the general form t =
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α + βx + ε) was generated that represented the “true” relationship among the independent variables and
the dependent variable. This linear equation was then transformed to a probability following the logistic
function in equation 6.

y∗ =
1

1 + e−t
(6)

The cases were then classified as present or absent for y by comparing whether y∗ was above or below
one half:

y =

{
1 if y∗ ≥ 0.50

0 if y∗ < 0.50

For several of the link functions, other temporary variables were created to represent interaction terms
or induce U-shaped or inverted-U relationships. The error term of each of the link function was normally
distributed with mean zero: ε ∼ N(0, 1.50). In all cases, the only variables kept in each final dataset were
an id variable, x1 through x5, and y.

Equations 7 through 14 are the link functions associated with datasets 1 through 8. Link functions t1, t2,
and t6 represent standard monotonic, additive relationships in which there are no interaction terms. Link
functions t3 and t8 represent curvilinear relationships in which the probability of occurrence is highest for
middle values of x2 (as in t8) or for extreme values of x2 (as in t3).8 Link functions t4, t5, and t7 represent
relationships with simple multiplicative interaction terms.

t1 = −4.00− 2.00x3 + 4.00x5 + ε (7)

t2 = −4.00− 2.00x2 + 4.00x4 + ε (8)

t3 = −4.00 + 4.00
(
x22 + (1− x2)2 − 0.25

)
+ ε (9)

t4 = −4.50 + 2.00x4 + 4.00 (x3x5) + ε (10)

t5 = −3.50 + 4.00 (x2x3)− 3.00 (x4x5) + ε (11)

t6 = −4.00 + 3.00x2 − 5.00x3 + 6.00x4 − 6.00x5 + ε (12)

t7 = −4.00 + 2.00x2 + 3.00x5 − 4.00 (x2x5) + ε (13)

t8 = −4.75− 3.00x5 + 5.50
(
1.25− x22 − (1− x2)2

)
+ ε (14)

One author created the link functions and generated the datasets. The other author then applied QCA
to each dataset without knowing what the underlying relationships were. A graduate assistant applied
the likelihood-ratio model-reduction method to the datasets, also without knowing what the underlying
relationships were.9

In constructing the link functions, we deemed it important to include the following types of relationships.
Some of the models include simple positive and negative relationships between the independent variables
and the dependent variable corresponding to the

8The particular functional form for these curvilinear relationships was chosen such that a U-shaped (or inverted-U shaped)
function would exist within the range [0, 1] and domain [0, 1] as well as have values that cross the y = 0.50 line twice (once for
an x value below 0.50 again for an x value above 0.50). The resulting functions represent only one kind of U- or inverted-U
shaped function; “J” functions are not represented in this analysis.

9The authors thank Colin Hannigan for his research assistance on this project.
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Analysis Methods

Logistic Analysis

To an outside researcher, applying logistic regression for our battling methodologies presents a formidable
problem. Essentially, the researcher is presented with the eight randomly generated data sets that have the
same number of variables and of observations and then asked to identify the “best” model for each data set.
While the dependent variable is clearly identified, all the other variables are equally interchangeable, having
the same descriptive statistics (in that their means, etc., are statistically indistinguishable). (See Table 1 for
the summary statistics of the data sets.) Additionally, none of the variables have theoretical meaning.

[Table 1 about here]

The closest technique that we have to grapple with this problem is that of model reduction using
likelihood-ratio tests.In this technique, all independent variables are identified and used to construct an
“unconstrained” or full model. For our purposes, this full model includes testing for interaction terms and
curvilinear relationships.10 The full model that was the starting point for the logistic analyses is given in
equation 15.

y = f
(
α+ β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x

2
2 + β7x5x3 + β8x5x4 + β9x2x3 + β10x2x5

)
(15)

After running this unconstrained model, the significance of the independent variables was examined to
determine which would be kept for the constrained model. Our decision rule regarding this was to keep all
variables with a p-value < 0.10. An additional caveat was that all component variables of an interaction
term would be included regardless of their significance.11 A likelihood-ratio (LR) test was then conducted
comparing the models. If the LR test was significant, then the full model was identified as the best model.
If the LR test was insignificant, then the full model was discarded as the best model. In this case, the
unconstrained model was examined for further reduction following the same procedures as above.12

Qualitative Comparative Analysis

On each of the eight generated data sets, all variables were first converted to crisp sets.13 Then, in an
effort to reconstitute the population and prevent low and uninterpretable consistency and coverage scores,
an additional data set with only positive cases was created for each original data set. This gave us our eight
original, all-cases data sets and eight additional, positive-on-outcome data sets to test. Testing all cases led
to predictably low consistency scores for sufficiency and coverage scores for necessity. This was supplemented
with a positive-on-outcome approach to improve scores on consistency and coverage. The all-cases approach
and positive-on-outcome approach required different decisions concerning frequency and consistency cut-off
points when editing the truth tables. For the all-cases approach, consistency scores were low and there were
cases in each property space. Given that there were (quite a few) cases in every property space, editing
the truth table based on a frequency cut-off proved unsystematic. Instead, consistency scores were used as

10QCA examines all possible interactions as part of its technique. Such a model in a single logit would be very large and
fraught with colinearity issues. Thus, we only included interaction terms that were present in at least one of the simulated data
sets. Similarly, QCA can test for curvilinear relationships only if there is a suspicion (theoretically or empirically) that such a
relationship exists; the QCA analyses were informed that there may be a curvilinear relationship involving x2 in some of the
models, but which models were not revealed.

11For example, if x2x3 had p < 0.10, then x2 and x3 would be included regardless of their p-values.
12This only resulted in further reduction in one case, involving the data set associated with link function t4.
13For all generated data sets, the outcome variable was already crisp. When this is the case, fuzzy causal variables could

cause the researcher to overestimate causal effects because sufficiency and necessity relies on determining whether scores on
the causal variables are less than or equal to (in the case of sufficiency), or greater than or equal to (in the case of necessity)
the score on the outcome. If the outcome scores are dichotomous (0 or 1), but causal variables are all between zero and one,
the researcher may overestimate the extent to which the posited subset relationship exists. Thus, the causal conditions were
calibrated to crisp sets to prevent overestimating causal relationships.
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the basis for determining which property spaces would be assigned “0” and which would be assigned “1”.
For each all-cases data set, two tests for sufficiency were run, the first with a consistency cutoff of > 0.00,
the second with a consistency cutoff of > 0.1. For the positive-on-outcome approach, consistency scores
for sufficiency and coverage scores for necessity were uniformly 1.0 (due to the elimination of all negative
cases), and not all property spaces contained cases (limited diversity). For this reason, when editing the
truth table, consistency scores were not useful to determine the cutoff; frequency scores were used instead.
For each positive-on-outcome data set, the first sufficiency test was run with a frequency cutoff of zero, and
the second was run with a frequency cutoff of one. For all sixteen data sets, tests of necessity were also run.

Results

In this section, we present the results of each methodology on the eight simulated data sets.

Logistic Analysis

The logistic analyses coupled with model reduction using likelihood-ratio tests resulted in the “best” models
presented in Table 2. For three of the data sets, the full model was retained as the “best” model. For the
other five data sets, the model was reduced by between six and eight variables.

[Table 2 about here]

The model-reduction technique did not always reduce the model to include only those variables relevant
in the simulation generating the data set. It did sometimes eliminate a variable used in generating the
dependent variable. When the full model was retained as the “best” model, the variables with the highest
levels of significance were generally (but not always) the variables used in generating the dependent variable
for that dataset. A closer comparison is made between these logistic results and the simulated models later
in the paper.

Qualitative Comparative Analysis

The results for sufficiency and necessity tests for all generated data sets are in the Table 2 below followed
by a more detailed discussion of the models separately.

[Table 3 about here]

Model 1

Sufficiency tests for Model 1 yielded weak results; three of the four tests returned all primitive expressions
with low coverage scores. Only one test from the positive-on-outcome data set returned a primitive expression
with a modest coverage score of 0.68 (frequency cutoff: 1.00; consistency cutoff: 1.00):

Solution Raw coverage Unique coverage Consistency
∼ x3 ∗ x5 0.68 0.4 1

∼ x1∗ ∼ x2∗ ∼ x3∗ ∼ x4 0.12 0.04 1
x1∗ ∼ x2 ∗ x4 ∗ x5 0.14 0.06 1
∼ x1 ∗ x2 ∗ x4 ∗ x5 0.16 0.04 1

solution coverage: 0.82
Tests for necessity, however, yielded more robust results:
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Primitive Consistency (all cases) Coverage (all cases) Consistency (positive) Coverage (positive)
x1 0.42 0.04 0.42 1
∼ x1 0.58 0.06 0.58 1
x2 0.42 0.04 0.42 1
∼ x2 0.58 0.06 0.58 1
x3 0.2 0.02 0.2 1
∼ x∗3 0.8 0.08 0.8 1
x4 0.6 0.05 0.6 1
∼ x4 0.4 0.04 0.4 1
x∗5 0.86 0.09 0.86 1
∼ x5 0.14 0.01 0.14 1

Given the nature of the data (rare events), the coverage scores do not yield much information, but the
consistency scores indicate the necessity of x3 and x5 for the outcome. Hence, for Model 1:
∼ x3 + x5 → Y

Model 2

Sufficiency tests for Model 2 indicate that ∼ x2∗ ∼ x5 is weakly sufficient for the outcome. The consistency
score is low (0.12), and the coverage score of 0.53 indicates that this causal path explains little more than
half the outcome. Necessity tests, on the other hand, point to three variables. As with Model 1, consistency
scores were the same across both the all-cases and positive-on-outcome approaches:

Primitive Consistency (all cases) Coverage (all cases)
x1 0.45 0.05
∼ x1 0.55 0.06
x2 0.28 0.03
∼ x∗2 0.72 0.08
x3 0.45 0.05
∼ x3 0.55 0.06
x∗4 0.87 0.09
∼ x4 0.13 0.01
x5 0.28 0.03
∼ x∗5 0.72 0.07

Consistency scores thus indicate the following relationship of necessity:
∼ x2 + x4+ ∼ x5 → Y

Model 3

As we recall, the underlying relationship of Model 3 is curvilinear. Necessity and sufficiency tests for Model
3 yielded no results. Not until the x2 variable was recalibrated to reflect a curvilinear relationship14 do the
tests return noteworthy results. The absence of x2 is shown to be necessary for the outcome, scoring 0.84
for consistency on the necessity tests. This suggests that QCA can detect curvilinear relationships, but the
researcher must suspect that the relationship is curvilinear and calibrate the variable accordingly.15

Models 4-6

The results from Models 4 show that x3 ∗ x5 is sufficient, with a consistency score of 0.13 and coverage of
0.63. Individually, variables x3, x4, and x5 appear as necessary causes. Model 5 returns two causal paths for

14The x2 variable was transformed from its original fuzzy values so that low and high values were coded as “0” and medium
values were coded as “1”. Medium values were considered to fall between 0.25 and 0.75.

15To test whether QCA was picking up this relationship accidentally, variables that were known to not be curvilinear in other
models were similarly calibrated; no relationship was detected.
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the outcome: x3∗ ∼ x4 and x2 ∗ x3∗ ∼ x5, covering 57% and 61% of the outcome set, though not uniquely.
Though the coverage score of x3∗ ∼ x4 is below the coverage threshold determined at the outset of this
paper (0.60), it is included here because it is unique coverage (the portion of the outcome it explains on
its own) is much higher than that of x2 ∗ x3∗ ∼ x5. Unique coverage scores are 0.15 and 0.00, respectively.
Individually, each of these variables is detected in tests of necessity as well. Similarly, model 6 returns two
causal paths, x4∗ ∼ x5 and x2∗ ∼ x3 ∗x4, whose variables also feature individually in tests of necessity. The
coverage scores for the two sufficient paths are 0.85 and 0.58, respectively. The score for x2∗ ∼ x3 ∗ x4 is
also below the threshold of 0.60, and is included here because of the high consistency score of 0.30. This is
much higher than would be expected with rare events.16

Model 7

The test results for model 7 are the weakest, with the ∼ x2 and x5 featuring in tests of necessity, but with
very low consistency scores (0.64 and 0.62, respectively). Model 7 proved to be the most difficult model for
QCA to detect any underlying relationship.

Model 8

Initially, model 8 showed only ∼ x5 to be both necessary and sufficient for the outcome. However, this
changed once the x2 variable was transformed to capture a curvilinear relationship. Before x2 was recali-
brated, tests of necessity and sufficiency indicated it had little to no causal effect on the outcome. After the
calibration, x2 appeared in both tests of necessity, with a consistency score of 0.79, and as part of the causal
equation for sufficiency with ∼ x5.

Comparing Results

In the table below, we compare the simulated models directly with the logistic and Boolean results. Because
Boolean analysis does not have coefficients, the description and results are simplified to indicate positive or
negative relationships.17

M Simplified Description Logit Results (sig. IVs only) Boolean Results
1 −x3, +x5 −x3, +x5 −x3, +x5
2 −x2, +x4 +x4 −x2, +x4, −x5
3 U-shaped over x2 U-shaped over x2 −x2
4 +x4, +x3x5 +x4, +x3x5 +x3, +x4, +x5, +x3x5
5 +x2x3, −x4x5 +x1 +x2, +x3, −x4, −x5, x3∗ ∼ x4, x2 ∗ x3∗ ∼ x5
6 +x2, −x3, +x4, −x5 −x3, +x4, −x5 −x3, +x4, −x5, x4∗ ∼ x5, x2∗ ∼ x3 ∗ x4
7 +x2, +x5, −x2x5 +x5, −x2x5 −x2, +x5
8 Inverted-U over x2, −x5 Inverted-U over x2, −x5 x2, −x5

Only on model 1 was there agreement on both techniques that matched the simulated data. On models 3
and 8, there was near agreement on both techniques once the Boolean analysis was looking for a curvilinear
relationship. This constitutes three positive outcomes for each technique. On the other five models, there
were mixed results.

The logistic analysis picked up another positive outcome in arriving at the true description for model 4.
The Boolean analysis also uncovered the correct interaction term for model 4 but then made more of the
primitive components of that interaction than logit did.

16Schneider and Wagemann (2012, pp. 148-149) indicate that there is sometimes a tradeoff between consistency and coverage
scores.

17For some of the Boolean results, the interactions did not lend themselves to simple positive or negative relationships and
were subsequently left as is.
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With respect to model 5, the logistic analysis outright fails. In this model, two interaction terms generated
the dependent variable. The logistic analysis didn’t pick up either interaction term; worse, its one significant
result was for a simple independent variable that wasn’t even used in generating the dependent variable.
However, Boolean analysis did not clearly discern the true relationship either. While Boolean analysis picked
up the correct sign on the components of the interaction terms, it did not pick up the true interaction terms
themselves.

In model 6, logistic analysis picked up three of the four additive relationships correctly. Boolean analysis
picked up the same primitive relationships correctly. However, Boolean analysis then added two interactive
causal paths that were not part of the true relationship.

Model 7 represented a traditional interaction term for statistical analysis in the true model. The lo-
gistic analysis picked up the correct interaction term and one component, but not the other component.
Interestingly, Boolean analysis only picked up the correct primitives but not the interaction term.

Another way to compare the models is by examining their predictive capacity. In Table 4 below, we
compare the percentage correctly classified and the positive predictive value for each method’s best “solution”
for the model dataset. The percentage correctly classified is the percentage of matching cases (i.e., cases
y = 0 given ŷ = 0 plus cases with y = 1 given ŷ = 1 divided by the total N). Given the emphasis in Boolean
analysis on predicting positive cases, we also examine the “positive predictive value”, which is the percentage
of cases correctly predicted given those cases where a prediction of a positive outcome was made.

[Table 4 about here]

In this table, we see a common failing of statistical techniques on rare events data. Namely, a very low
rate of even making positive predictions. For models 1-3 and 7-8, the logistic analyses do not predict any
positive cases; thus, the positive predictive value cannot be calculated. For models 4-6, the positive predictive
value of logistic regression is better than that of Boolean analysis. This is largely because logistic analysis is
more “tentative” in making positive predictions in the first place. Across all models, Boolean analysis makes
more positive predictions that are correct, but does so by making many more positive predictions that are
incorrect.

The converse is true for logistic analysis, which has a consistently high percentage correctly classified.
This is almost entirely because it is getting all the negative cases predicted correctly. For Boolean analysis,
because it over predicts positive cases, it necessarily has a lower percentage correctly classified.

Conclusion

In this brief conclusion, we summarize the main comparisons and contrasting points of our “battling method-
ologies”. In a way, the examined methodologies all have the same starting point. They all have a foundation
in set theory, from which “degrees of membership” and “conditional probabilities” are derived. These other
concepts are themselves part of probability theory, though QCA authors seem not to attribute this branch
of mathematics.

QCA is an inductive method for finding the best-fitting (Boolean algebra) equation given a set of variables
while also exploring a large set of interactions among those variables. These best-fitting equations do not
provide information regarding the relative importance of variables (i.e., there are no coefficients, standardized
or otherwise), but the overall equation combined with the data does provide the conditional probability of
correct prediction (within the sample). Statistical methods can be and have been put to the same inductive
task, though the focus of training is on theory testing. There are also some examples of theory testing with
Boolean algebra.

Measurement is a critical issue for all methodologies. If QCA and/or Boolean algebra were to be a core
tool for comparative politics, a best practice would be to think of measurement in terms of the [0, 1] interval.
This would avoid the scaling and calibration issue wherein a measure with a larger range needs to be re-scaled
into the unit interval before QCA analysis can be conducted.

While some social science concepts are reasonably measured along a “none-to-all” or “absent-to-present”
scale, not all are. We do use primary measures that deal with counting things (such as population) or other,
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derived measures that are naturally continuous (such as economic wealth). Statistical analysis often has to
transform these variables to make the analysis more appropriate (such as log transformation), but it is not
a requirement that all such measures be transformed into the unit interval before conducting analysis. This
demonstrates a greater flexibility of statistical analysis over QCA, though we would all be better off if we
thought more deeply about measurement issues.

Another point of greater flexibility is in the number of cases and the rarity of the dependent variable
that logistic analysis can handle compared to QCA/Boolean algebra. One of our first issues was how many
cases to have in our simulated datasets. While we chose 1000 somewhat arbitrarily (so that there would be a
“medium N” of about 50 positive cases for potential QCA/Boolean analysis), it was clear that QCA/Boolean
analysis would not run with the typical tens of thousands cases that statistical analyses of country-years
often have. Even with our 1000 cases, the coverage scores for the all-cases Boolean tests were below the
threshold that QCA authors would generally be comfortable reporting as meaningful.

Our overall finding was that both methodologies generated similar findings regarding our simulated
datasets. In some ways, this is not surprising as both derive their logic from set theory. In fact, QCA seems
to be reinventing the wheel of analysis. But by giving existing probability theory concepts new names and
conflating some of these concepts with statistical ones, QCA is creating a distinct language that ignores the
work of others and makes it harder to converse within the discipline.

Given the greater flexibility of statistical analysis and the fact that QCA seems to be reinventing the
wheel, why should we engage in the translation process? There are two potential strengths of QCA worth
considering: conjunctural causation and equifinality. Conjunctural causation (or interactions among vari-
ables) is the major theme of QCA/Boolean analysis and its “estimator” is designed to calculate coverage for
every combination of the independent variables. Equifinality is another potential strength of QCA/Boolean
analysis. A typical logit estimation gives a series of ceteris paribus statements regarding each of the inde-
pendent variables. The idea of a “causal path” is only implicit; the idea that there may be multiple “causal
paths” is entirely absent. Thus, the notion that a variable might have a positive effect (along one causal
path) and have a negative effect (along another causal path) is rarely considered.
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Table 1. Summary Statistics of the Simulated Models

x1 x2 x3 x4 x5 y
Model 1 mean 0.4964 0.5004 0.4962 0.5134 0.4921 0.050

SD 0.2832 0.2845 0.2924 0.2837 0.2869 0.2181
min 0.0027 0.0004 0.0006 0.0023 0.0023 0
max 0.9986 1.0000 0.9975 0.9997 0.9992 1

Model 2 mean 0.5079 0.5204 0.5001 0.4990 0.4998 0.053
SD 0.2891 0.2891 0.2907 0.2942 0.2950 0.2241
min 0.0003 0.0012 0.0011 0.0005 0.0000 0
max 0.9990 1.0000 0.9998 0.9980 0.9998 1

Model 3 mean 0.5028 0.5057 0.4866 0.4994 0.5010 0.064
SD 0.2923 0.2877 0.2909 0.2883 0.2858 0.2449
min 0.0000 0.0011 0.0008 0.0007 0.0008 0
max 0.9996 0.9999 0.9996 0.9993 0.9984 1

Model 4 mean 0.4922 0.5037 0.5006 0.4985 0.4889 0.051
SD 0.2938 0.2856 0.2886 0.2936 0.2875 0.2201
min 0.0001 0.0005 0.0004 0.0001 0.0006 0
max 0.9998 0.9991 0.9977 0.9995 0.9980 1

Model 5 mean 0.5124 0.4917 0.5072 0.5044 0.4848 0.049
SD 0.2855 0.2856 0.2850 0.2882 0.2865 0.2160
min 0.0019 0.0009 0.0001 0.0000 0.0001 0
max 1.0000 0.9990 0.9990 0.9981 0.9986 1

Model 6 mean 0.5028 0.5110 0.5001 0.4971 0.4999 0.067
SD 0.2893 0.2855 0.2887 0.2792 0.2892 0.2501
min 0.0004 0.0026 0.0012 0.0010 0.0002 0
max 0.9999 0.9993 0.9999 0.9992 0.9996 1

Model 7 mean 0.5065 0.4763 0.4898 0.5046 0.4934 0.056
SD 0.2819 0.2938 0.2878 0.2901 0.2837 0.2300
min 0.0004 0.0011 0.0001 0.0007 0.0006 0
max 0.9981 0.9993 0.9973 0.9989 0.9996 1

Model 8 mean 0.5089 0.4979 0.5108 0.5007 0.4983 0.056
SD 0.2903 0.2874 0.2870 0.2868 0.2847 0.2300
min 0.0013 0.0007 0.0004 0.0004 0.0013 0
max 0.9997 0.9995 0.9999 0.9987 0.9976 1

Averages mean 0.5037 0.5009 0.4989 0.5021 0.4948 0.056
SD 0.2882 0.2874 0.2889 0.2880 0.2874 0.2292
min 0.0009 0.0011 0.0006 0.0007 0.0007 0
max 0.9993 0.9995 0.9988 0.9989 0.9988 1



Table 2. Logit Reduced Model Analysis

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

x1 -0.151 1.561 0.132

0.7681 0.0092 0.8237

x2 -1.387 -12.904 7.987 0.632 1.640 16.026

0.5506 0.0000 0.0821 0.8280 0.1731 0.0000

x3 -2.499 -0.393 -0.476 1.501 -5.404

0.0000 0.7544 0.7279 0.6025 0.0080

x4 2.690 2.383 -0.291 6.638

0.0188 0.0000 0.7513 0.0000

x5 4.696 -2.521 -0.079 0.306 -11.535 3.761 -3.084

0.0000 0.2272 0.9520 0.9195 0.0128 0.0001 0.0000

x2sq -0.241 12.907 -4.752 2.952 -16.249

0.9080 0.0000 0.1040 0.2558 0.0000

x5x3 -0.139 4.071 1.981 1.946

0.9436 0.0485 0.5356 0.5815

x5x4 2.340 -1.230 4.239

0.3139 0.5687 0.3612

x2x3 -1.086 3.326 -1.110

0.5650 0.3356 0.7172

x2x5 0.005 -5.295 2.118 -4.104

0.9982 0.0573 0.5064 0.0244

_cons -4.950 -2.892 -0.939 -5.329 -7.852 -4.214 -4.685 -4.653

0.0000 0.0109 0.0010 0.0000 0.0016 0.0050 0.0000 0.0000

N 1000 1000 1000 1000 1000 1000 1000 1000

r2_p 0.1989 0.1545 0.1213 0.1414 0.2671 0.5375 0.0570 0.1537

chi2 78.9689 64.0563 57.7102 56.9849 104.4559 264.2663 24.5847 66.3605

2 10 2 4 10 10 3 3

ll -159.0308 -175.2274 -208.9796 -172.9568 -143.3323 -113.6757 -203.5241 -182.6362

legend:  b/p

Independent variables significant at p<0.05 are in bold.
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Table 3. Boolean Analysis Results

Model Solution Formula Consistency 
(sufficient)1 

Coverage 
(sufficient)

Consistency 
(necessity)

Coverage 
(necessity)2

Model 1 ~x3 + x5 (N) N/A N/A 0.80, 0.86 0.08, 0.09
Model 2 ~x2+ x4 + ~x5 (N) N/A N/A 0.71, 0.86, 0.71 0.08, 0.09, 0.07
Model 3 ~x2 (N) N/A N/A 0.84 0.11
Model 4 x3 + x4 + x5 (N)

x3*x5 (S)
0.13 0.63 0.73, 0.68, 0.78 0.07, 0.07, 0.08 

Model 5 x2 + x3 + ~x4 +~x5 (N)
x3*~x4 (S)
x2*x3*~x5 (S)

0.11, 0.23 0.57, 0.61 0.80, 0.92, 0.61, 
0.78

0.08, 0.09, 0.06, 
0.07

Model 6 x2+~x3+x4+~x5 (N)
x4*~x5 (S)  
x2*~x3*x4 (S)

0.23, 0.31 0.85, 0.58 0.72, 0.87, 0.96, 
0.90

0.09, 0.11, 0.12, 
0.12 

Model 7 ~x2 + x5 (N) N/A N/A 0.64, 0.62 0.07, 0.07
Model 8 x2 + ~x5 (N and S) 0.62 0.14 0.79, 0.75 0.09, 0.08

1
 Consistency scores reported here are from the all-cases tests.

2
 Coverage scores reported here are from the all-cases tests.



Table 4. Comparing Predicted Probabilities

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Logistic Summary

0 0 0 1 4 34 0 0
950 947 936 949 946 920 944 944

Positive predictive value --- --- --- 100.0% 44.4% 72.3% --- ---
Correctly classified 95.0% 94.7% 93.6% 95.0% 95.0% 95.4% 94.4% 94.4%

Boolean Summary
count(y=1|y_hat_boolean=1) 49 53 33 49 49 67 27 49
count(y=0|y_hat_boolean=0) 250 143 488 125 59 59 712 238

Positive predictive value 6.5% 6.2% 6.9% 5.6% 5.2% 7.1% 10.4% 6.5%
Correctly classified 29.9% 19.6% 52.1% 17.4% 10.8% 12.6% 73.9% 28.7%

count(y=1|y_hat_logit=1)
count(y=0|y_hat_logit=0)


