
Chapter 13. Thermodynamics

13.1. Heat
All natural energy on Earth ultimately comes from the stars; the sun provides solar

energy and super novae processes store nuclear energy in radioactive elements. Chemical
bonds store energy in the attractions of subatomic particles. Chemical reactions, which are
rearrangements of bonds, are accompanied by energy changes. Thermochemistry deals with
the heat consumed or produced in chemical processes.

We would like to put the flow of energy to use, but there are limitations to how much we
can control. The subject of thermodynamics indicates how much useful work can be
obtained from processes, among other things. It is the fundamental theoretical model for
large groups of particles similar to the role mechanics plays for individual particles. The
term thermodynamics originally referred to dynamical processes involving heat, such as
automobile or rocket engines. However, the subject of thermodynamics is much more funda-
mental, and governs all processes taking place in the universe, from biological metabolism to
stellar evolution.

As classical mechanical descriptions of objects have been refined through consideration
of their component parts, so classical thermodynamic descriptions of systems have been
placed on the firmer foundation of statistical mechanics. In this chapter we will introduce the
concepts and laws of these important fields of science.

13.2. The First Law
Among the most fundamental laws of the universe are conservation laws, laws describ-

ing what remains constant when other things are changing. The atomic theory explanation of
chemical reactions is based on an understanding of the law of conservation of matter. Not
too long before Dalton’s time, chemists did not understand that matter was conserved during
chemical transformations. Consider a burning candle. As it burns, it diminishes in size, until
it appears entirely ‘‘consumed.’’ Where did the candle go? Only when the combustion reac-
tion was contained and the gaseous products (carbon dioxide and water vapor) captured did
chemists realize that matter had not disappeared. Experiments such as these were performed
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by Lavoisier, Dalton’s immediate predecessor, to demonstrate the critical roll of gases in
chemical reactions and the conservation of matter when it undergoes transformation.
Although the law of conservation of matter may seem only logical from our vantage point, it
certainly wasn’t so obvious before the carefully controlled analytical experiments of the 18th
Century.1

Similarly, one may have an intuitive feeling that energy should be conserved. After all,
don’t we eat food for calories to replace the energy we expend during exercise? In fact the
idea that energy may change form but is neither created nor destroyed (conservation of
energy) was fundamental to the kinetic and potential energies of the mechanics of classical
isolated bodies (cf Section 5.2). Since heat is commonly a product of chemical processes,
some subscribed to the notion that heat is a substance.2 However, heat is not conserved like
matter. This was observed by Benjamin Thompson (Count Rumford) in 1789 using dull
canon boring tools to generate unlimited amounts of heat through friction. In 1842 a ship
physician, Julius R. Mayer, noted that the amount of work sea men could do in the tropics
was more than in the arctic, suggesting a connection between heat and work.3 James Joule4

performed the first careful experiments generating heat from a variety of sources and found
an equivalence between the amount of work done on a system and the amount of heat gener-
ated. Joule found that the temperature of a substance such as water could be increased a

1 Lavoisier, using analytical balances barely fit for a freshman laboratory, consistently reported his experi-
mental results to seven or eight significant figures. He would have loved hand-held calculators.

2 Lavoisier included a nonmaterial ‘‘element’’ caloric in his table of the elements of 1789.
3 He also noted sailor’s blood from blood-letting treatment was redder in the tropics. ‘‘A force (energy) once

in existence cannot be annihilated; it can only change form.’’ Mayer’s article was rejected by the Annalen der
Physik as being too radical.

Helmholtz’ paper on the subject at age 27 in 1847 was likewise rejected by the Annalen. It contains the now
classic statment ‘‘the quantity of energy in nature is just as eternal and unalterable as the quantity of matter.’’

4 James Prescott Joule (British, 1818-1889), son of a Manchester Brewer who, at age nineteen, took an inter-
est in the source of the heat attending fermentation. Joule’s paper ‘‘On the Mechanical Equivalent of Heat’’ was
rejected for publication, in part because of his age (19 years). Only after Michael Faraday endorsed his paper to
the Royal Society eleven years later in 1849 was it accepted for publication. His (correct) proposition that fric-
tion consists in the conversion of mechanical energy into heat was edited out by the review committee, and his
deduction from the thermal expansion of gases that there should be an absolute zero of temperature failed to
provoke comment. The SI unit of energy (one kg m2/s2) is named in his honor.
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given amount either by direct heating or indirectly by stirring, or by a combination of the two
processes. The amount of heat was measured through the heat capacity, Eq. (2.26). The
amount of work was measured with Eq. (5.15) using a falling weight connected through pul-
leys to a stirring paddle wheel. An important insight is that the change in the system (water)
is brought about by processes external to the system (heater, stirrer). This may not seem
obvious at first since the heater and stirrer are in contact with the system (and are part of a
larger system). But conceptually at least, the system can be isolated from its surroundings.
Now, the state of a system is determined by specifying the values of the quantities that can
vary without changing the identity of the system itself (the variables which distinguish this
system from all others). A state measuring instrument (thermometer) indicates the values of
a state variable (temperature) defining the internal states of the system. Although there is a
change in the state of the system according to the measuring instrument, the system has no
memory of how it arrived at its final state. All that can be detected internally in the system is
that the system has changed states. Since heat and work are different manifestations of a
common state variable (temperature) and work was already identified with as energy through
classical mechanics, Joule’s experiments showed that the sum of heat (q) and work (w), or
total change in energy (∆E = Efinal − Einitial), is conserved (constant):

∆E = q + w (13. 1)

This is the mathematical statement of the First Law of Thermodynamics. Note that only
changes in energy are measured. Energy is not an absolute quantity, but must be referred to
the value at some state by convention accepted as the ‘‘standard state’’.5 An immediate

5 One might imagine that there is no energy at absolute zero temperature. According to the kinetic molecular
theory, there is zero thermal energy at zero absolute temperature. But there may still be energy stored in the
bonds between atoms and molecules. Separating the atoms to infinity at absolute zero does not result in zero en-
ergy because there is energy stored in the bonds between the electrons and nuclei, etc. So how about separated
protons, neutrons, and electrons at rest? Well, that ignores the relativistic rest mass energy (not a small quantity,
considering thermonuclear energies). And what about the more fundamental particles that make up protons and
neutrons, quarks? Unfortunately, they cannot be isolated to establish a state of zero energy.
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consequence of the first law is that if a system has no energy contact with its surroundings, its
total energy must remain constant. This is the law of conservation of energy, Eisolated = con-
stant and

∆Eisolated = 0 (13. 2)

According to Einstein’s theory of relativity, matter and energy are manifestations of each
other and interconvertible (Eq. (5.24)). The First Law then becomes a statement of the con-
servation of mass-energy. In chemical and physical transformations, energy changes involve
mass changes, although the conversion factor (c2) is weighted so heavily in favor of mass that
mass changes are negligible for ordinary energy transformations.

Example 13.1 Calculate the mass change accompanying an energy change of 1000 kJ.
According to Eq. 5.21

∆E =
1000kJ × (

103 J
1 kJ

) × (
1 kg m2 / s2

1 J
) × (

103 g
1 kg

)

(3 × 108 m/s)2
= 1 × 10−8 g

A useful analogy is the potential energy of gravity (see Example 5.7). We all are famil-
iar with climbing up and rolling down hills. During these processes work is converted into
potential energy, and vice versa. The sum of work and gravitational potential energy equal to
the total energy, howev er, is conserved. Alternative statements of the First Law of Thermo-
dynamics, equivalent to Eq. (13.1), are that energy is a ‘‘state’’ function (depends only on the
current state of the system), and that changes in energy are independent of the path leading
from initial to final states. A direct consequence of independence of path is the fact that the
total change (∆) in energy for a cyclic process (one that ends up in the same state in which it
started), is zero:

∆Ecyclic = 0 (13. 3)

Stating that the energy change of a cyclic process is zero is analogous to pumping a bicycle
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up a hill and rolling back down to the starting point. Of course we know that some energy
appears to be lost in this process, because we may still feel the fatigue of the climb on our
return to the starting point. Similar considerations apply to related oscillating systems, such
as people on swings, or bouncing balls. The processes do not proceed indefinitely without
additional energy input. At the end of each cycle, a little energy appears to be lost. However,
closer examination shows that some of the energy is converted into other forms, such as
sound and heat, which are not easily recoverable. Taking all the forms of energy into
account, the total energy is indeed conserved in all processes. In fact, had there not been
some loss of useful energy (potential energy in these examples), the laws of thermodynamics
would have been violated, and we could create out of such a process a perpetual motion
machine, one that provides an infinite source of energy perpetually at no cost.

13.3. The Kinetic Molecular Theory
The kinetic molecular theory adds to the atomic theory of matter the notion that

molecules are in constant motion, obeying the same laws of mechanics as macroscopic
objects. The essential concept is that heat is the macroscopic manifestation of molecular
motion.6 This establishes links between classical physics and thermodynamics. The kinetic
and potential energies of mechanics become heat and work in thermodynamic transforma-
tions. The work done on the falling weight in Joule’s experiment is converted into kinetic
energy of the weight (motion) if the weight is isolated, but if connected to the paddle wheel,
the weight comes to rest and the work is manifested as an increase in kinetic energy of the
molecules of the water.

Example 13.2 Estimate the difference in temperature of the water between the top and
the bottom of Niagara Falls, 160 ft.
When an object falls a height ∆h in the gravitational field of the earth, the potential
energy decreases by mg∆h, where m is the mass of the object, and g is the gravitational
constant, 9.80665 m/s2 on Earth (Eq. (5.15)). Assuming the water to be an isolated

6 Heat as motion is not a new idea. Plato said, ‘‘heat and fire ... are themselves begotten by impact and fric-
tion, but this is motion.’’ Francis Bacon in 1602 said, ‘‘heat is motion and nothing else.’’

It may be helpful to think of a drop of water sizzling on a hot stove burner. The idea of molecules buzzing
around and bumping into each other was not considered essential by John Dalton, and he rejected it in favor of a
derivation of the Ideal Gas Law based on a model of static, but expandable molecules.
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system, its decrease in potential energy is converted into an increase in thermal (heat)
energy. The change in heat of an object is proportional to its mass and the temperature
change, ∆t; the proportionality constant is the specific heat capacity of the object (Eq.

(2.26)). The specific heat capacity of water is
4. 184 J

°C
=

4. 184 kg m2

s2°C
. As the water

falls, potential energy is released that was stored when the water was lifted to the top of
the falls (through evaporation and heating by the sun). The released potential energy
can be converted into kinetic energy of the water (increase in speed), relative kinetic
energy (motion) of the water molecules, or transferred to the surroundings. If the water
reaches a relatively slow terminal (constant) velocity, yet falls quickly enough to hinder
transfer of energy to the surroundings (air), the bulk of the released potential energy is
converted into heating the falling water. From the first law, the net change in energy of
the system (water) is zero:

∆E = q + w = mSH∆t + mg∆h = 0

Solving for ∆t,

∆t =
−g∆h
SH

=
(−9. 81

m
s2

)(−160 ft)(
0. 3048 m

1 ft
)

(4. 1844 kg
m2

s2°C
)(

103 g
1 kg

)
= 0. 11 °C

a small, but interesting result, first predicted by Joule, and later confirmed by
observation.7 Lord Kelvin records that when he vacationed at Mont Blanc, ‘‘whom
should I meet walking up but Joule, with a long thermometer in his hand, and a carriage
with a lady in it not far off. He told me that he had been married since we parted at
Oxford! and he was going to try for the elevation of temperature in waterfalls.’’ This is
how real scientists spend their honeymoons.

7
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13.4. Enthalpy
Work commonly appears in chemical reactions as the expansion or contraction of gases

at constant P (a common circumstance in the laboratory open to the atmosphere), with the
amount being measured by the change in the product of pressure and change in volume: w =
−P∆V.8 For reactions in solution the P∆V work is usually negligible, and for ideal gases P∆V
= ∆nRT, where ∆n is the change in number of mols of gas between reactants and products
(Chapter 15). For constant volume processes no expansion work is done and Eq. (13.1)
shows that change in energy is equivalent to heat.

∆E = qV (13. 4)

Chemical reactions involve heat production and consumption as well as matter transfor-
mations. Enthalpy is a measure of reaction heat at constant pressure and is related to energy
by

H = E + PV (13. 5)

Enthalpy is a thermodynamic state function of the state variables entropy, pressure and num-
ber of particles, H(S,P,N). At constant pressure, w = − P∆V and
∆H = ∆ E + P∆V = q − P∆V + P∆V = q, or

8 Pressure is force divided by area. From classical mechanics, work is the integral of force across a distance
(Eq. (5.10)). For constant pressure sweeping out a volume equal to area times distance, the work done is

w = ∫ fdr = ∫ PAdr = P ∫ dV = P∆V.

Doing work on a system by squeezing it decreases its volume (∆V < 0) and increases its energy (capacity to
do work), so ∆E = − P∆V > 0.



200 Chapter 13 Thermodynamics

∆H = qP (13. 6)

In the case of chemical reactions involving ideal gases P∆V = ∆nRT, Eq. (13.5) shows at zero
kelvin, ∆H = ∆E, and at room temperature (300 K) they differ by 2.5∆n kJ/mol, a rather
insignificant amount compared with the hundreds of kilojoules commonly associated with
chemical reactions. Enthalpy is thus a measure of energy in the common situation of a reac-
tion taking place in solution open to the atmosphere (which maintains constant pressure on
the solution). For these reasons, the heat, enthalpy change and energy change of a chemical
reaction are often not distinguished.

Reaction heats are measured in ‘‘calorimeters’’ based on the First Law. If a reaction
takes place in a thermally isolated system containing water, the temperature change in the
water indicates the heat change of the reaction. From Eq. (13.2)

∆Eisolated = 0 = ∆Ereaction + ∆Eproducts + ∆EH2O + ∆Ecalorimeter

where ∆Eisolated is the total energy change for the isolated system of reactants, products, water
and calorimeter. ∆Ereaction is the desired quantity, ∆Eproducts represents the energy absorbed by
the products of reaction, equal to mproducts × SHproducts × ∆T (usually neglected if the products
are gases or small in amount), ∆EH2O is the energy absorbed by the water and equal to
mH2O × SHH2O × ∆T, and ∆Ecalorimeter equals mcalorimeter × SHcalorimeter × ∆T, either assumed neg-
ligible or determined in accurate experiments by measurements with a reaction of known
reaction energy. Knowledge of mcalorimeter × SHcalorimeter, called the calorimeter constant, the
mass of the water (and its specific heat, 4.1840 J/g-°C) allows one to determine the energy of
reaction from the measured temperature change:

∆Ereaction = − [(m × SH × ∆T)H2O + (m × SH × ∆T)products + (m × SH × ∆T)calorimeter](13.7)

The determination of ∆Ereaction assumes the experiment is carried out at constant volume (a
‘‘bomb’’ calorimeter). Since the enthalpy is a thermodynamic state function as well, a
calorimetry experiment carried out at constant pressure (such as open to the atmosphere)
yields ∆Hreaction.

Example 13.3 Combustion of 1 mol of methane at 25 °C in a calorimeter open to the
atmosphere and containing 10 kg water raises the temperature by 19.176 °C. What is the
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molar heat of combustion of methane?
Assuming the calorimeter absorbs little heat (i.e. that the calorimeter constant is negligi-
ble) and that the products (carbon dioxide and water) absorb little heat, Eq. (13.7) writ-
ten in terms of $DELTA H$ giv es

∆Hreaction = − 10, 000 g × (
4. 1840 J
1 g °C

) × (19. 176°C) × (
1 kJ

1000 J
) = − 802. 3 kJ/mol methane

∆Ecombustion differs from ∆Hcombustion by RT∆ng. For
CH4(g) + 2O2(g) = CO2(g) + 2H2O(g), ∆ng = 0 and
∆Ecombustion = ∆Hcombustion − RT∆ng = ∆H

If the product is liquid water, then ∆n = − 2 and ∆E differs from ∆H by 5.0 kJ. It is appropri-
ate that ∆H is neg ative, since burning methane (natural gas) produces heat (is exothermic).

The idea from the First Law that energy is independent of path (Section 13.2) suggests
an algorithm for deriving equations describing the heat changes of chemical transformations.
Consider the following figure with enthalpy plotted as a function of the progress of a reac-
tion:

PE

Reaction

∆Hrxn

∆H1
∆H2

R I P

Fig. 13.1 Potential Energy Change During Reaction
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For chemical reactions, the initial state is the reactant state (R) and the final state is the
product state (P). Going directly from the initial state to the final state involves a reaction
enthalpy change, ∆Hrxn. The indirect path going through intermediates (I) involves the sum
of the enthalpy change in going from the reactants to intermediates, ∆H1, and the enthalpy
change in going from the intermediates to products, ∆H2. Note the direction of the arrows in
the figure indicate the direction from initial to final states.

The form of the First Law in terms of the enthalpy change for a process independent of
path leads to the general relation:

∆Hrxn = ∆H1 + ∆H2 (13.8)

Eq. (13.8) can be generalized further to include more than two intermediate states, if
necessary.

∆Hrxn =
intermediates

i
Σ ni∆H̃i (13. 9)

where the tilde denotes enthalpy per one mol, or molar enthalpy.
One application of Eq (13.9) is to reactions that take place in several steps. Chemists

are rarely able to produce the product they want in a single synthetic step. Direct paths
between simple starting materials and complex products are not usually known. Similar to
the multiple steps of a conversion factor process, the algorithms of chemical synthesis can
involve many steps. Eq. (13.9) says that the heat of reaction of a process which takes place in
a number of steps equals the sum of the heats of reaction of the intermediate steps. This rela-
tion was first demonstrated by Germain Hess in 1840, and is referred to as Hess’s Law. If
the steps of the reaction do not algebraically add up to the total reaction, the steps may be
multiplied by factors causing intermediates to cancel and the resulting reactants and products
to match the total reaction. This is similar to algebraic manipulations used to eliminate vari-
ables in systems of simultaneous linear equations (Section 3.9). Because heats attending
reactions are proportional to the amounts of reaction, multiplying reactions by factors will
multiply their heats by the same factors.
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The Hess Law Algorithm

Purpose: To determine the heat of a chemical reaction which is a combination of other
reactions.
Procedure:

1. Write down balanced chemical equations for the direct and indirect process-
es of interest, including the heats of reaction for each reaction.

2. Multiply the indirect reaction equations and their heats by factors such that
their sum equals that of the direct chemical equation.

3. The total heat for the direct reaction then equals the algebraic sum of the
heats of the indirect reaction equations, multiplied by the factors needed in
step 2.

One may use the resulting heat equation to solve for one unknown given values of all
the remaining variables.
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Example 13.4 Dioxygen is converted in the atmosphere into ozone, O3, by an indirect
process in two steps that involves oxygen atoms as intermediate species. Given the
heats of the intermediate steps, calculate the heat of direct conversion.
1. The intermediate and direct steps and their heats are:

Step 1: O2 = 2 O ∆H1 = 495 kJ
Step 2: O2 + O = O3 ∆H2 = −106 kJ

Direct: 3 O2 = 2 O3 ∆H3 = ? kJ

2. The direct reaction has 3 O2 molecules. There are several ways to combine the O2
in Step 1 and Step 2 to add up to 3 O2. But there is only one way (with smallest in-
tegers) which adds up to 3 O2 and eliminates O atoms (intermediates), which don’t
appear in the direct equation.

Step 1: O2 = 2 O ∆H1 = 495 kJ
Step 2: 2[O2 + O = O3 ∆H2 = −106 kJ]

_____________________

Direct: 3 O2 = 2 O3 ∆H3 = ? kJ

3. From the relation between the three reactions, we have

∆H3 = ∆H1 + 2 ∆H2 = 495 kJ + 2 (−106 kJ) = 283 kJ

13.5. Heat and Stoichiometry
The sign of ∆H in the last example is positive. Since ∆ signifies change from initial to

final, Hfinal − Hinitial > 0, or Hfinal > Hinitial. In such a process, the enthalpy of the system
increases and the change is said to be endothermic (heat goes in). The opposite case is
exothermic (heat goes out or exits). There is an intuitive understanding about process which
go ‘‘up hill’’ in energy (or enthalpy). They are not spontaneous. The example is consistent
with the observation that ozone production is not spontaneous (lucky for us). On the other



Heat and Stoichiometry 205

hand, objects tend to roll down hill spontaneously, and chemical reactions which are exother-
mic are expected to be favorable (consider explosions). However, this is only half the story,
the rest of which will be told in the section on reactions and thermodynamics (Section 13.10
below). You may wonder where the heat comes from and where it goes. Heat changes in
chemical reactions are the result of breaking and forming chemical bonds, the forces which
hold atoms together in molecules. Heat is absorbed from the surroundings or transferred to
the surroundings by changing the kinetic energy of the molecules in the surroundings.

It is possible to include the heat (or energy) of reaction as a participant,

Reactants + ∆Hrxn = Products (13. 10)

where the sign has been chosen to be consistent with the notions of endo- and exothermicity.
Because thermodynamic quantities are proportional to the amounts of substances they are
associated with (extensive quantities), they can be treated like reactants or products in stoi-
chiometry calculations. This suggests another extension to the Stoichiometry Mol Map with
energy change or enthalpy change as an additional conversion factor.

Example 13.5 How much enthalpy is consumed per mol of dioxygen in the conversion
to ozone?
From example 13.4

1 mol O2 × (
283 kJ

3 mol O2
) = 94. 3 kJ/mol O2

13.6. Reaction Heat from Heats of Formation
Conceivably, one can imagine breaking reactant molecules into smaller parts, such as

elements, and then reforming the elements into products. The separated elements may be
thought of as an intermediate state between the initial (reactant) and final (product) states.
The intermediate state is analogous to a mountain pass. The analogy with gravity helps the
understanding of chemical reactions in terms of the familiar. Chemists often refer to reacting
molecules as ‘‘surmounting the reaction barrier’’.
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Referring to Fig. 13.1 with intermediates as elements, Eq. (13.9) becomes:9

∆Hrxn =
products

i
Σ ni∆H̃f(i) −

reactants

i
Σ ni∆H̃f(i) (13. 11)

where ni is the stoichiometric (balancing) coefficient of the i-th molecule in the chemical
reaction, and ∆H̃f is the molar heat of formation of reactant or product molecule. That is,
∆̃Hf is the heat energy absorbed or released when one mol of molecules is formed from its
elements. Here the initial state is that of the elements and the final state is that of the com-
pound. Consistent with the definition of ∆∆ being the difference between initial and final
states, ∆H̃f is positive for molecular formations which absorb heat, and negative for those
which release heat (and zero for ‘‘formation’’ of elements from themselves). Eq. (13.11) is
quite useful, because the reaction energies of a multitude of chemical reactions can be calcu-
lated from a relatively small table of molar formation heats. An entry in the table for a
molecule may be applied to any reaction involving that molecule.

9 It helps to recognize that the several reactants and several products are bridged by a single set of elements.
Also note the signs of the terms, a result making the definition of heat of formation consistent with the direction
of the arrows of Fig. 13.1.
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Reaction Heats from Formation Heats Algorithm

Purpose: To determine the heat of chemical reaction from heats of formation.
Procedure:

1. Write down the balanced chemical reaction for the process of interest.
2. The heat contribution of each substance in the reaction is the product of the

molar heat of formation and the number of mols of that substance in the bal-
anced reaction.

3. The reaction heat is the difference between the sum of heat contributions
from step 2 for products, and the sum of heat contributions terms from step 2
for reactants (Eq. 13.11).

Example 13.6 Given the molar heats of formation at 298.15 K of methane, CH4 (−74.81
kJ/mol), carbon dioxide, CO2 (−393.51 kJ/mol) and water, H2O (−241.82 kJ/mol), cal-
culate the heat of combustion of methane (to produce gaseous water at 298.15 K).
1. Combustion is reaction with oxygen:

CH4 + 2 O2 = CO2 + 2 H2O

2. Step 2 can be combined with step 3 since reaction heat of the total reaction is
sought.

3. From Eq. (13.11):

∆Hcombustion = ∆H̃f(CO2) + 2 ∆H̃f(H2O) − ∆H̃f(CH4) − 2 ∆H̃f(O2)

∆Hcombustion = (−393. 51) + 2 (−241. 82) − (−74. 81) − 2 (0) kJ = −802. 34 kJ

in agreement with the calorimetric value of Example 13.3

13.7. Reaction Heats from Bond Energies
Heats of reaction involving covalent molecules can be estimated using Lewis structures

of the participating molecules. Lewis structures give a description of the covalent bonds in a
molecule. (See the Lewis Structure Algorithm in Section 12.5.) Each bond is isolated from
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the remaining bonds. This picture of bonding suggests that a given bond between to atoms
might have the same properties independent of the rest of the molecular environment. One of
these properties is the bond dissociation energy, the energy required to break the bond.10

Tables 12.1 and 12.2 and Fig. 12.12 in Section 12.10 on Bonding Strengths give selected
diatomic and polyatomic molecule bond energies.

From bond energy values it is possible to estimate the energies of the participating
molecules in a chemical reaction, and thus the energy change of the reaction. As discussed
above, the heat of reaction can be estimated from ∆H = ∆E + ∆PV ≈ ∆E + RT∆ngas.

To compute the energy of a reaction from bond energy values, one adds up all the bond
dissociation energies of reactants and products and takes the difference between total energy
of products and reactants.11

∆Erxn ≈ Σ(reactant bond energies) − Σ(product bond energies) (13. 12)

Note that this is an approximate equation (estimation) whereas Eq. (13.11) is exact.

10 The energy to form a bond is the negative of the bond dissociation energy.
11 One may imagine breaking all the bonds of reactants and reforming the atoms into products. Since energy

difference is independent of path according to the first law of thermodynamics, the energy for the direct conver-
sion of reactants into products equals the energy to go from reactants to atoms (sum of bond dissociation ener-
gies or reactants) plus the energy to go from atoms to products (sum of negative bond dissociation energies).
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Reaction Heats from Bond Energies Algorithm

Purpose: To estimate the reaction energy of a given reaction from bond energies.
Procedure:

1. Write the Lewis structure for each molecule in the balanced reaction using
the Lewis Structure Algorithm in Section 12.5.

2. Look up the molar bond dissociation energy for each type of diatom bond in
each molecule (Tables 12.1 and 12.2).

3. Estimate the reaction energy as the difference between the sum of bond dis-
sociation energies of all bonds among reactants and the sum of bond dissoci-
ation energies of all bonds among products (Eq. 13.12). Since bond energies
are per mole of bond, multiply the number of bonds of each type in a
molecule by the stoichiometric coefficients of the balanced reaction.

Example 13.7 Estimate the heat of formation of water.
1. Water is formed from its elements according to the reaction H2 + (1/2)O2 = H2O. In

terms of Lewis structures the reaction is H−H + (1/2) O=O = H−O−H.
2. From a table of bond energies, the molar bond dissociation energies are: BE(H−H) =

436 kJ, BE(O=O) = 498 kJ, BE(O−H) = 467 kJ.
3. Recognizing that there is one-half mole of dioxygen and one mole of water contain-

ing two moles of OH bonds,

∆Erxn = [BE(H−H) + (1/2)BE(O = O)] − 2[BE(O−H)] = −249 kJ,

which is close to the experimentally measured heat of formation, −242 kJ. (The
heat of formation adds only −(1/2)RT = −(1/2)(2.5 KJ) = −1.2 kJ to the energy of
formation.)
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13.8. The Second Law
A first law of thermodynamics suggests there might be a second law, and indeed there

is. Historically, it was announced before the First Law in a little memoir by Sadi Carnot12 at
age 27 in 1823 titled ‘‘On the Motive Power of Heat.’’ Joule’s work showed that a great
amount of energy is stored in ‘‘hidden’’ internal heat. For example, the equivalent of 430 kg
(about half a ton) falling in the gravitational field for one meter raises the temperature of one
gram of water one degree Celsius. If the process could be reversed (and it was in steam
engines), hot water could produce large amounts of work. However, the conversion is never
complete and some energy is dissipated. This is a consequence of the Second Law of Ther-
modynamics, one form of which says that it is impossible to convert a given amount of heat
energy totally into work energy.

The second law of thermodynamics relates to a property of systems called the entropy
(Greek trope for transformation), given the symbol S. The natural state variables for which
entropy is a state function are energy, volume and number: S(E,V,N). The Second Law states
that whenever any change occurs in an isolated system, the entropy of the system increases.
Entropy changes are determined from experiments as accumulations of heat changes divided
by (absolute) temperature.

∆S ≡ ∫
dq
T

(13. 13)

Tw o common changes are phase changes (such as melting) and heating (at constant tempera-
ture). The corresponding entropy changes attending these processes are

∆Sphase change =
qphase change

Tphase change
(13.14)

∆Sheating =
Tf

Ti

∫
Cp

T
dT =

Tf

Ti

∫ Cp d ln T ≈ Cp ln (
Tf

Ti
) (13.15)

12 Said Carnot (French, 1796-1832), the son of Napoleon’s Minister of War (L.M.N. Carnot who found rela-
tion expressing the work needed to raise an object in the gravitational field, mg∆h), was in a good position to
consider practical applications of heat energy. Since his memoir was expressed in terms of the caloric (sub-
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where Cp is the molar heat capacity (Eq. (2.26b)), assumed to be constant over the tempera-
ture range, and

Example 13.8 Calculate the change in entropy accompanying the heating of 1 mol of
ice at 0 °C to steam at 100 °C. The heat of melting ice at 0 °C is 6.01 kJ/mol, the heat
of vaporizing water at 100 °C is 40.67 kJ/mol. The molar heat capacity of liquid water
varies with temperature, but can be assumed constant and equal to the value at 25 °C of
75.3 J/mol-K.
According to Eqs. 13.14 and 13.15

∆Stotal = ∆Smelting + ∆Sheating + ∆Svaporization

=
6, 010 J/mol

273. 15 K
+

75. 3 J
mol − K

ln (
373. 15 K
273. 15 K

) +
40, 600 J/mol

373. 15 K
= 22. 0 + 23. 5 + 109. 0 J/mol − K = 154. 5 J/mol − K

This illustrates the magnitudes of entropy changes for various processes. Water is
exceptional, however, as the entropy of vaporization of most substances is about 85
J/mol-K (Trouton’s rule).
Absolute values of molar entropy are tabulated for a variety of substances. These values

may be combined to calculate the change in entropy in chemical reactions according to a for-
mula similar to Eq. 13.11:

∆srxn =
products

i
Σ niS̃f(i) −

reactants

i
Σ niS̃f(i) (13. 16)

Example 13.9 Given the molar entropies at 298.15 K of methane, CH4 (186.26 J/mol-
K), dioxygen, O2 (205.14 J/mol-K), carbon dioxide, CO2 (213.74 J/mol-K) and water,
H2O (188.83 J/mol-K), calculate the entropy of combustion of methane (to produce
gaseous water at 298.15 K).

stance) theory of heat (which he himself subsequently rejected), it was largely ignored.
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Combustion is reaction with oxygen:

CH4 + 2 O2 = CO2 + 2 H2O

From Eq. (13.16):

∆Scombustion = S̃(CO2) + 2 S̃(H2O) − S̃(CH4) − 2 S̃(O2)

∆Scombustion = (213. 74) + 2 (188. 83) − (186. 26) − 2 (205. 14) J/mol − K = −5. 14 J/mol − K

This is not a very large value, as would be expected since there are equal numbers
of mols of reactant and product gases (3 mols) and there should not be much dif-
ference in the disorder of the system as it passes from reactants to products.

13.9. Boltzmann Distributions
Both laws of thermodynamics were given sound theoretical explanations in the last

quarter of the nineteenth Century by Clerk Maxwell (of electromagnetic theory fame) and
Ludwig Boltzmann,13 in terms of the kinetic molecular theory.

The kinetic molecular theory provided a mechanical explanation for heat in terms of
molecular motion, thus establishing a link between the energy of the first law of thermody-
namics and the energy of dynamics. Boltzmann subsequently sought a mechanical explana-
tion for entropy (the fundamental state variable of the second law of thermodynamics) and
determined that entropy is a measure of disorder, by quantitatively expressed the relation
which bears his name:14

13 Ludwig Eduard Boltzmann (Austrian, 1844-1906) made a goal to find a mechanical explanation for en-
tropy as Maxwell had for energy through the kinetic-molecular theory. After years of labor he finally arrived at
his the relation between disorder and entropy. Boltzmann stood alone against the physics community in defend-
ing the atomic theory when it came into question at the end of the Nineteenth Century. Despondent over the
loss of his sister to leukemia and depressed with his defense of the atomic theory, he committed suicide just as
Albert Einstein was reaffirming the atomic theory through his work on Brownian motion. Boltzmann’s relation
is engraved on his tomb in Vienna.

14 Boltzmann’s equation is another relationship dealing with the transport or flux of matter and energy.
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S = k ln Ω (13. 17)

where Ω (omega) represents the number of possible arrangements of the system for a given
macroscopic state, and the proportionality constant k is a universal constant, called Boltz-
mann’s constant, equal to 1. 38066 x 10−23 J/molecule-K. For systems composed of N inde-
pendent subsystems (such as independent molecules in the gas phase), the number of possible
arrangements of the total system is a product of the number of possible arrangements of each
subsystem, and S = Nk ln Ω. Since the number of mols n = N/NA, where NA is Avogadro’s
number, Nk = nNAk ≡ nR (Sec. 2.2), where R has the value 8.314510 J/mol-K.15

S = nR ln Ωindependent subsystem (13.18)

As the number of states available to a system increases, the number of possible arrangements
increases and the disorder increases. Entropy can thus be thought of as a measure of the dis-
order of a system. Note that, unlike energy, entropy is an absolute quantity, with value zero
for perfectly ordered systems (Ω = 1).

According to Boltzmann’s interpretation, the Second Law of Thermodynamics states
that isolated systems spontaneously become more disorganized.

∆Sisolated > 0  (13. 19)

Entropy has an intuitive meaning in common occurrences of gases escaping from con-
tainers by diffusion, erosion, rusting and other natural processes.16 One might argue that
growing organisms become spontaneously more organized, but Erwin Schr"odinger showed

15 This is the value of R in heat energy units. An alternative value may be obtained in work energy units of R
= 0.082057 L-atm/mol-K, using conversion factors. Since R was first discovered in connection with gas proper-
ties, it is called the molar gas constant.

16 Ashes to ashes and dust to dust. Imagine what happens when a small child is placed before a pile of neat-
ly stacked blocks.
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that when the source of energy is included (the sun), the net entropy of the total system
increases. In fact, organizing systems are the exception rather than the rule in nature.
Humans do refine ores and manufacture plastics from petroleum, but from a larger perspec-
tive, more randomness is produced in the environment than organization is gained in the
products. On a grand scale, the second law of thermodynamics says that the universe (which
is an isolated system by definition) is always running down, leading eventually to a ‘‘heat
death’’!17

Example 13.10 Gas molecules are mobile and their number of arrangements is propor-
tional to their available volume. The entropy of expansion into a larger volume of n
mols of a gas from Vinitial to Vfinal may be seen from Eq. (13.18) to be

∆Sexpansion = nR ln(
Vfinal

Vinitial
) (13.20)

Numerically, doubling the volume of one mole of gas increases the entropy by 8.31441
ln (2) = 5.763 J/mol-K.
Example 13.11 Mixing substances together increases their disorder. Using the fact that
the disorder increases with the number of molecules, the entropy of mixing can be
derived from Eq. (13.17)

∆Smixing = Smixed − Sunmixed = (n1 + n2 + . . . )R ln(n1 + n2 + . . . ) − [n1R ln(n1) + n2R ln(n2) + . . .]

∆Smixing = −
i
Σ niR ln(

ni

n
) (13.21)

where ni is the mols of substance i, and n is the total mols, n =
i
Σ ni. Thus the mixing of

one mol each of two substances increases their entropy by 2R ln(2) = 11.526 J/mol-K.
Temperature is defined in thermodynamics as the ratio of change in energy to change in

entropy at constant volume and amount of matter.

17 This pessimistic notion inspired the ending to H. G. Well’s science fiction classic, The Time Machine, and
the nihilistic (Latin nihil for nothing) suicide movement of the late Nineteenth Century. General relativity al-
lows for three scenarios of the fate of the universe, continual expansion, oscillation between expansion and con-
traction, and steady state. So far, observations have not provided definitive evidence in favor of any of the sce-
narios.
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T ≡
∆E
∆S

(13. 22)

According to the kinetic molecular theory, molecules distribute their energy via encoun-
ters with their neighbors (collisions). Boltzmann’s distribution function (Eq. 13.23) can be
derived from the thermodynamic definition of temperature and Boltzmann’s equation for
entropy. The distribution of thermal energy follows a very simple, but general law, derived
for kinetic energy by Clerk Maxwell and more generally by Ludwig Boltzmann. The law
states that the fraction of a population of molecules possessing energy E above some ground
state is a decreasing exponential function of the ratio of the energy to absolute temperature
T. It may be derived from Eqs. (13.17) and (13.22) by noting that the fraction f of molecules
in a given state is inversely proportional to the number of possible arrangements. Hence (with
A representing the proportionality constant)

∆S = k ln(A/f) =
∆E
T

which gives, on rearrangement, with E measured relative to E = 0

f(E) = Ae−E/kT (13. 23)

where e is the base of natural logarithms. The proportionality constant A can be determined
from the fact that the the sum of a discrete distribution function (or integral of a continuous
distribution) over all possible states must equal unity (i.e. the distribution is normalized).
Thus, Σ f = A Σ e−E/kT = 1, and

A =
1

Σ e−Ei/kT
→

1

∫ e−E/kT

Therefore
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f(Ei) =
e−Ei/kT

Σ e−Ei/kT
→ f(E) =

e−E/kT

∫ e−E/kT
(13. 24)

where the arrow indicates the transition from a discrete (quantum) distribution to a continu-
ous (classical) distribution. Boltzmann’s distribution law applies to a wide range of phenom-
ena, as we shall see. For example, it is the basis of the distribution of intensities of spectro-
scopic lines based on state populations discussed in Section 12.13. Note that the Boltzmann
distribution function is a proper fraction (<1) for positive E (k and T are always non-
negative), meaning smaller population at higher energy.

Example 13.12 The pressure of the atmosphere, due to molecular density, is known to
fall off exponentially with altitude:

p(h) = p0e−(
mgh
kT

) (13.25)

p0 is the pressure at sea level, defined to be one atmosphere unit (76 cm of mercury
barometric pressure). The gravitational potential energy is mgh, where m is the mass of
an object at height h, and g is the gravitational proportionality constant, 9.80665 m/s2

(Cf. the discussion of Newton’s law of gravitation in Section 5.2). The average molecu-
lar mass m of Earth’s atmosphere (80% N2 and 20% O2) is 29.

13.10. Chemical Thermodynamics
Building on the foundation laid by Maxwell and Boltzmann, the American mathemati-

cian Josiah Willard Gibbs18 developed a thermodynamic quantity that is more appropriate to
chemistry than either energy or entropy. It is called the free energy, and given the symbol G
in honor of Gibbs. Free energy combines energy and entropy into a single term related to the
direction of reactions:

18 Josiah Willard Gibbs (American, 1839-1903), considered to be the greatest native-born American scien-
tist, a recluse at Yale University who published in an obscure Connecticut Journal. His work went largely unno-
ticed, but today he is considered to have addressed every major problem in statistical mechanics, the modern
form of the kinetic molecular theory.
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G ≡ H − TS (13. 26)

At a given temperature T, the change in free energy is

∆G = ∆H − T∆S (13.27)

G is a state function of the state variables temperature, pressure and number, G(T,P,N), which
makes it appropriate to chemical reactions taking place under the common conditions of fixed
temperature and pressure.

Free energies of reaction can be obtained from tables of molar formation free energies
in the same way as enthalpies.

∆Grxn =
products

i
Σ ni∆G̃f(i) −

reactants

i
Σ ni∆G̃f(i) (13. 28)

Example 13.13 Given the molar free energies of formation at 298.15 K of methane,
CH4 (−50.72 kJ/mol), carbon dioxide, CO2 (−394.36 kJ/mol) and water, H2O (−228.72
kJ/mol), calculate the free energy of combustion of methane (to produce gaseous water
at 298.15 K).

Combustion is reaction with oxygen:

CH4 + 2 O2 = CO2 + 2 H2O

From Eq. (13.28):

∆Scombustion = ∆G̃f(CO2) + 2 ∆G̃f(H2O) − ∆G̃f(CH4) − 2 ∆G̃f(O2)

∆Gcombustion = (−394. 36) + 2 (−228. 72) − (−50. 72) − 2 (0) kJ = −801. 08 kJ

From Eq. (13.27) and the result of Example 13.8 (noting that entropy is measures
in Joules whereas energy is measured in kJ)

∆G = ∆H − T∆S = − 802. 34 − 298. 15 × 5. 14 × 10−3 = − 803. 87
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The discrepancy indicates the uncertainty in the reported experimental values.
A consequence of the combined first and second laws is that favorable processes are

accompanied by negative changes in free energy. Free energy is appropriate to chemical pro-
cesses taking place under constant temperature and pressure. The combination of exother-
micity (∆H < 0) and increased entropy (∆S > 0) yields negative ∆G = ∆H − T∆S at all tem-
peratures. Conversely, endothermic processes (∆H > 0) accompanied by increased entropy
(∆S > 0) require the temperature to be high enough for the T∆S term to dominate over the
∆H term to be favorable (∆G < 0). This is displayed graphically in Fig. 13.2.

∆S > 0

∆S > 0

0

favorable

unfavorable

∆S < 0

∆S < 0

∆H > 0

∆H < 0

∆G(T)

T

Fig. 13.2 Conditions for Favorable (∆G < 0) and Unfavorable (∆G < 0) Processes

Example 13.14 Discuss the solubility of dioxygen (O2) in water.
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Dioxygen is a non-polar molecule while water is polar. By the Solubility Heuristic of
Chapter 17, dioxygen is not expected to be very soluble in water.
From a thermodynamic point of view, one expects the heat of solution of dioxygen in
water to be negative due to intermolecular attractions. However the attractions are due
to dispersion only (see Chapter 14) and not expected to be very large. Dissolved dioxy-
gen is expected to have a smaller entropy than gaseous dioxygen because the solution is
more ordered, so ∆Ssolution is a negative quantity, and −T∆Ssolution is a positive quantity.
Thus the two contributions to the free energy of solution of dioxygen in water are of
opposite sign. Solubility is aided by the enthalpy of solution but hindered by the entropy
of solution.
At room temperature, ∆Hsolution = −12 kJ/mol, T∆Ssolution = +28 kJ/mol for the dissolu-
tion of dioxygen in water, and the net ∆Gsolution = +16 kJ/mol. Since the enthalpy of
solution is a relatively small quantity, entropy dominates the situation as the temperature
increases. Solution is not very favorable. The measured solubility of dioxygen in water
is 3 × 10−4 M at room temperature, which is 5 parts per million (ppm).19 This is all there
is to support aquatic life. Heated water has even less dissolved dioxygen, leading to
thermal pollution.

13.11. Statistical Thermodynamics
Mathematical statistics deals with distributions, or collections which can be grouped

into subcollections. For example the age distribution of a population of humans would be
expressed in terms of the number of people (or equally well the fraction of people in the pop-
ulation) in each increment of age. The size of the increments could be narrow, such as each
second of age, or broad, such as each decade of years. Narrow increments tend to produce
larger fluctuations in measured distributions than broader increments. The distribution func-
tion is a representation of the number (or the fraction) of items in the collection as a function
of the independent variable(s). As with most numerical relationships a distribution may be
represented equivalently as a table, a graph, or a formula. Note that it is typical that

19 Since the solution is dilute, its density is close to that of water:

3 × 10−4 mol O2

1 L solution
(

1 L
103 mL

)(
1 mL

1 g H2O
)(

18 g H2O
1 mol H2O

) =
5 × 10−6 mol O2

1 mol H2O
=

5 mol O2

1 × 106 mol H2O
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distributions apply to large numbers of members in the collection. The fraction of a popula-
tion in some range is equivalent to the probability of selecting a member at random from the
population and finding that it belongs to that range.

Probability theory can be used to model distributions. Consider a coin having two sides,
labeled heads (H) and tails (T). If the coin is perfectly symmetrical (‘‘fair’’), the probability
of a thrown coin landing with the heads face up is the same as landing tails up. After many
(N) tosses, one would expect heads to appear about half the time (N/2 times) and tails half
the time (N/2 times). As the number of tosses (N) increases, one would expect the observed
fractions to approach the theoretical values. In general, the probability of a given outcome
may be thought of as the fraction of ways that outcome can be realized out the total number
of possible arrangements, and the sum of the probabilities of all arrangements is unity. This
suggests that theoretical probabilities can be calculated by counting possibilities. In the case
of the coin, heads or tails are the only possibilities considered. Thus the total number of
arrangements is two and the number of ways heads or tails can be realized is one, so the
probability of heads is 1/2 and the probability of tails is 1/2.

Now consider tossing two coins. The total possible outcomes are four: HH, HT, TH, TT
with a probability of 1/4 for each possibility. Note that the probability of two events that are
independent of each other is the product of the probabilities of the component events.20 This
is a general rule: mutually independent probabilities multiply. Also note that independence
means that tossing two coins simultaneously produces the same results as tossing one coin
two times.21 Grouping the collection into similar subgroups generates various distribution
functions. If the coins are distinguishable (colored or numbered, say), the distribution is uni-
form (constant), with four equal fractions of 1/4. If the coins are indistinguishable the TH
outcome is equivalent to the HT outcome and the distribution of probabilities as fractions of
the possible outcomes is 1/4 for two heads, 2/4 for one head and one tail, and 1/4 for two
tails. Note the example of another general rule: indistinguishable probabilities add. The
principles of the coin example can be extended to a larger number of coins, and to other sys-
tems as well.

20 E.g. if p represents probability, p(HT) = p(H) × p(T) = 1/2 × 1/2 = 1/4.
21 The general idea of time averages being equivalent to space averages is called ergodicity, and plays an im-

portant role in modern science.
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Application of the methods of statistics to thermodynamic systems leads to the field of
statistical thermodynamics (or more broadly, statistical mechanics). This powerful field of
science was invented by Boltzmann and Willard Gibbs around the turn of the Twentieth Cen-
tury. We will derive some of the fundamental formulas of statistical thermodynamics. First
let us derive Boltzmann’s relation (Eqn. 13.17). Consider a system made of a number of sub-
systems, numbered 1 and 2, ... having entropies S1 etc. Let Ω1, Ω2, etc. represent the number
of ways each subsystem can be rearranged without alterating its macroscopic state. The
entropy is considered to be some function of the number of arrangements consistent with the
state of the system, S1 = f(Ω1), etc. If the subsystems are independent, the number of
arrangements of the total system is the product of the number of arrangements of each inde-
pendent subsystem, while the entropy of the combined system is the sum of the entropies of
the separate subsystems.

Ω = Ω1Ω2
. . .

S = S1 + S2 + . . .

Since entropy is a function of arrangements, we seek that functional form for which the prod-
uct of the arguments produces a sum of functional values. The logarithm function has just
that property (the logarithm of a product is the sum of the logarithms of the multiplicands).
Thus

S = k ln(Ω) + b

is the general expression. By definition, the entropy of a perfectly arranged system is zero, so
S = k ln(1) + b = 0 + b = 0 and b = 0. This is consistent with a ‘‘third’’ law of thermodynam-
ics which states that the entropy of a system at absolute zero of temperature (where presum-
ably all motion ceases) has a value of zero.

A modern interpretation of entropy dev eloped from the field of information science,
founded by Claude Shannon at Bell Laboratories in 1947. Shannon was interested in under-
standing corruption of communications signals during transmission. The resulting model,
called information theory, like thermodynamics, is very general and finds significant applica-
tions in computer science, economics and probability theory. Here is a brief treatment.

Consider a situation, or system with two states. It could be a question which could be
answered yes or no, a coin with heads and tails, a statement which is true or false, a digital
computer memory bit with state on or off, etc. If the system is known to be in one of the
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possible states, then one has gained some information about the system, exactly one bit of
information. Note that the information gained, Igained, can be expressed as

Igained = Ifinal − Iinitial = lg(21) − lg(20) = 1 bit

where lg stands for the logarithm in the base 2 (i.e. the set of digits {0,1}). (Recall that the
logarithm of a number in any base is the power of the number in that base.) In terms of the
probability, the system is in one state half the time, so the probability of being in one state is
1/2. The information gained can be expressed in terms of this probability as

Igained = − [
1
2

lg(
1
2

) +
1
2

lg(
1
2

)] = − [
1
2

(−1) +
1
2

(−1)] = 1 bit

Now consider a four-state system, perhaps one whose state is determined by answering
two yes/no questions, two coins, two true/false statements, a two-bit computer word, etc. If
the system is known to be in just one of the possible states, then one has gained some infor-
mation about the system, namely two bits of information. Note that the information gained
can now be expressed in terms of possible arrangements and in terms of probabilities as

Igained = lg(22) − lg(20) = − [
1
4

lg(
1
4

) +
1
4

lg(
1
4

) +
1
4

lg(
1
4

) +
1
4

lg(
1
4

)] = 2 bits

Extending the situation to an N-state system,

Igained = lg(2N) = −
2N

Σ 1
2N

lg(
1

2N
) = N bits (13.29)

that is, N bits of information are gained by knowing the system is in a particular state out of
2N possibilities. Note the similarity with Boltzmann’s relation Eq. (13.17) where 2N would
be the number of possible states of a thermodynamic system.

In probability theory, one identifies the probability p of a state as the number of favor-
able realizations of the state out of the total possibilities. Probabilities are fractions summing
to unity (something must be probable). In the previous examples each state is equally proba-
ble, equal to 1/2N. When there is a range of probable states for a system, with pi being the
probability that the system is in state i, the average information gained is defined to be
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Igained ≡ −
i
Σ pi ln(pi) (13. 30)

where the sum is over all the probability possibilities.22

The connection between information theory and thermodynamics is made by identifying
entropy S with the lost information Ilost as a system randomizes. But the information lost
when a a system randomizes is identical to the information gained when a system when a
system organizes. Thus S = Ilost = Igained and

S = −
i
Σ pi ln(pi) (13. 31)

The Boltzmann distribution, Eq. (13.24), gives the probability pi of being in energy state Ei.
In statistical mechanics it is customary to call the inverse of the normalization factor in Eq.
(13.24) the partition function, Q, as it describes how the energy is partitioned among the pos-
sible energy states.

Q = Σ e−Ei/kT → Q = ∫ e−E/kT (13. 32)

First we note that the average energy of the system, E, can be obtained from the general defi-
nition in probability theory of the average value <x> of a set of x values {xi} in terms of a
distribution f(xi) of the values,23

< x > ≡ i
Σ xif(xi)

i
Σ f(xi)

(13.33)

22 The base of the logarithm is not important becauses a change of logarithm base only introduces a constant
conversion factor.
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Noting that (cf. Section 3.11 on calculus)
dln(Q)

dT
=

1
Q

dQ
dT

=
1
Q

d
dT

(
i
Σ e−Ei/kT) =

1
Q i

Σ Ei

kT2
e−Ei/kT (13.34)

E =
i
Σ Eie

−Ei

kT = kT2[
∂ln(Q)

∂T
]N,V (13. 35)

Applying the distribution pi = eEi/kT/q to S = − k Σ pi ln(pi) giv es the fundamental relation-
ship of statistical thermodynamics:24

23 Consider a class average of grades gi or a grade point average

< grade > = i
Σ gif(gi)

i
Σ f(gi)

=
i
Σ gif(gi)

where gi is the grade of each person in a class and f(gi) is the fraction of the class membership in the case of a
class average, or the numerical value of a grade and f(gi) is the fractional number of each grade in the case of a
GPA.

24

S = − k
i
Σ pi ln(pi) = − k

i
Σ e−Ei/kT

Q
ln(

e−Ei/kT

Q
)

Expanding the logarithm term and bringing constant (unsubscripted) terms outside the summation

S = −
k
Q i

Σ e−Ei/kT(−Ei/kT − ln(Q)) =
1

QT i
Σ Eie

−Ei/kT +
k ln(Q)

Q i
Σ eEi/kT

we can see from Eq. (13.34) that

S = kT(
d ln(Q)

dT
) + k ln(Q)
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S = k ln(Q) + kT[
∂ln(Q)

∂T
]N,V (13. 36)

The ∂ (partial derivative) symbol simply means the derivative is taken with respect to T only
(i.e. holding N and V constant). This rather formidable equation holds the key to calculating
all the properties of a thermodynamic system, given an expression for the partition function.

To apply these expressions to molecular systems we note that for independent subsys-
tems, energies are essentially additive (Eq. (12.10)) and partition functions are multiplicative
over the subsystems.25 Thus a solid containing N independent vibrations has a total partition
function

Qsolid = qN
molecule

and an ideal gas containing N molecules has a total partition function26

Qgas =
qN

molecule

N!
≈ (qmolecule

e
N

)N

(The approximation is called Stirling’s approximation for the factorial.) Non-ideal gases and
liquids have intermolecular interactions and do not behave as independent particles, making
their study more difficult.

The energy states of a molecule can be partitioned into translational, rotational and
vibrational motions (called degrees of freedom). Since the energy contributions to the total
energy of a molecule are additive, the partition function becomes the product

25 This follows from the definition of Q as a summation over all possible states:

Q =
i
Σ eEi/kT =

i
Σ e(ε i1 + ε i2 + ...)/kT =

i
Σ

j
Π eε ij/kT =

j
Π

i
Σ eε ij/kT =

j
Π qi

26 The N! term takes into account the fact that exchanging all N (identical) molecules should produce the
same state as if they weren’t exchanged, so the summation over states in the partition function overcounts the
states by the number of ways N objects can be permuted (the first can be placed in N positions, the second in
N-1 positions left, ... = N(N-1)... = N!).



226 Chapter 13 Thermodynamics

qmolecule = qtranslationqrotationqvibrationqelectronic

For a molecule containing a atoms, there are 3 degrees of translational freedom (for motion
in 3D space), and depending on whether the molecule is linear or non-linear, there are 2 or 3
rotational degrees of freedom and 3a−5 or 3a−6 degrees of vibrational freedom. Molecules
can have any number of electronic states but unusually only the lowest is occupied at temper-
atures less than thousands of degrees.27 Starting with energy expressions from quantum
mechanics given in Section 12.11, it is possible to derive the following results

Table 13.1 Statistical Thermodynamical Functions

Degrees of Freedom q Θ E = kT2[
∂ln(Q)

∂T
]N,V S = k ln(Q) +

E
T

t = 1−3 translation (
T
Θt

)t/2Lt h2

2π mk
t
2

RT R ln



(

T
Θt

)t/2e5/2 V
N





r = 2,3 rotation
1

π σ

r

Π(√ π
T
Θr

)1/2 h2

8π 2kIi

r
2

RT R ln[
er/2

π σ

r

Π(√ π
T
Θr

)1/2]

v = 3a−5,6 vibration
v

Π e−Θv/2T

1 − e−Θv/T

hν
k

RT
v

Σ[Θv/2T +
Θv/T

eΘv/T − 1
] R

v

Σ[
Θv/T

e−Θv/T − 1
− ln(1 − e−Θv/T)]

e > 0 electronic
e

Σ gee
−Θe/T −

De

k
−De R ln(ge)

where the molecular parameters are: σ is the number of equivalent orientations of the
molecule (symmetry), L is the length of the container, I is the rotational molecular moment of
inertia, m is the molecular mass, ν is the molecular vibrational frequency, and ge is the elec-
tronic degeneracy (number of equivalent energy states). The remaining parameters are uni-
versal constants: k (Boltzmann’s constant), and h (Planck’s constant). There are two

27 Molecules absorb photons which elevate them to excited electronic levels. Colored molecules (like ele-
mental purple iodine) absorb visible photons suggesting low-lying excited electronic levels according to the
Planck-Einstein equation, Eq. (7.5) (cf. Example 7.5).
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variables on which the quantities depends, absolute temperature T and V (d3), where

V =
NkT

P
for an ideal gas. Θ is a ‘‘thermodynamic temperature’’ indicating the temperature

at which the motion is activated (except in the case of translation, the only external motion
degree of freedom, for which Θ depends has units of temperature times lengtht/6). Typical
values are Θtranslation = 10−15 cm2K, Θrotation = 101 K, Θvibration = 103 K, Θelectronic = 105 K,
Θnuclear = 107 K. Thus molecules are in thermal translation at essentially all temperatures,
rotating at room temperature (300 K), vibrating in flames (1,000 K), electronically excited
and possibly ionized at the surface of the sun (6,000 K) and their elements undergoing ther-
monuclear reactions in the interior of the sun (107 K).

Values of the parameters needed to evaluate the statistical mechanical expressions in
Table 13.1 can be derived from optical spectroscopy (microwave for rotational parameters,
infrared for vibrational parameters, ultraviolet for electronic parameters). See Section 12.13.
Table 13.2 lists typical values for gases. Note that homonuclear diatomics and water have a
symmetry number of 2 (2 equivalent orientations), and that systems with paired electrons
have singlet ground electronic states while dioxygen with unpaired electrons has a triplet
electronic ground state. In the case of carbon dioxide, the product of the three θ r values is
listed (all that is needed for the equations in Table 13.1), and for methane the number of
degenerate vibrational θ v values are given in parentheses (note there are 3a−6 = 9 vibrational
degrees of freedom). Finally, it is easy to see that electronically excited states are going to
contribute negligibly to the thermodynamic properties of most molecules at room tempera-
ture.
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Table 13.2 Statistical Thermodynamical Parameters

Species D0(kJ/mol) σ θ r/K θ v/K ge θ e/K

H2 432.07 2 87.547 6338.3 1 179,000
N2 941.1 2 2.875 3392.01 1 180,800
O2 491.89 2 2.079 2273.64 3 140,100
Cl2 239.216 2 0.3456 807.3 1 133,300
HCl 427.77 1 15.2344 4301.38 1 136,700
CO2 1596.23 2 0.56167 960.10 1 112,400
H2O 917.77 2 13.4 2294.27 1 117,300

20.9 5261.71
40.1 5403.78

CH4 1640.57 12 435.6 1957.0(3) 1 136,300
2207.1(2)
4196.2(1)
4343.3(3)

These statistical thermodynamic results are justified by comparing calculated thermody-
namic quantities with experimental values.

Example 13.15 Calculate the statistical thermodynamic entropy of water at 300 K and
one atmosphere pressure and compare with the experimental value of 188.83 J/mol-K.
Water has the parameter values Θt = 3 = 1. 6933 × 10−15 cm2 K, Θr = 3 = 13.4, 20.9, 40.1
K, Θv = 3 = 2290, 5160, 5360 K, σ = 2 (two equivalent orientations in space), ω e = 1 (no
electronic degeneracy in the ground state), ge = 1. Applying the formulas in Table 13.1,

and noting that V = d3 = 22, 414 ×
300
273

cm3 (the molar volume of an ideal gas at 300

K), the contributions are

S = Stranslation + Srotation + Svibration + Selectronic = 144. 93 + 43. 83 + 0. 031 + 0 = 188. 79 J/mol − K

which compares very favorably with the experimental value.
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There is enough information in Tables like 13.1 and 13.2 to calculate quantities of
chemical experimental interest, such as the heat of combustion of methane. In fact, thermo-
dynamic quantities calculated from statistical thermodynamics were considered so accurate
that the U.S. military decided in the 1960s that developing computers to calculate theoretical
values would be cheaper than building instruments to obtain experimental values. The result-
ing classic JANAF (Joint Army, Navy, Air Force) Thermodynamic Tables became another
example of theory replacing experiment.28

Summary
The laws of thermodynamics state that energy is conserved, or independent of path, and

that entropy (disorder) always increases for isolated processes. Thermodynamic energy,
entropy and temperature have microscopic interpretations in terms of the mechanics of
motion and disorder.

Thermochemistry deals with two derivatives of the laws of thermodynamics, enthalpy
and free energy. Tables of thermodynamic formation values can be combined to give thermo-
dynamic values for process, including chemical reactions. The thermodynamic free energy,
which is a combination of energy and entropy giv es a quantitative measure how far a reaction
proceeds to completion.

Statistical thermodynamics provides an accurate micro model of macro phenomena.

28 Other examples include historical ballistic trajectories (which stimulated development of mechanical com-
puting machines in the Eighteenth Century), chemical stoichiometry and more recently astronomical ephemeral
(satellite) orbits and molecular spectra.
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THERMODYNAMICS EXERCISES

1. Is the energy of the universe limited?
2. Explain how a ‘‘super ball’’ can bounce higher and higher.
3. Given the heats of incomplete and complete combustion of carbon (to one mol car-

bon monoxide and one mol carbon dioxide, respectively), what is the heat of com-
bustion of carbon monoxide?

4. Derive an algebraic formula for determining the heat of combustion of saturated
hydrocarbons in terms of the number of carbon atoms (n), and the molar heats of
formation for the hydrocarbon (h), water (w) and carbon dioxide (c).

5. Estimate the heat of combustion of methane from bond energies.
6. What causes gases to mix?
7. What happens to the entropy of the universe when water is heated?
8. What happens to the entropy of a gas which is compressed?
9. Estimate the pressure of the atmosphere at the top on Mt. Everest, 29,028 ft above

sea level, where the temperature is −43 °C.
10. Given that the energy of vaporization of water at the boiling point is 44.0 kJ/mol

and that the entropy of vaporization is 119 J/mol-K, estimate the boiling tempera-
ture of water.

11. Discuss the solubility of sugar in water.
12. Discuss the solubility of methyl alcohol CH3CHOH in water.
13. Compute the probability distribution of the sum of the pips (numbers on the faces)

of two six-sided dice.
14. How much possible information can be obtained in the game of twenty questions?
15. Compare the entropies at a given temperature for a) the solid, liquid and gas forms

of a given substance, b) two monatomic gas atoms of different mass, c) a
monatomic and polyatomic gas of the same mass.

16. Calculate the statistical thermodynamic entropy of dihydrogen at 300 K.
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THERMODYNAMICS EXERCISE HINTS

1. This could be an open-ended question.
2. This can’t be an example of perpetual motion.
3. First write down the balanced equations for the three combustions.
4. Saturated hydrocarbons have the general molecular formula CnH2n+2. Combustion

is reaction with oxygen. Balance the general combustion reaction in terms of n.
5. Methane is CH4. Combustion is reaction with O2. Assume complete combustion to

CO2.
6. If ideal, there is no intermolecular energy.
7. Consider the universe divided into two parts, the water, and everything else.
8. Consider what happens when it expands.
9. The atmospheric pressure at sea level is by definition 1 atm.
10. Vaporization is a change from liquid to gas at the boiling temperature.
11. Sugar has OH groups on a hydrocarbon backbone.
12. Alcohols have OH groups on a hydrocarbon backbone.
13. Count can categorize the possible outcomes.
14. The object of the game of twenty questions is to identify an object known to one

player by asking a maximum of twenty questions which have only yes or no
answers.

15. Think about which state would be more random in each case.
16. Table 12.1 lists the spectroscopic parameters of H2. The ground electronic state is

non-degenerate.


