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ABSTRACT

A series  of  experiments  was  conducted  on  a  single  set  of  subjects  to 
investigate learning and correlated responses. Altruism was inferred from 
an ultimatum game, learning was inferred by comparing the results of two 
successive beauty contest experiments, and iterative thinking was inferred 
from  the  beauty  contest  results.  This  paper  presents  a  process  for 
numerically modeling the experimental process, then developing an agent-
based model (ABM) with a parameter space informed by the numerical 
analysis. A single candidate ABM is presented for altruism, and another 
for iterative thinking. Two simple behavior rules were able to reproduce 
the  iterative  thinking  and  altruism  results,  nearly  identically  to  the 
experimental results in the case of altruism.

Background
In November 2004, a series of experiments was conducted1 at University of New 

Mexico to examine any link between iterative thinking and altruism1.  Iterative thinking 
was captured in a beauty contest2, while altruism was captured in an ultimatum game3. 
Additionally, the beauty contest was run twice, with a brief illustrative example between 
them, and the results correlated by subject as a measure of learning.

There were four parts to the experiment:

1. Beauty contest A
2. Example beauty contest
3. Beauty contest B
4. Ultimatum game

The beauty contests were intended to reveal iterator clusters – groups of subjects with 
similar depths of iterative thinking.  The instructions were to guess two-thirds of the 
group mean. A zero-order iterator is one who picks the anticipated mean (the experiment 
revealed two consensus values for the anticipated mean).  A first-order iterator picks two 
thirds of the anticipated mean. An order-two iterator picks two-thirds of that value, and so 
on.

1 The experiment was designed and conducted by Curt Shepherd while at the University of New Mexico 
Department of Economics. Results used by permission.



Analysis of Experiment Data
The analysis that follows might typically be relegated to an appendix or omitted 

altogether. In computer modeling, however, defining the problem well is typically the 
biggest hurdle.  The first step, therefore, is thorough analysis of the data. The goal is not 
rigorous analysis of the experimental result, but rather an exploration of evidence of 
causal behaviors that could explain the results.

First, the beauty contest data are examined.  The initial approach is to assess the 
combined data from both beauty contests combined, assuming that this is similar to two 
different data sets.2 Figure 1 is a histogram of the raw data.   

 

Figure 1 - Raw data

Suppose that the subjects make small numerical errors in estimating the mean or 
in computing two-thirds of it. Suppose, also, that those errors are normally distributed 
with constant variance. A normal distribution about each possible guess from 0 to 100 
with constant variance is convolved with the data and the variance adjusted to maximize 
the coefficient of determination, R2. Figure 2 shows the convolution with standard 
deviation 0.412, the value that maximizes R2 at 0.994425. 

The residuals from the convolution are shown in Figure 3. The overall mean is 
6.810-5 with a slope of 1.3710-6. This suggests that the error does not depend on the 
magnitude of the guess. The small standard deviation indicates very little overlap 
between choices, implying that the data reflect the subjects' true preference.

Next, the variance of the normal convolution is increased until the chi-squared of 
the residuals equals the degrees of freedom, 207. This occurs for a standard deviation of 
1.1215 and is shown in Figure 4. This is the maximum entropy fit: it minimizes all 
assumptions beyond the initial normal convolutions. Note that there are distinct peaks at 

2. It could be argued that the second group of subjects is simply more self-aware than the first group, at 
least in terms of iterative thinking.



Figure 2 – Convolution with best-fit normal

Figure 3 – Distribution of residuals from best-fit normal

8, 22, 34, 45, 51, 64, 69, and 73. These are the maximum entropy iteration clusters.
Another form of convolution is Fourier analysis, in which the data are convolved 

with sinusoids of various frequencies. Since iterative thinking represents a kind of 
harmonic, it is possible that Fourier analysis may capture those harmonics. An important 
first application, however, is to filter out completely random guesses. 
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Figure 4 – Maximum entropy normal convolution

The basic idea of Fourier filtering is to transform series data into a frequency 
spectrum and filter out specific parts of the spectrum.  In the case of the beauty contest 
data, clusters of choices appear to be superimposed over a background of random choices 
distributed between one and fifty (particularly in the beauty contest B).  The goal is to 
filter out the high frequency (oscillations every one, two, three, four or five intervals) 
leaving only the large-structure data (clusters about iteration levels, primarily).   Fast 
Fourier transforms (FFT) can only be done for numbers of observations that are powers 
of two. Since most of the detail occurs for guesses less than about 70, a cutoff of 64 was 
used and is shown in Figure 5. The original data are shown as Input, the high-frequency 
random guesses are shown as Noise. If the high-frequency components are discarded, the 
the lower frequency components will show only the larger features, as shown as the 
Filtered data.

Note that the peak in the mid-60s is still significant. This peak is problematic 
because it reflects an unanticipated initial assumption on the part of the subjects. The 
instructions were to estimate two-thirds of the group mean. If a subject assumes that 
guesses are distributed uniformly between 0 and 100, then the mean is 50. A non-iterative 
thinker will guess 50. A one-iteration thinker will guess two-thirds of that, or 33, a two-
iteration thinker will guess two-thirds of 33, or 22, and so on. The peaks at 34 and 22 
suggest this group.

If, however, a one-iteration thinker begins with the maximum guess of 100 and 
guesses 66, then a two-iteration thinker will guess 44, and so on.  The peaks in the mid-
60s and mid-40s are evidence for this latter group.

Thus, the filtered data are convolved with normal distributions  about the iteration 
peaks of 50, 33, 22, 15, 10 and 7 (iterating from anticipated mean of 50) as well as 44, 29 
and 19 (iterating from maximum of 100). The center of each peak is adjusted to 
maximize R2. The results are shown in figure 6.
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Figure 5 – Fourier noise filtering

Figure 6 – Clusters fit to the Fourier filtered data
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Because Fourier filtering is a harmonic technique, and iterations are a kind of 
harmonic, there is a possibility that artifacts were created.  Another decomposition, using 
Haar wavelets (decomposition into simple step-up or step-down functions) is shown in 
Figure 7.  This shows not only the same clusters as the Fourier analysis, but the same 
noise level (RMS 1.17). 
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Figure 7 – Haar wavelet filtering

Similar to the preceding Fourier analysis, the Haar wavelet peaks are convolved at 
each of the iteration values. These results are shown in Figure 8. There is no power-of-
two limitation on wavelets. 

Figure 8 - Clusters fit to wavelet filtered data



Based on the Haar wavelet convolution, the subjects were then assigned to 
iteration clusters.  This made it possible to assess both the distribution of iteration depth, 
and the distribution of starting points.  There were two consensus starting points: the 
majority mean of 50, and the minority full-range value of 100.  This analysis is shown in 
Tables 1 and 2 and Figure 9. Note that only 65 percent of subjects fell clearly within an 
iterator cluster. Thus, for 35 percent of subjects, either the experiment lacked salience, 
the instructions were not understood, or there was another behavior not captured in this 
study.

Table 1- Mean-based Clusters
Iterations Center Width Count

0 50 2 4
1 33 4 16
2 22 2 4
3 15 2 5
4 10 2 2
5 7 4 5

Table 2 - Range-based Clusters
Iterations Center Width Count

0 100 - -
1 67 8 1
2 44 4 14
3 30 2 6
4 20 2 8
5 13 2 3

Figure 9 – Distribution of mean-based and range-based iterators.
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Although the learning component of the experiment was not used in the initial 
model, there were some interesting results of the data analysis.  Figure 10 shows the in-
sample changes between beauty contest A (BCA) and beauty contest B (BCB) choices. 
The lines originate at the BCA choice, and terminate with a diamond at the BCB choice. 

Figure 10 – Beauty contest: learning ordered by subject 

Figure 11 shows the same data sorted by BCA choice.  This is a good illustration of the 
corrections by subjects with BCA choices greater than 50.



Figure 11 – Beauty contest: learning ordered by first round 

Figure 12 shows the same data again, sorted by BCB choice. 



Figure 12 – Beauty contest: learning ordered by second round 

Finally, Figure 13 is the same as Figure 12, superimposed on the mean-based clusters.



Figure 13 – Beauty contest: learning ordered by second round, showing clusters 

In the ultimatum game, the subjects are paired, one subject is given ten dollars, 
and told to give anywhere from zero to ten dollars to the other subject. If the second 
subject is satisfied with it, both players keep the money. If, however, the other player is 
not satisfied, both players lose the money. Theoretically, the second subject should be 
happy with any amount of money greater than zero. In practice, however, some subjects 
reject shares of one dollar or even more. 

The histogram for the ultimatum game is shown in Figure 14. Based on the four 
subjects giving more than 5, it was judged that the reward was not salient for 4 out of 105 
subjects, for a salience of 96%.  This is certainly overstated, since there were probably 
random answers below 5, as well. 



Figure 14 – Ultimatum game results

Agent-based model of the beauty contest results
The agent-based model was implemented in BASP4 to take advantage of the fuzzy 

logic built into that system. The model consisted of 100 non-interacting agents. Agents 
were initialized in the following ways:

1. Salience selected the part of the subject population for whom the experiment was 
salient. This was estimated at 96% based on the experiment.  Salience had 
categories salient and nonSalient.  The value for each agent was initialized 
randomly with P(salient) = 0.96, P(non-salient) = 0.04.

2. FirstEstimate selected the part of the subject population which iterated from 50 
and the part which iterated from 100.  The experiment showed these to be 53% 
and 47%, respectively.  FirstEstimate had three categories, zero, fifty and 
hundred. The value for each agent was initialized to P(fifty) = 0.53 and 
P(hundred) = 0.47.

3. Choice was the choice in the beauty contest. It was initialized based on Salience. 
Choice was used as a numerical variable.  In the salient case, Choice was 
initialized to FirstEstimate. In the nonSalient case, it was set to a uniformly 
random value between 0 and 100.

4. Iteration was set based on FirstEstimate.  Iteration had six categories, ranging 
from zero to five. If FirstEstimate was 50, Iteration was initialized to one with 
uniform random probability P(one) = 0.667, otherwise to a uniformly random 
value between zero and five.  If FirstEstimate was 100, Iteration was initialized 
to two with uniform random probability P(one) = 0.5, otherwise to a uniformly 
random value between one and five.

5. Altruism was basis for the ultimatum game.  Altruism had eight categories: 
sociopath, misanthrope, grouch, oblivious, liberal, contributor, volunteer, 
activist. Altruism was initialized with a uniformly random value across the 
range.



The BASP code for the initialization is shown in Figures 15 and 16. 
Once initialized, the simulation was allowed to run for seven time steps. Two 

behavior rules were in effect during simulation:

1. On the second time step, each agent computed Give, the amount offered in the 
ultimatum game.  In the nonSalient case, this was a uniformly random value 
between zero and ten. In the salient case, this value was computed from 
Altruism.  If Altruism was in the highest category, the agent set Give to five. If 
Altruism was in one of the highest two categories, the agent set Give to a 
uniformly random value between four and five.  If Altruism was in one of the 
three highest categories, the agent set Give to a uniformly random value between 
three and five.  This continued to the lowest category. Figure 17 is a listing of the 
BASP code for this rule.

2. At each time step, the time step number was compared with each agent’s 
Iteration value.  If Iteration was greater than or equal to the current time step, 
the agent multiplied the current value of Choice by two-thirds. The BASP code 
for this is shown in Figure 18, and the algorithm shown in Figure 19. 

The simulation was run ten times.  The result for the ending value of Give for 
each run is shown in Figure 20.  The mean of all ten simulations is shown in Figure 21. 
This is very close to the experimental data shown in Figure 10.  The Choice data for all 
ten simulations are shown in Figure 22, and the mean over all ten simulations are shown 
in Figure 23.



-- set salience based on distribution
--   (this may be used in the initialization of
--    other variables)
DEFINE SalienceFactor AS INTEGER.
IF RANDOM(1.0) <= your:Salience THEN
   SET SalienceFactor TO 1.
   SET my:Salience TO salient.
ELSE
   SET SalienceFactor TO 0.
   SET my:Salience TO notSalient.
END IF

-- set beauty contest choice
--    set first (zero order) estimate (50 or 100) 
--    based on  the experimental distribution
DEFINE FirstGuess AS INTEGER.
IF RANDOM(1.0) < your:FirstEstimateDistribution THEN
    SET my:FirstEstimate TO fifty.
    SET FirstGuess TO 1.
ELSE
    SET my:FirstEstimate TO hundred.
    SET FirstGuess TO 2.
    END IF

-- define a noise factor
DEFINE Noise AS REAL.
SET Noise TO RANDOM(0.05) - 0.025.

-- for the salient case, this will be FirstEstimate
--    plus a little noise
IF SalienceFactor IS 1 THEN
   SET my:Choice TO FirstGuess+Noise.
ELSE
-- in the nonsalient case, this will be noise
--    across the full range
   SET my:Choice TO 0.02*RANDOM(100.0).
    END IF

Figure 15 -- Initialization rules

IF my:Salience IS salient AND
    System:time > 0  AND 
    System:time <= my:Iteration  THEN
   CHANGE my:Choice BY 
         0.02*(your:BeautyContestRule - 1.0)*my:Choice.
   END IF

Figure 18 -- Behavior rule for iterative thinking



DEFINE GiveAway AS INTEGER.

IF System:time IS 2 THEN
   IF Salience IS salient THEN
      SET GiveAway TO 
           Altruism - 5.0 + (11.0 - Altruism)*RANDOM(1.0).
      SET Give TO GiveAway.
   ELSE 
      SET Give TO RANDOM(10.0).
      END IF
   END IF

Figure 17 – Behavior rule for the ultimatum game

Figure 16 -- Initialization rules (continued)

-- set level of iteration
DEFINE IterRandom AS REAL.
SET IterRandom TO RANDOM(1.0).
-- Cluster two-thirds of Normal iterators 
--   at 'one', distribute the rest randomly
IF FirstGuess IS 1 THEN
   IF IterRandom < 0.4 THEN
      SET my:Iteration TO one.
   ELSE
      IF IterRandom < 0.65 THEN
         SET my:Iteration TO two.
      ELSE
         SET my:Iteration TO RANDOM(5.0).
         END IF
  END IF
-- Cluster half of Defective iterators 
--   at 'two', distribute the rest randomly
IF FirstGuess IS 2 THEN
   IF IterRandom < 0.4 THEN
      SET my:Iteration TO two.
   ELSE
      IF IterRandom < 0.6 THEN
         SET my:Iteration TO three.
      ELSE
         SET my:Iteration TO 1+RANDOM(3.0).
         END IF
  END IF

-- set altruism
SET my:Altruism TO RANDOM(8.0).



Figure 19 -- Setting the Choice variable

Figure 20 -- Results for Give over ten simulations



Figure 21 -- Average over ten simulations

Figure 22 -- Results for Choice over ten simulations



Figure 23 - Average over ten simulations

Conclusion
With minimal initial assumptions and only two simple behavior rules, a computer model 
closely reproduced the results from the Curt Shepherd Experiment.  In the case of the 
ultimatum game – where the match between computer model and data is very close – this 
suggests that the underlying behavioral cause is either very simple, like the rule used in 
the computer model, or a simple composition of a large number of causes.  For the beauty 
contest, the rules are more ad hoc and further experimentation and computer modeling 
are required.  Additionally, the learning aspect of the experiment bears further 
investigation.
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