1770 American Chemical Society Diochemistry V33 1 age 13476 Chang Supplemental 1 age 1 ## SUPPLEMENTARY MATERIALS Figure 1. ¹H-NMR spectra of 4-CBA-AMP generated from the reaction of 10 mM 4-CBA, 8 mM ATP, 10 mM MgCl₂, 30 units of inorganic pyrophosphatase and 25 units of 4-CBA:CoA ligase (17 μ M) in 50 mM K+Hepes (pH 7.5) and purified as described in Methods. The sample was dissolved in D₂O (pH 6.0). The ¹H-NMR spectra were recorded at 25 °C on a Bruker AMX500 multinuclear spectrometer operating at a frequency of 500 MHz. The chemical shifts (δ) and the assignments for the ¹H-NMR, relative to HDO (δ 4.77, 25°C) and reported in parts per million (ppm), are listed in Table 1. © 1990 American Chemical Society Biochemistry v33 Page 13478 Chang Supplemental Page 2 Figure **1**. ¹³C-NMR spectra of 4-CBA-AMP generated from the reaction of 10 mM 4-CBA, 8 mM ATP, 10 mM MgCl₂, 30 units of inorganic pyrophosphatase and 25 units of 4-CBA:CoA ligase (17 μ M) in 50 mM K+Hepes (pH 7.5) and purified as described in Methods. The sample was dissolved in D₂O (pH 6.0). The ¹³C-NMR spectra were recorded at 25 °C on a Bruker AMX500 multinuclear spectrometer operating at a frequency of 125 MHz. The ¹³C-NMR resonance assignments were aided by use of the DEPT technique to determine the numbers of attached hydrogens. The chemical shifts (δ) and the assignments for the ¹³C-NMR, relative to CDCl₃ (δ 77.00, 25°C) and reported in parts per million (ppm), are listed in Table 1. Figure 3. $^{31}\text{P-NMR}$ spectra of 4-CBA-AMP generated from the reaction of 10 mM 4-CBA, 8 mM ATP, 10 mM MgCl₂, 30 units of inorganic pyrophosphatase and 25 units of 4-CBA:CoA ligase (17 μM) in 50 mM K+Hepes (pH 7.5) and purified as described in Methods. The sample was dissolved in D₂O (pH 6.0). The $^{31}\text{P-NMR}$ spectra were recorded at 25 °C on a Bruker WP-200 multinuclear spectrometer operating at 84 MHz. The chemical shifts (δ) and the assignments for the $^{31}\text{P-NMR}$, referenced to 85% H₃PO₄ (δ 0.00, 25 °C) and reported in parts per million (ppm), are listed in Table 1. Figure $rac{4}{7}$. Absorbance spectrum of 4-CBA-AMP generated from the reaction of 10 mM 4-CBA, 8 mM ATP, 10 mM MgCl₂, 30 units of inorganic pyrophosphatase and 25 units of 4-CBA:CoA ligase (17 μ M) in 50 mM K+Hepes (pH 7.5) and purified as described in Methods. The sample was dissolved in H₂O (pH 6.0). The spectrum, recorded at 25 °C on a Milton Roy Spectronic $^{ m (8)}$ 3000 spectrophotometer, shows maximal absorbance of 4-CBA-AMP at 203 nm ($m ($\epsilon$ = 20 mM^{-1}cm^{-1}$)$ and 249 nm ($m ($\epsilon$ = 15 mM^{-1}cm^{-1}$)$.