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On a network where games are played among immediate network neighbors - or
friends - a player's optimal strategy in one subnetwork may be non-optimal in
another. For the two friendship-based payo�s examined, Nash equilibrium is a
function of the number of players playing each strategy, rather than the speci�c
strategies of individual players. With all players facing the same strategies, pay-
o�s, and Nash equilibria, the network reaches a static equilibrium when every
subnetwork reaches a subgame Nash equilibrium and no player has incentive
to change strategies. Payo�s are introduced that are based on the global state
of the network rather than the payo�s in the local subnetwork. Three global
strategies are examined: sheep (always choose with the majority), contrari-
ans (always choose against the majority), and saboteurs (intentionally prevent
an equilibrium by switching between the sheep and contrarian payo�s). The
gradual introduction of players with these global payo�s results in a shift from
static equilibrium to dynamic equilibrium and, in some cases, to disequilibrium
outcomes. Di�erent relative percentages of those playing each strategy lead
to new outcomes, new dynamics, or both. The results show that even small
percentages of the global-payo� players can disrupt outcomes signi�cantly. The
results also imply that, of the three, the sheep are most disruptive.

1. Network games

Galeotti et al. (2010) present the theoretical basis for, and some examples of, network
games. In these games, the players are distributed on a random network and the payo�s
are functions of the expressed preferences of the immediate neighbors on the network. For a
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model of strategic substitutes, the payo� is such that, if at least one neighbor is paying the
cost, none of the other neighbors has an incentive to also pay it. This is a free-rider model,
similar to the private provision of a public good. For a model of strategic complements, the
payo� is highest for the choice that is supported by a majority of neighbors. This is similar
to a network externality, where adopting the most common word processing software, for
example, maximizes the ability to share documents with neighbors. Lamberson (2011)1

shows that, on a friendship network with one of these games, the network reaches a static
equilibrium for strategic complements and two equilibria for strategic substitutes. Dixon
(2011b) demonstrates that these results can be reproduced using an agent-based model
(ABM). That equilibrium outcomes are somewhat sensitive to the topology of the friendship
network.(Dixon, 2011a)
Lamberson (2011) adopts the term friend for these network neighbors, re�ecting the

fact that adjacent nodes in a social network can be quite distant geographically. Lam-
berson also examines the e�ect of clustering: the extent to which a player's friends are
friends amongst themselves. Lamberson �nds that clustering can increase the equilibrium
provision of a public good - perhaps ine�ciently - in a strategic substitutes model. In a
strategic complements model, however, clustering can improve the di�usion of new ideas
or technologies. Lamberson explores numerical simulations on a regular random network
(all nodes have exactly the same number of friends) and on a Bernoulli random network
(each node has a randomly distributed number of friends). Using ABM simulations, Dixon
(2011a) examines friendship games with other network topologies: a small world network
(a Bernoulli network where some connections are reformed to increase clustering), and a
power-law network in which the number of friends has a power-law distribution. Dixon
�nds that equilibrium outcomes are somewhat sensitive to the topology of the friendship
network.
A note on terminology: A player in the game theory sense is the same as a node in

the networks discussed, which is the same as an agent in the agent-based modeling sense,
which is called a turtle in NetLogo agent-based models. That is, the terms player, node,
agent, and turtle are synonymous. Which term is used will depend on context, though
there is incomplete consistency in this draft. One intentional inconsistency arises in the
context of game theory, where usages like �the strategy an agent plays� simply �ows better
than �the strategy a player plays�.

1.1. The strategic complements game

Suppose there are two strategies, x and y. If an agent has k friends, then, at any given
instance, there are kx of them playing strategy x, and ky of them playing strategy y. For
the strategic substitutes models, the payo� for playing strategy x is

πx (kx) = f (kx)− cx (1)

1For an updated version see (Lamberson, 2015).
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and the payo� for playing strategy y is

πy (kx) = f (k − kx)− cy (2)

where f is a non-decreasing function andcx and cy are the costs of play x and y, respectively.
The adoption of a standard is a strategic complement: an agent chooses what most of

its friends choose. The decision of friends has a positive a�ect in that an agent tends to
take the same choice as friends that favor a strategy.
The strategic complements model presented in Lamberson (2011) is simply this: play

strategy x if four or more neighbors (in a random network of mean degree 10) are playing
x. That is

πx (kx) =

{
1 kx ≥ 4

0 otherwise

1.2. The strategic substitutes game

For the strategic substitutes models, the payo� for playing strategy x is

πx (kx) = 1− cx (3)

where 0 < cx < 1 and the payo� for playing strategy y is

πy (kx) =

{
1 kx ≥ 1

0 otherwise

The provision of a public good is a strategic substitute: an agent needn't provide it
unless none of its friends do. The decision of friends has a negative a�ect in that an agent
tends to take the opposite choice of any friend that favors a strategy.
The strategic substitutes model presented in Lamberson (2011) is simply this: play

strategy x if fewer than four neighbors (in a random network of degree 10) are playing x.
That is, costs are zero and

f (kx) =

{
1 kx ≤ 4

0 otherwise
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2. Network Topology

The models in Lamberson (2011) feature 1000 players on a random network of degree 10.
The number of other players to which a player is connected is that player's degree. In some
cases it is a regular random network, meaning that connections are made at random until
every node has exactly ten neighbors. In other cases it is a Bernoulli random network
with an edge probability of 0.01. That is, for a network potentially connecting all players
to all players, there is a probability of one in one hundred that a given connection will
actually exist. The degrees of the nodes are distributed binomially, with a mean degree of
approximately 10. That is, players have, on average, ten friends.
In the ABM developed for this paper, there are �ve ways in which a random network

can be generated. These are referred to as the regular, Bernoulli, preferential attachment,
truncated power law, and small world network models. The following are descriptions of
these network models.

2.1. Regular Random Network

One way to form a random network is for each agent to make two friends, but only with
other agents that don't already have two friends. This results in a regular random network
where the nodes have a uniform degree of two, ensuring that the average degree is two. It
is a high connectivity network: no agents will end up completely disconnected from the
network.
For example, a simple form of the strategic substitutes model in Section 1.2 is imple-

mented in NetLogo and simulated as outlined in Section 3. Figure 1a shows the results
for a degree 10 regular network of 1000 nodes. This plot overlays the ABM results (black)
on an image of the corresponding numerical results in Lamberson (2011) (blue). As with
Lamberson's result, about 40 percent of the nodes in the ABM are playing strategy x at
equilibrium. This is the characteristic outcome for this game and its payo�s: the network
reaches a static equilibrium of 40 percent of the agents playing x and 60 percent playing
y. The ABM reaches a slightly higher equilibrium ratio than Lamberson's for all initial
values, making this unlikely to be an outcome of stochastic e�ects.
Similarly, a simple form of the strategic complements model in Section 1.1 is implemented

in NetLogo and simulated as outlined in Section 3. Figure 1b shows the results for a
degree 10 regular network of 1000 nodes. This plot overlays the ABM results (black) on
an image of the corresponding numerical results found by Lamberson (2011) (blue). As
with Lamberson's result, initial distributions of more than 35 percent playing x lead to the
all-in (all players playing x ) equilibrium, while initial distributions of 20 percent or fewer
playing x result lead to all-out (no players playing x) equilibrium. This is the characteristic
outcome for this game and its payo�s: the network reaches one of two static equilibria of
either a)no players playing x or b) all players playing x. At the boundary of these two
outcomes, Lamberson's result shows an initial distribution of 25 percent playing x ending
in the all-out (no players playing x) equilibrium. The ABM, on the other hand, shows this
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(a) Strategic substitutes. (b) Strategic complements.

Figure 1: Degree ten regular network overlaid on Lamberson (2011) Figs. 2 and 1, respec-
tively.

initial distribution ending in the all-in (all players playing x) equilibrium. This di�erence,
as well as other deviations of the ABM from Lamberson's, may be due to stochastic e�ects.

2.2. Bernoulli Random Network

A Bernoulli random network with n nodes and probability p that an edge will exist results
in nodes with degrees that are binomially distributed about the mean np.(Erd®s and Rényi,
1959) There are two common methods for constructing this type of network. One is the
the G(n,M) method, which is called the Erdos-Renyi random network in this paper, and
the other is the G(n, p) model, which is called the Gilbert random network in this paper.
In the Erdos-Renyi random network, a network is chosen at random, with uniform dis-

tribution, from the collection of all possible networks with n nodes and M edges. For the
models in this paper, M is not known a priori, so a G(n,M) model is approximated by
adding edges between randomly chosen pairs of nodes until the mean degree reaches the
desired value.
If all friendship pairs are equally probable with probability p then a Gilbert random

network, G(n, p) is formed.(Gilbert, 1959) The mean degree is np, where n is the number
of nodes. For the models in this paper, this is created with nested loops: an outer loop
over a randomized list of all nodes, and an inner loop over a randomized list of all nodes
that haven't already come up in the outer loop. In the inner loop, a connection is formed
if a uniform random draw is less than or equal to p.
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No discernible di�erence is seen between the Erdos-Renyi and Gilbert methods: the
degree distributions of both networks very approximate a binomial distribution with R-
squared greater than 0.96, and clustering is about 0.018 in both. The Gilbert algorithm
runs about one-third faster, however, which is a consideration when generating many thou-
sands of networks

2.3. Preferential Attachment Network

The preferential attachment model (Wilensky, 2005a) is included in the NetLogo (Wilen-
sky, 1999) demo library and is based on an approach by Barabási and Albert (1999). This
is an approximation of a scale-free network, a network with a power-law distribution of
degrees per node. Also called a Pareto distribution, it results in a few nodes having a
very large number of connections and many nodes with very few connections. Scale-free
networks are seen in academic citations de Solla Price (1965) and in a variety of Internet
linkages. Albert and Barabási (2002) �nd that the probability of a link for a node with
degree k is p(k) = αk−γwhere γ is between 2 and 3. The NetLogo preferential attachment
algorithm yields a γ of approximately 2, and a mean degree of approximately 2. The out-
come space for a degree two preferential attachment network is compared with a degree
two regular network in Figure 2.

2.4. Truncated Power Law Network

Although many real-world networks exhibit power-law-distributed degrees with γ = 2, real-
world networks also have practical minimum and maximum degrees. For example, with
a power law distribution, degrees of zero and one are most likely, but nodes with degree
less than two are not actually on a network. Similarly, there is an e�ective upper limit
on the number of friends an individual can have. Truncating a preferential attachment
distribution at upper and lower bounds can yield a distribution with γ = 2 but a mean
degree much greater than two. The truncated power law implemented for this paper is
a preferential attachment network where nodes with degree within the truncation range
are selected randomly with power-law probability and given an additional edge to another
node. This continues until a target mean degree is reached. The outcome space for a
degree four truncated power law network is compared with a degree four regular network
in Figure 3.

2.5. Small World Network

The small world model (Wilensky, 2005b) is included in the NetLogo (Wilensky, 1999)
demo library and is based on an approach by Watts and Strogatz (1998). This is a Bernoulli
random network with some of the edges reconnected to create larger hubs and increase
clustering.
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(a) Strategic substitute, 2-regular network. (b) Strategic substitute, 2-powerlaw network.

(c) Strategic complement, 2-regular network.

Figure 2: Comparison of degree two regular and power law networks.
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(a) Strategic substitute, 4-regular network. (b) Strategic substitute, 4-truncated network.

(c) Strategic complement, 4-regular network. (d) Strategic complement, 4-truncated network.

Figure 3: Comparison of degree two regular and power law networks.
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3. The ABM Simulation

Following the the numerical models in Lamberson (2011), the NetLogo models update a
single, randomly selected agent at each time step. This random sampling means that, for
a network with 500 nodes, in the �rst 500 time steps, some agents may not be updated at
all, and others may be updated more than once.
These are the steps in a simulation:

1. Create 500 agents, then create a network by connecting the agents as nodes in a
network of the selected topology.

2. Randomly assign agents an initial strategy based on the selected game: strategic
complement or strategic substitute. Each run involves ten simulations, each with a
di�erent initial strategy distribution:

a) For strategic substitutes, starting initial distributions of the fraction of agents
playing strategy x are 10 percent through 100 percent in steps of 10 percent.

b) For strategic complements, starting initial distributions of the fraction of agents
playing strategy x are 10 percent through 55 percent in steps of 5 percent.

3. Each time step, a node is selected at random and that node selects a strategy based
on current payo�s based on the node's friends. This may be the same as the strategy
already being played.

4. Each simulation proceeds for 4000 time steps, except as noted.

Each game has an average of ten players: the current player and its ten friends. Each
player, in its turn, chooses between the two strategies, x or y, based on a payo� computed
from the strategy currently played by the friends. If the player had played x in the past,
but now chooses y, some of the friends may face a di�erent payo� when their turns come
around, and some may switch strategies. Eventually, however, for the games described
in Section 1, the entire network - every player and all its friends - reaches a point where
there's no longer a reason to switch strategies, ending in a static equilibrium ratio of those
playing x and those playing y.

3.0.1. Degree 10 Regular Random Network.

Plots of the ABM results with a degree 10 regular random network are shown in Fig. 4.
The equilibrium for strategic substitutes is between 46.6 percent and 47.9 percent playing
x. For strategic complements, the all-in or all-out division is between 25 percent and 30
percent playing x.
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(a) Strategic substitutes. (b) Strategic complements.

Figure 4: Degree 10 Regular random network.

3.0.2. Degree 10 Bernoulli Random Network.

Plots of the ABM results with a degree 10 Bernoulli random network are shown in Fig. 5.
This is an Erd®s-Rényi random network, but the results for a Gilbert random network are
e�ectively identical. The equilibrium for strategic substitutes is between 53.0 percent and
54.3 percent playing x. For strategic complements, the all-in or all-out division is between
20 percent and 25 percent playing x.

4. The Global Strategies: Sheep, Contrarians, and

Saboteurs

In the games described in Section 1, agents play a strategy based solely on payo�s based
on the strategies played by their subnetwork of friends. Eventually, all subnetworks reach
a Nash equilibrium and the entire network comes to a static equilibrium. To this game
now are added players with payo�s based, not on the subnetwork of friends, but on the
entire network. The contrarian payo� is positive for playing the opposite strategy as the
majority on the global network. Galam (2004) identi�es contrarians as a crucial factor in
close elections. The sheep payo� is positive for playing the same strategy as the majority of
the players on the global network. Sheep are associated with the bandwagon e�ect, which
Callander (2007) associates with a speci�c type of voter. The saboteur payo� is positive
for playing against the majority when the majority is large, and the saboteur payo� is
positive for playing with the majority when the majority is small. The saboteur payo� is
a conditional sum of the contrarian and sheep payo�, and is included here merely to add
a simple adaptive behavior.

10



(a) Strategic substitutes. (b) Strategic complements.

Figure 5: Degree 10 Bernoulli random network.

The introduction of global strategies has a profound e�ect on the nature of equilibrium
outcomes described in Section 3. The single static equilibrium outcome for the strategic
substitute payo� becomes two or more equilibrium outcomes. The bimodal static equilibria
seen with the strategic complement payo� converge to one, similar to the outcome with
power law topologies, or sometimes never reach equilibrium. As the number of saboteurs
is increased, previously static equilibria become dynamic, with agents switching strategies
frequently.
The following models were simulated using stochastic excursions along the parameters

for the percent of the agents facing each global payo�, ranging from 0 to 33 percent.
That is, the three-dimensional outcome space is explored with an ensemble of 34 × 34 ×
34 = 39, 304 simulations for each subnetwork payo� on each network topology. Each
simulation is 8000 time steps (ticks) for each of ten initial values of the percent of agents
playing strategy x. The completion of an ensemble for each of the two subnetwork payo�s
- strategic complement and strategic substitute - for �ve di�erent network topologies -
regular, Bernoulli, power law, truncated power law, and small world - means that there
were 393,040 networks constructed and 3,930,400 simulations for a total of more than 31
billion time steps.

4.1. The Strategic Substitute Payo� with Global Payo�s

The consistent characteristic of the strategic substitute payo� - the single equilibrium
outcome - persists over various network topologies as shown in Section 2. This feature
disappears with only a small increase in the percent of players subject to one of the global
payo�s. The single equilibrium outcome is shown in blue in Figure 6. This is the three-
dimensional space of percent contrarians, percent saboteurs, and percent sheep. The red
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Figure 6: Modes of the strategic substitute payo� on a degree ten Bernoulli random net-
work. Blue indicates regions with single-mode outcomes. Red indicates regions
with bi-modal outcomes.

regions illustrate the regions of parameter space which lead to bimodal outcomes. The
boundary between the unimodal and bimodal phases is shown in Figure 7. The curvature
of this surface shows systematic variation along isoquants of percent saboteurs and percent
sheep, for example. The general roughness of the surface is evidence of a large degree of
stochastic variation.
Figure 8 plots the outcomes of all 39,304 simulations of the strategic substitute payo�

on a degree ten Bernoulli random network. Systematic variation with increasing percent
contrarians, percent saboteurs, and percent sheep are evident. The characteristic unimodal
outcome persists for all levels of sheep as long as percent contrarians is high and percent
saboteurs is low, as shown in the upper-left of the close-ups in Figure 9. For low levels of
both contrarians and saboteurs (lower left close-up), the single equilibrium at low levels of
sheep appears to switch to a lower equilibrium before switching to bimodal outcomes at
higher levels of sheep. A similar but di�erent pattern emerges for high levels of both con-
trarians and saboteurs (upper-right close-up), while bimodal outcomes are all but universal
for low levels of contrarians and high levels of saboteurs (lower-right close-up).
The lower left plot in the lower left close-up in Figure 9 corresponds to the non-perturbed

strategic substitute payo� with increasing levels of sheep. The outcome shifts from a single
equilibrium outcome to two at 19 percent sheep. This is shown in the simulation plots in
Figure 10, with the outcomes shown in the top plots and the activity - the number of
agents changing strategy as a function of time - below. The activity plots show that these
are both static equilibria.
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Figure 7: Phase boundary along the sheep dimension of the strategic substitute payo� on
a degree ten Bernoulli random network. Side view and top view. For each value
of percent contrarians and percent saboteurs, the surface indicates the value of
sheep at which the outcome transitions from one mode to two. The roughness
of the surface is a result of stochastic variation among samples. The plot on the
right is a top view. Uncolored regions represent outcomes which are unimodal
for all values of sheep. Colors represent sensitivity to the sheep parameter, from
blue for low sensitivity, to red for high sensitivity.
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Figure 8: All simulation outcomes for strategic substitute payo� on a degree ten Bernoulli
random network. Each plot has 34 points on the horizontal axis, corresponding
to percent sheep from 0 to 33, left to right. Black diamonds represent unimodal
outcomes. For multi-modal outcomes, the minimum and maximum mode values
are connected with a yellow line, with a blue square at the lower mode, a red
circle at the upper mode, and green diamonds at any intermediate modes.
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Figure 9: Four corner outcomes for strategic substitute payo� on a degree ten Bernoulli
random network. Each plot has 34 points on the horizontal axis, corresponding
to percent sheep from 0 to 33, left to right. Black diamonds represent unimodal
outcomes. For multi-modal outcomes, the minimum and maximum mode values
are connected with a yellow line, with a blue square at the lower mode, a red
circle at the upper mode, and green diamonds at any intermediate modes.
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(a) Modes - 0 percent contrarians, 0 percent sabo-
teurs, 18 percent sheep.

(b) Modes - 0 percent contrarians, 0 percent sabo-
teurs, 19 percent sheep.

(c) Activity - 0 percent contrarians, 0 percent sabo-
teurs, 18 percent sheep.

(d) Activity - 0 percent contrarians, 0 percent sabo-
teurs, 19 percent sheep.

Figure 10: Bernoulli substitute with mode split at 19 percent sheep.
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High levels of saboteurs lead to dynamic equilibria, where the outcome is e�ectively
constant but agents are still changing strategies. Two such cases are shown in Figure 11.
The simulation in the right plots, with 33 percent saboteurs, is allowed to run to 20,000
time steps to further illustrate the dynamic nature of these equilibria.

4.2. The Strategic Complement Payo� with Global Payo�s

The outcome space in terms of number of equilibria (modes) is considerably more compli-
cated for the strategic complement payo� compared with the strategic substitute payo�,
as shown in Figure 12. The characteristic bimodal outcome seen in Figures 4b and 5b,
represented in green in Figure 12, is rare in this outcome space. The large blue volume in
this plot shows the dominance of unimodal outcomes similar to the strategic complement
outcomes for the degree two topologies in Figure 2. In the region where bimodal outcomes
dominate, at low levels of contrarians and saboteurs - there can be three, four, or �ve
outcome modes. Further investigation shows that these are not all equilibria. The com-
plexity of the phase space for this payo� is shown by the phase boundaries in Figure 13.
The roughness of these surfaces implies that stochastic e�ects dominate speci�c outcomes,
but there is clearly some structure evident in the top view plots. Outcomes with more
than two modes are restricted to low levels of contrarians and saboteurs, but unimodal
outcomes are excluded at the very lowest levels of contrarians and saboteurs (the white
area at the far left of Figure 13a). The boundary of this region occurs at a constant sum
of percent contrarians and percent saboteurs (the red border of the white area). There is
another band of red, indicating that unimodal outcomes are unlikely, where the levels of
contrarians and saboteurs sum to just under 33 percent.
Figure 14 plots the outcomes of all 39,304 simulations of the strategic complement payo�

on a degree ten Bernoulli random network. Systematic variation with increasing percent
contrarians, percent saboteurs, and percent sheep are evident. The characteristic all-
in/all-out outcome dominates at low levels of contrarians and saboteurs, clear from the
preponderance of yellow in the lower left corner of Figure 14. The lower-left close-up in
Figure 15 reveals that, in addition to the all-in and all-out modes, for non-zero levels of
sheep there are also intermediate values, shown as green triangles. It will be shown that
some of these are intermediate equilibria, while others represent con�gurations that never
reach equilibrium. The appearance of black diamonds in Figure 13 shows that the red
boundary of the white region seen in Figure 13a occurs where levels of contrarians and
saboteurs sum to nine percent. Evident also from the overall view in Figure 14, below the
major diagonal band of red in Figure 13a, all-in/all-out bimodal outcomes are likely, while
above the diagonal bimodal outcomes are closely spaced, with all-in/all-out equilibria never
occurring. The dominance of unimodal outcomes at low saboteurs and high contrarians at
the top in Figure 13a are evidenced by the black diamonds in the upper right corner of the
upper left plot in Figure 14.
Figure 16b shows an outcome for a strategic complement payo� that is remarkably similar

to the characteristic outcome for a strategic substitute payo�. The characteristic outcome
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(a) Modes - 0 percent contrarians, 10 percent sabo-
teurs, 0 percent sheep.

(b) Modes - 0 percent contrarians, 33 percent sabo-
teurs, 0 percent sheep.

(c) Activity - 0 percent contrarians, 10 percent sabo-
teurs, 0 percent sheep.

(d) Activity - 0 percent contrarians, 33 percent sabo-
teurs, 0 percent sheep.

Figure 11: Bernoulli substitute with dynamic equilibrium.
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Figure 12: Modes of the strategic complement payo� on a degree ten Bernoulli random
network. Green indicates regions with (expected) bimodal outcomes. Blue
indicates regions with a single mode, while yellow, orange, and red indicate
outcomes with three, four, and �ve modes, respectively.

for the strategic complement payo� is shown in Figure 16a, and below it, in Figure 16c,
the corresponding activity: the number of agents changing strategy as a function of time.
All activity ceases by time step 5000, so these are all clearly static equilibria. Figure 16d
shows that, although the outcomes in Figure 16b my be equilibria, they are clearly not
static. The large number of contrarians are able to keep the network from ever reaching a
non-perturbed equilibrium, while the saboteurs are able to keep the activity churning.
Of particular interest are the outcomes with more than two modes: are there actually

multiple equilibrium outcomes or is the network still in �ux at the end of the simulation?
Two examples are shown in Figure 17. Figure 17a corresponds to the small �lled-in region
at the left in Figure 13c. The plot below in Figure 17c, shows the corresponding activity.
Clearly there are three static equilibrium outcomes. Figure 17b appears in the phase cube
as a two-mode outcome because of the closeness of the upper equilibria, but a casual glance
notes six equilibria. Figure 16d attests that these are static equilibria.

5. Discussion

The details of establishing correspondence of the ABM to Lamberson (2011) are given in
Dixon (2011b). The impacts of network topology are explored in Dixon (2011a). The
discussion in Section 4 considers only a Bernoulli random network. The results for other
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(a) Mode 1-2 boundary (b) Mode 2-3 boundary

(c) Mode 3-4 boundary (d) Mode 5

Figure 13: Phase boundaries along the sheep dimension of the strategic complement payo�
on a degree ten Bernoulli random network. Side view and top view. For each
value of percent contrarians and percent saboteurs, the surface indicates the
value of sheep at which the outcome transitions from one mode to the next.
Figure (a) is the phase boundary between the �rst mode and the second. Figure
(b) is the boundary between the second mode and the third. Figure (c) is the
boundary between the third mode and the fourth. Figure (d) shows the point
(7% contrarians and 4% saboteurs) at which there is a single �fth mode outcome.
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Figure 14: All simulation outcomes for strategic complement payo� on a degree ten
Bernoulli random network. Each plot has 34 points on the horizontal axis,
corresponding to percent sheep from 0 to 33, left to right. Black diamonds
represent unimodal outcomes. For multi-modal outcomes, the minimum and
maximum mode values are connected with a yellow line, with a blue square at
the lower mode, a red circle at the upper mode, and green diamonds at any
intermediate modes.
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Figure 15: Four corner outcomes for strategic complement payo� on a degree ten Bernoulli
random network. Each plot has 34 points on the horizontal axis, corresponding
to percent sheep from 0 to 33, left to right. Black diamonds represent unimodal
outcomes. For multi-modal outcomes, the minimum and maximum mode values
are connected with a yellow line, with a blue square at the lower mode, a red
circle at the upper mode, and green diamonds at any intermediate modes.
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(a) Modes - 0 percent contrarians, 0 percent sabo-
teurs, 0 percent sheep.

(b) Modes - 33 percent contrarians, 10 percent sabo-
teurs, 0 percent sheep.

(c) Activity - 2 percent contrarians, 2 percent sabo-
teurs, 33 percent sheep.

(d) Activity - 33 percent contrarians, 10 percent sabo-
teurs, 0 percent sheep.

Figure 16: Bernoulli complement with dynamic equilibrium.
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(a) Modes - 2 percent contrarians, 2 percent sabo-
teurs, 33 percent sheep.

(b) Modes - 4 percent contrarians, 26 percent sabo-
teurs, 8 percent sheep.

(c) Activity - 2 percent contrarians, 2 percent sabo-
teurs, 33 percent sheep.

(d) Activity - 4 percent contrarians, 26 percent sabo-
teurs, 8 percent sheep.

Figure 17: Bernoulli complement with multiple modes.
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network topologies are notable, but not qualitatively di�erent in the space of contrarians,
saboteurs, and sheep. The mode spaces for other topologies are shown in the Appendices.
That saboteurs only have a distinct e�ect on outcomes when majorities are small is not

surprising, given their payo� function. The asymmetry of outcomes based on levels of
sheep compared to contrarians is, at �rst, surprising given the apparent symmetry of their
payo�s. The asymmetry arises temporally: sheep can vote early and often while the local
payo� function has agents swapping strategies.
Sheep have an early in�uence on pushing the outcome toward the initial con�guration.

When the initial con�guration is close to the non-perturbed equilibrium, local-payo� play-
ers are decisive and work with the sheep from the beginning. When the initial con�guration
is far from the non-perturbed equilibrium, local-payo� players are swapping strategies in
the beginning and present weak resistance to sheep from the start. A majority position is
established quickly even when it is the opposite of the non-perturbed equilibrium
Contrarians, on the other hand, have an early in�uence on pushing the outcome away

from the initial con�guration. When the initial con�guration is far from the non-perturbed
equilibrium, local-payo� players are swapping strategies but slowing working toward the
early preference of contrarians. When the initial con�guration is close to the non-perturbed
equilibrium outcome, the local-payo� players are decisive and present nearly uni�ed oppo-
sition to contrarians from the start. A majority position is established slowly and, when
it is, contrarians are faced with changing strategies at a time when local-payo� players are
most decisive.

6. Future Work

This paper is the �rst along an avenue of study examining intentional network disruption.
Now that the overall outcome spaces have been scanned with stochastic excursions, the
next step will be to look more closely at some regions using Monte Carlo sampling. This will
provide a more detailed view of equilibrium and non-equilibrium outcomes in the higher-
dimensional space of interplay between local payo�s, global payo�s, initial con�gurations,
network size, and network topology. Further down this road lie examinations of more
complex adaptive behaviors.
Other works in progress include investigation of payo�s in a friendship game that are not

constrained to closed-form mathematical functions and can incorporate adaptive behaviors
such as learning and heuristics. These could enable the construction of models of voters,
economic agents, or decision-makers in which the payo� (or utility or �tness) depends on
the preferences of multiple groups of friends over multiple con�icting issues. For example,
voters may be in�uenced by a workplace network on issues relating to their livelihood,
and by a very di�erent social network on other topics. Another avenue of research is
in modeling market models from the production point of view. For example, a hybrid
networked market where each producer shares one kind of network with consumers, another
kind of network with suppliers, and yet another kind of network with competitors. A third
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avenue is exploring evolving network topology, such as emerging social movements, natural
disasters, and economic upheaval.

7. Conclusion

The stable equilibria in friendship games established by Lamberson (2011) are intriguing.
This result implies that for the strategic complement and strategic substitute payo�s ex-
amined, a global static equilibrium results from local Nash equilibria. A game theoretical
example of Adam Smith's invisible hand, perhaps. A provision of public goods determined
locally by a neighborhood of friends as opposed to voting with their feet as suggested by
Charles Tiebout. The establishment of technical standards without the ine�ciencies of
long marketplace battles and stranded early adopters.
Putting aside the fact that real-world issues are never as simple as our payo� models

here, it is instructive that these static equilibria are disrupted by the mere existence of
players for whom the payo� is not subgame optimal. The strategic substitute simulations
show that the provision of public goods can be shifted away from social optimality simply
because many players side with the majority before a true majority has been established,
or when many players always oppose the majority preference. The strategic complement
simulations show that socially optimal all-in or all-out outcomes are shifted and sometimes
never reach equilibrium as a result of non-subgame-optimal payo�s. This could be socially
disruptive, but it could also be seen as a good thing: disruptive opposition to extreme
social or political agendas can prevent calamitous outcomes even when the majority is
hellbent on evil.
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