General 2D Dynamical Systems with application to van der Pol dynamics (9.7.2010)
General System Trajectories
![[Graphics:Images/2DDSVDPandLogistic_gr_1.gif]](Images/2DDSVDPandLogistic_gr_1.gif)
General trajectory analysis module
![[Graphics:Images/2DDSVDPandLogistic_gr_2.gif]](Images/2DDSVDPandLogistic_gr_2.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_3.gif]](Images/2DDSVDPandLogistic_gr_3.gif)
Dynamical 2D System Trajectories: Steven H. Strogatz Nonlinear dynamics and Chaos, Westview Pess, 1994 Example7.6.3 two-timing (two time scale) analysis of the van der Pol oscillator (with comparison of a growth envelope functin with a Verhulst logistic growth function)
For DS of the form x'=ax+by, y'=cx+dy, the (only) fixed point is at the origin {0,0}.
van der Pol trajectory and growth equations
![[Graphics:Images/2DDSVDPandLogistic_gr_4.gif]](Images/2DDSVDPandLogistic_gr_4.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_5.gif]](Images/2DDSVDPandLogistic_gr_5.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_6.gif]](Images/2DDSVDPandLogistic_gr_6.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_7.gif]](Images/2DDSVDPandLogistic_gr_7.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_8.gif]](Images/2DDSVDPandLogistic_gr_8.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_9.gif]](Images/2DDSVDPandLogistic_gr_9.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_10.gif]](Images/2DDSVDPandLogistic_gr_10.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_11.gif]](Images/2DDSVDPandLogistic_gr_11.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_12.gif]](Images/2DDSVDPandLogistic_gr_12.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_13.gif]](Images/2DDSVDPandLogistic_gr_13.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_14.gif]](Images/2DDSVDPandLogistic_gr_14.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_15.gif]](Images/2DDSVDPandLogistic_gr_15.gif)
Estimate the relation between the van der Pol damping parameter and the logistic growth rate by expanding the envelope functions and comparing lowest order terms
![[Graphics:Images/2DDSVDPandLogistic_gr_16.gif]](Images/2DDSVDPandLogistic_gr_16.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_17.gif]](Images/2DDSVDPandLogistic_gr_17.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_18.gif]](Images/2DDSVDPandLogistic_gr_18.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_19.gif]](Images/2DDSVDPandLogistic_gr_19.gif)
Compare behavior of van der Pol and logistic envelope functions (for typical parameter values)
![[Graphics:Images/2DDSVDPandLogistic_gr_20.gif]](Images/2DDSVDPandLogistic_gr_20.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_21.gif]](Images/2DDSVDPandLogistic_gr_21.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_22.gif]](Images/2DDSVDPandLogistic_gr_22.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_23.gif]](Images/2DDSVDPandLogistic_gr_23.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_24.gif]](Images/2DDSVDPandLogistic_gr_24.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_25.gif]](Images/2DDSVDPandLogistic_gr_25.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_26.gif]](Images/2DDSVDPandLogistic_gr_26.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_27.gif]](Images/2DDSVDPandLogistic_gr_27.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_28.gif]](Images/2DDSVDPandLogistic_gr_28.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_29.gif]](Images/2DDSVDPandLogistic_gr_29.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_30.gif]](Images/2DDSVDPandLogistic_gr_30.gif)
Stragatz Example7.6.3
![[Graphics:Images/2DDSVDPandLogistic_gr_31.gif]](Images/2DDSVDPandLogistic_gr_31.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_32.gif]](Images/2DDSVDPandLogistic_gr_32.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_33.gif]](Images/2DDSVDPandLogistic_gr_33.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_34.gif]](Images/2DDSVDPandLogistic_gr_34.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_35.gif]](Images/2DDSVDPandLogistic_gr_35.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_36.gif]](Images/2DDSVDPandLogistic_gr_36.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_37.gif]](Images/2DDSVDPandLogistic_gr_37.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_38.gif]](Images/2DDSVDPandLogistic_gr_38.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_39.gif]](Images/2DDSVDPandLogistic_gr_39.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_40.gif]](Images/2DDSVDPandLogistic_gr_40.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_41.gif]](Images/2DDSVDPandLogistic_gr_41.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_42.gif]](Images/2DDSVDPandLogistic_gr_42.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_43.gif]](Images/2DDSVDPandLogistic_gr_43.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_44.gif]](Images/2DDSVDPandLogistic_gr_44.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_45.gif]](Images/2DDSVDPandLogistic_gr_45.gif)
van der Pol oscillator with larger damping parameter μ
![[Graphics:Images/2DDSVDPandLogistic_gr_46.gif]](Images/2DDSVDPandLogistic_gr_46.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_47.gif]](Images/2DDSVDPandLogistic_gr_47.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_48.gif]](Images/2DDSVDPandLogistic_gr_48.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_49.gif]](Images/2DDSVDPandLogistic_gr_49.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_50.gif]](Images/2DDSVDPandLogistic_gr_50.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_51.gif]](Images/2DDSVDPandLogistic_gr_51.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_52.gif]](Images/2DDSVDPandLogistic_gr_52.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_53.gif]](Images/2DDSVDPandLogistic_gr_53.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_54.gif]](Images/2DDSVDPandLogistic_gr_54.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_55.gif]](Images/2DDSVDPandLogistic_gr_55.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_56.gif]](Images/2DDSVDPandLogistic_gr_56.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_57.gif]](Images/2DDSVDPandLogistic_gr_57.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_58.gif]](Images/2DDSVDPandLogistic_gr_58.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_59.gif]](Images/2DDSVDPandLogistic_gr_59.gif)
![[Graphics:Images/2DDSVDPandLogistic_gr_60.gif]](Images/2DDSVDPandLogistic_gr_60.gif)
Converted by Mathematica
July 9, 2010