Novel Enzymic Hydrolytic Dehalogenation of a Chlorinated Aromatic

Jeffrey D. Scholten; Kai-Hsuan Chang; Patricia C. Babbitt; Hugues Charest; Michel Sylvestre; Debra Dunaway-Mariano

Stable URL: http://links.jstor.org/sici?sid=0036-8075%2819910712%293%3A253%3A5016%3C182%3AENHDOA%3E2.0.CO%3B2-4

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Science is published by American Association for the Advancement of Science. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Science ©1991 American Association for the Advancement of Science

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
Novel Enzymic Hydrolytic Degeneration of a Chlorinated Aromatic

JEFFREY D. SCHOLTEN, KAI-HSUAN CHANG, PATRICIA C. BABBITT, HUGUES CHAREST, MICHEL SYLVESTRE, DEBRA DUNAWAY-MARIANO*

Microbial enzyme systems may be used in the biodegradation of persistent environmental pollutants. The three polypeptide components of one such system, the 4-chlorobenzoate dehalogenase system, have been isolated, and the chemical steps of the 4-hydroxybenzoate-forming reaction that they catalyze have been identified. The genes contained within a 4.5-kilobase Pseudomonas sp. strain CBS3 chromosomal DNA fragment that encodes dehalogenase activity were selectively expressed in transformed Escherichia coli. Oligonucleotide sequencing revealed a stretch of homology between the 57-kilodaton (kD) polypeptide and several magnesium adenosine triphosphate (MgATP)-cleaving enzymes that allowed MgATP and coenzyme A (CoA) to be identified as the dehalogenase substrate and cofactor, respectively. The dehalogenase arises from two components, a 4-chlorobenzoate:CoA ligase-dehalogenase (an α6 dimer of the 57- and 30-kD polypeptides) and a thiosterase (the 16-kD polypeptide).

CHLOROAROMATIC RANK AMONG the most prevalent and environmentally persistent class of synthetic chemicals. Because standard methodologies have proved ineffective in removing these pollutants from the environment, other strategies are evolving. One strategy involves the isolation of microbes that, through a catabolic process, can transform these compounds to harmless end products. Microbial biodegradation of chloroaromatics (I) is, however, complicated in that the chlorine atoms interfere with the enzymatic breakdown of the aromatic ring. Some strains of bacteria have overcome this problem by incorporating a dehalogenation step at the start of the catabolic pathway.

Studies have shown that 4-chlorobenzoate (4-CBA) dehalogenase activity exists in Pseudomonas sp. strain CBS3 (2), Nocardiopsis sp. (3), Alcaligenes sp. NTP-1 (4), and Arthrobacter sp. (5). These bacteria were isolated from soil based on their ability to survive on 4-CBA as a sole carbon source. In each of these microbes, 4-CBA is first converted to 4-hydroxybenzoate (4-HBA), which in turn is degraded by the enzymes of the protocatechuate branch of the β-keto-adipate pathway. Substrates labeled with 18O, in conjunction with crude protein powders, were used to demonstrate that in Pseudomonas sp. strain CBS3 (6) and Arthrobacter sp. (7) the conversion of 4-CBA to 4-HBA occurs by a hydrolytic process (Eq. 1), as opposed to an oxidative one. This observation suggested to us that the 4-CBA dehalogenase of these strains catalyzes a novel aromatic substitution reaction, one that conceivably might be expanded, through active site modification, to other halogenated aromatic substrates. We report the purification and characterization of an enzyme capable of catalyzing hydrolytic dechlorination of chlorinated aromatics.

Earlier attempts to purify active 4-CBA....

J. D. Scholten, K.-H. Chang, D. Dunaway-Mariano, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742. P. C. Babbitt, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94145. H. Charest and M. Sylvestre, Universite du Quebec, Institut National de la Recherche Scientifique-Sainte-Pointe-Claire, Quebec, Canada H9R 1G6.

*To whom correspondence should be addressed.

Fig. 1. (A) Construction of the pT7.7 clones and pT7.5 and pT7.6 subclones from the 4.5-kb fragment encoding the 4-CBA dehalogenase derived from the chromosomal DNA of Pseudomonas sp. strain CBS3. We generated the subclones by, and named them according to, the restriction enzymes indicated. The positions of the open reading frames ORF I, ORF II, and ORF III (identical with oligonucleotide sequencing) that encode the 30-, 57-, and 16-kD polypeptides are shown. (B) The autoradiogram of a 12% SDS-PAGE chromatogram of soluble cellular proteins produced by the E. coli K38 treated with [35S]Met. Lanes are as follows: pGIP-1 and the 4.5-kb DNA-pT7.5 (lane 1), the Sma I–Sal I-pT7.5 digest (lane 2), the Sal I–Nhe I-pT7.5 digest (lane 3), or the Pst I–Pst I-pT7.6 digest (lane 4). The running positions of commercial stained molecular mass markers are indicated at left in kilodaltons.
dehalogenase from the *Pseudomonas* sp. strain CBS3 (8), *Nocardia* sp. (3), *Alcaligenes* sp. NTP-1 (4), and *Arthrobacter* sp. (5) had been unsuccessful because of low levels in cell-free extracts of the activity that converts 4-CBA to 4-HBA. We increased this enzymatic activity by enhancing the expression of the dehalogenase genes. Strain CBS3 dehalogenase genes were cloned into *E. coli* with the cosmid vector pPSA843 (9). Transfer of the hybrid cosmid carrying a 9.8-kb DNA fragment from strain CBS3 to the 4-CBA dehalogenase-negative strain *Pseudomonas putida* KT2440 conferred the ability to dehalogenate 4-CBA on this strain and enabled the strain to grow on 4-CBA as its sole source of carbon. However, as with the *Pseudomonas* sp. strain CBS3, the 9.8-kb pPSA843 *P. putida* clone yielded cell-free extracts that did not appear to contain sufficient amounts of the converting activity to allow further fractionation. The low and often transient dehalogenase activity observed with lysed cells might have been the result of the dilution or degradation of an unidentified cosubstrate or cofactor by the cellular extract. Less desirable was the possibility that the dehalogenase itself is unstable outside of the intact cell. In view of these obstacles to purification of the dehalogenase activity, we set out to identify the polypeptide components of the 4-CBA dehalogenase through oligonucleotide sequencing and selective expression of the dehalogenase genes.

In order to perform the gene sequencing and expression experiments, we trimmed the 9.8-kb DNA fragment (9) with the exonuclease Bal 31 and then cut the DNA with Sma I to produce a smaller, 4.5-kb DNA fragment that, when cloned in pMBB22, transferred 4-CBA dehalogenase activity to *E. coli* (10). We examined the protein components of the dehalogenase encoded by the 4.5-kb fragment by using the T7 RNA polymerase-dependent in vivo transcription-translation system for the exclusive expression of the cloned genes. Transformers with plasmid pT7.5 containing the 4.5-kb insert (Fig. 1A) were labeled with

\[^{35}S \text{Met} \] (11), and the translation products were visualized from the autoradiogram taken of a 12% SDS–polyacylamide gel electrophoresis (SDS–PAGE) chromatogram (Fig. 1B). Lane 1 (Fig. 1B) revealed three polypeptides (57, 30, and 16 kD) as possible candidates for the components of the dehalogenase system. The molecular masses of these translation products were checked against the open-reading frames (ORFs) identified by the oligonucleotide sequencing (12–14) of the 4.5-kb insert. One ORF spans oligonucleotide positions 687 to 1,494 and encodes a 29,847-dalton polypeptide. A second spans positions 1,505 to 3,089 and encodes a 57,156-dalton polypeptide, and a third spans positions 3,112 to 3,619 and encodes a 19,359-dalton polypeptide.

In order to test both the assignment of the ORFs and identify which of the three polypeptides were required for whole-cell dehalogenase activity, we generated fragments of the 4.5-kb oligonucleotide insert that encoded selected ORFs (Fig. 1A) and then separately inserted them into plasmids pT7.5 or pT7.6. The Sma I–Sal I endonuclease mixture, thought to contain ORF I, does in fact encode the 30-kd polypeptide (lane 2, Fig. 1B). Lane 3 (Fig. 1B) shows the polypeptide translation product corresponding to ORF II contained in the Sal I–Nhe I subclone. Shown in lane 4 is the translation product of ORF III contained in the Pst I–Pst I subclone. Hence, the ORFs identified by oligonucleotide sequencing (12–14) were confirmed.

The dehalogenase activities of the 4.5-kb DNA–pT7.5 *E. coli* clone and of each of the five *E. coli* pT7.5 subclones represented in Fig. 1A were assayed (reversed-phase high-pressure liquid chromatography (HPLC) separation of 4-CBA and 4-HBA) with whole cells (20 mg of cells per milliliter in 1 mM of 4-CBA and 25 mM tris-HCl, pH 7.5, at 30°C, overnight). Whereas complete conversion of 4-CBA to 4-HBA had taken place in the presence of the cells containing the 4.5-kb DNA–pT7.5 *E. coli* clone, no conversion was observed for the cells con-
taining the subclones. Thus, all three polypeptide components encoded by the 4.5-kb oligonucleotide fragment are required for the 4-CBA to 4-HBA converting activity.

The primary structure of the protein components of the 4-CBA dehalogenase provided the clues for understanding why lysed (as opposed to whole) cells were unable to convert 4-CBA to 4-HBA. We compared the primary structure of the dehalogenase to those of a select group of other proteins. A comparison of the amino acid sequence of the three polypeptides with other protein sequences contained in the National Biomedical Research Foundation (NBRF) database (release number 26) led to the identification of six proteins (15–20) that share a common stretch of sequence with the 57-kD polypeptide (Fig. 2). The reactions catalyzed by five of these proteins (gramicidin S synthetase I and tyrocidine synthetase I of Bacillus brevis, 2,3-dihydroxybenzoate-adenosine monophosphate (AMP) ligase of E. coli, luciferase of Photinus pyralis, and 4-coumarate:coenzyme A (CoA) ligase of Petroselinum crispum) are shown in Scheme I (PPI, inorganic pyrophosphate). The sixth protein, AngR, is thought to be a DNA-binding protein that modulates Fe^{2+}-regulated transcription (20) in Vibrio anguil- larium.

Each of the enzymes represented in Scheme I catalyzes the adenylation of a carboxylic acid substrate with magnesium adenosine 5'-triphosphate (MgATP) (21–25). In the case of the 4-coumarate:CoA ligase reaction, formation of the mixed anhydride precedes acyl transfer to the thiol group of CoA (21). The (2,3-dihydroxybenzoyl)adenylate, formed by the 2,3-dihydroxybenzoate-AMP ligase of the E. coli entero- bacter biosynthetic pathway, ultimately under-}

Fig. 3. **A** Elution profile of a 0 to 55% ammonium sulfate fraction (1 g) taken from E. coli cells containing the 4.5-kb DNA pMMB22 plasmid and applied to a 2.5 cm by 50 cm DEAE-cellulose column. An isocratic buffer solution [50 mM Hepes, 5 mM dithiothreitol, and 10 μM Fe(NH4)2(SO4)2, pH 7.5] at 4°C was used as the eluant for the first 40 (10-ml) fractions. Component I was eluted in fractions 32 to 37. After applying a linear 0 to 0.75 M KCl gradient (800 ml), we eluted the second component in fractions 85 to 89. Protein concentration was measured by the absorbance at 280 nm (A_{280}). Fractions were assayed for the 4-CBA to 4-HBA converting activity in solutions containing 3 mM MgCl2, 3 mM ATP, 0.1 mM CoA, and 25 mM tris-HCl (pH 7.5) at 30°C. We monitored substrate consumption and product formation by injecting aliquots of the reaction onto an analytical C_{18}-reversed-phase HPLC column calibrated with 4-CBA and 4-HBA. Reaction components were eluted with a 50:50:1 methanol:water:acetic acid solution and detected at 254 nm with an ultraviolet detector. We also assayed substrate fractions for dehalogenase activity by including p-hydroxybenzoate hydroxylase (3 units per milliliter) (E.C. number 1.14.13.2), 0.1 mM flavin-adenine dinucleotide, and 0.1 mM dithydriocotinamide adenine dinucleotide phosphate (NADPH) in the assay solution. We monitored the formation of 4-HBA by using NADPH consumption at 340 nm with an ultraviolet-visible spectrophotometer. **B** A 12% SDS-PAGE chromatogram of pure 4-CBA dehalogenase component I (lane 1) and component II (lane 2) that was stained with Coomassie blue. The running positions of commercial molecular mass markers are indicated in kilodaltons.

Scheme 3

Scheme 2

Scheme 1

dimer of the 57- and 30-kD polypeptides (Fig. 3B). The catalytic properties of purified component I were examined by 31P nuclear magnetic resonance and reversed-phase HPLC. In the presence of Mg2+, CoA, and 4-CBA, component I catalyzes the cleavage of ATP to AMP and PPi coupled with the formation of the 4-HBA:CoA ad
duct in partial reactions 1, 2, and 3 of Scheme 3. Catalysis of ATP cleavage (par
tial reaction 1, Scheme 3) did not occur in the absence of CoA. Component I, in com
bination with component II, Mg2+, and CoA, gave complete conversion of 4-CBA and ATP to 4-HBA, AMP, and PPi.
Component II was purified from the Pst I–Pst I–Pst I–Pst I–Pst I–Pst I-76 E. coli subclone (Fig. 1A). Fractionation of the 40 to 70% ammonium sulfate protein cut on a DEAE-cellulose column, followed by gel filtration on a cali
brated FPLC Superose 12 column, provided pure component II (Fig. 3B). Component II is a ~65-kD protein (α4 tetramer) that catalyzes the hydrolysis of synthetic 4-HBA: CoA thioester (26) to 4-HBA and CoA.
The 4-CBA dehalogenase activity is thus a sum of the activities of a 4-CBA:CoA ligase, a 4-CBA:CoA dehalogenase, and a 4-HBA: CoA thioesterase. We note the role that the dehalogenase sequence data played in the isolation of the active enzyme; even the short motif shown in Fig. 2 allowed us to infer the cosubstrate and cofactor for this reaction. We expect that, as protein sequence databases expand, discoveries of this type could become routine and the characteriza
tion of new sequences could be facilitated.

REFERENCES AND NOTES
12. The 4.5-kb insert was sequenced as two separate fragments. A Sal I-Sal I 3.6-kb fragment was cloned into pUC19. Sequencing clones were generated from this plasmid by the method of nested deletions (13) (Amersham kit) and analyzed by restriction

digest and agarose gel electrophoresis. We per
formed oligonucleotide sequencing using the dideoxy chain termination method with the modi
fied form of T7 DNA polymerase (14) and [35S]dATTP (Seque
nase kit of U.S. Biochemical Corp.). Universal and synthetic oligonucleotides were used as primers. The 1.5-kb Sal I-Sal I fragment was cut with restriction endonucleases into four overlapping fragments. The fragments were cloned into M13 mp18 or M13 mp19. We sequenced the oligonucleotides by using the dideoxy chain termination method (Amersham M13 sequencing kit) with [35S]dATTP. The nucleo
tide positions assigned to ORF I (30-kD polypep
side) and ORF II (57-kD polypeptide) have been confirmed by NH2-terminal peptide sequencing of the purified translation products. The nucleotide positions of ORF III (19-kD polypeptide) await confirmation or adjustment based on the NH2-terminal sequence of the observed 16-kD translation product.
28. We thank S. Tabor for providing the T7 expression system and P. Mariano, D. Jalin, J. Kozarich, and J. Geftt for comments regarding the manuscript. Sup
ported by the National Sciences and Engineering Research Council of Canada, by the fonds pour la Formation de Chercheurs l’Aide du Quebec, and by the NIH (grant GM 28688).
22 February 1991; accepted 2 May 1991

Regulatory Role of Parasites: Impact on Host Population Shifts with Resource Availability

JAN O. WASHBURN, DAVID R. MERCER, JOHN R. ANDERSON

Effects of infections by the ciliate Labornella clarki on larval populations of its mosquito host Aedes sierrensis were examined in laboratory and field studies. When host populations developed with sufficient food, mortality from parasites was additive and reduced the number of emerging mosquitoes. For food-limited populations, mortality was compensatory or dispensatory; emerging adults were as or more abundant with higher average fitness than those from uninfected control populations. When nutrients were scarce, parasitic infections relaxed larval competition and increased per capita food by reducing host abundance. Food limitation altered larval feeding behavior, reducing horizontal transmission and subsequent mortality from parasitism.

Despite the widespread occurrence of parasites and the diseases they cause, few quantitative data are available on how these organisms affect host abundance in nature (1). Assessing whether parasites regulate host populations is chal
lenging because their impact cannot be inferred from incidence rates alone and be
cause comparative evidence from infected and non-infected populations is extraordi
narily difficult to obtain; consequently, models describing the effects of parasites on host population dynamics have relied heavi
ly on laboratory studies (1). Theoretically, parasitism can result in a reduction, no change, or even an increase in host abund
ance; such host mortality effects are termed

additive, compensatory, and dispensatory, respectively. Determining the frequency and importance of these host population re
sponses in nature and their underlying mechanisms are critical and formidable tasks for both theoretical and applied ecologists (1). Moreover, understanding these mortality
patterns is crucial for implementing effective biological control strategies.

Despite these difficulties, by creating host and parasite populations in laboratory mi
icrocosms and manipulated natural habitats, we have demonstrated that the impact of fatal infections by the parasitic protozoan, Labornella clarki (Ciliophora: Tetrahry
menidae), inflicted on populations of its natural mosquito host Aedes sierrensis (Diptera: Culicidae), changes with different resource regimes. Interactions between the effects of food limitation and parasitism as