
Chapter 16. Solids

16.1. Crystal Lattices
Crystals consist of atoms or molecules bound tightly into regular lattices. Atoms (noble

gases and metals) and simple covalent molecules form the simplest solids with structures pre-
dictable from the solid geometry of packed spheres. Ionic solids pack smaller ions into the
holes between the larger ions. Network covalent solids can be crystalline with structure
determined by three-dimensional directional covalent bonds, or random where ambiguities in
bonds to neighbors occur.

The most dense packing is called close packing and consists of layers of atoms at the
apices of a network of hexagons. Each layer is shifted with respect to the adjacent layer to
bring the layers close together, resulting in two kinds of spaces, or holes in the lattice, tetra-
hedral and octahedral, named for the geometric figure of the surrounding atoms. Simple
atoms like noble gas atoms solidify in close-packed arrangement. The larger ion in ionic
solids may also close-pack, with the smaller ion fitting in the tetrahedral or octahedral holes,
depending on the ratio of the ionic radii. There are as many octahedral holes as close-
packed sites, but only half as many tetrahedral holes as close-packed sites. The occupancy
of the holes is therefore dependent on both the relative sizes of the ions and the stoichiometry
of the crystal. The following algorithm classifies the structure of crystalline solids.
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Crystal Structure Algorithm

Purpose: To determine the structure of a solid substance.
Procedure:

1. Classify the substance as simple (noble gas, metal or simple covalent), co-
valent network or ionic. Atomic substances pack in closest-packing struc-
ture. Covalent network substances pack in lattice structures reflecting the di-
rectional character of the covalent bonding.

2. If ionic, determine the sizes of the ions.
a) If the ratio of ionic radii is less than 0.414, the larger ion is close-packed

and the smaller ion fits into tetrahedral holes.
b) If the ratio of ionic radii is between 0.414 and 0.732, the larger ion is

close-packed and the smaller ion fits into octahedral holes.
c) If the ratio of ionic radii is between 0.732 and 1.0, the lattice consists of

interlocking simple cubes, with each ion fitting in the simple cubic hole
of the other.

Example 16.1 Discuss the crystalline lattice of table salt.
1. NaCl is ionic.
2. The ratio of ionic radii is r(Na+)/r(Cl−) = 97/181 = 0.54. Therefore the solid struc-

ture consists of close-packed chloride ions with sodium ions in the octahedral holes.
The fraction of space occupied by the atoms in a solid measures the packing efficiency,

which may be calculated in terms of the smallest repetitive unit of the solid, called the unit
cell, according to the following formula:

packing efficiency =
Voccupied

Vtotal
=

(atoms/cell)(volume/atom)
(volume/cell)

(16. 1)
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where atoms/cell is the effective number of atoms in a unit cell (sum of all pieces of atoms),
volume/atom is the atomic volume, and volume/cell is the volume of a unit cell. The sim-
plest unit cells are the simple cubic (SC) unit cell, with eight atoms at the corners of a cube,
the body-centered (BCC) unit cell, with eight atoms at the corners and one at the center of a
cube, and the face-centered (FCC) cubic unit cell, with atoms at each corner and face of a
simple cube. The FCC is a close-packed structure. Solid geometry applies to solids. Refer to
Section 3.9 for a short review. The volume/atom for spherical atoms is just the volume of a
sphere of radius equal to the radius of the atom.

Example 16.2 Calculate the packing efficiency of a body-centered cubic unit cell.
1. A BCC unit cell has 8(1/8) atoms on the corners and one in the center, for a total of

2 effective atoms per unit cell.
2. The volume per atom is (4/3)πr3, where r is the radius of the atom.
3. The volume of a cubic unit cell is just the cube of the edge length of the unit cell.

To use this quantity in Eq. (16.1), it is necessary to relate the edge length of the unit
cell with the radius of the atoms in the cell. The relation is best derived from a
space model of eight spheres on the corners of a cube surrounding a central sphere.
The spheres on the corners have to move apart to make room for the central sphere
(of the same radius), so they don’t touch. A straight-line path through the diagonal
of the cube connects the central sphere to two corner spheres and passes through the
points where the spheres make contact. Solid geometry tells us that the length of the
diagonal of a cube is √3 times the length of the edge (e).1 Since the diagonal of the
cube passes through four atomic radii, √3e = 4r, and the volume of the unit cell is
e3 = (4r/√3)3.

4. Combining the above ratios into Eq. (16.1) gives

packing efficiency =
[2][(4/3)π r3]

(4r/√3)3
= √3

π
8

= 0. 68017476

1 See Fig. 3.6. This relationship can be obtained by two successive applications of the Pythagorean theorem
to the right triangles formed first by two edges of the cube (of length e) and a diagonal of a face (of length f),
and then formed by an edge, the diagonal of the face and the diagonal of the cube (of length d): f2 = e2 + e2, and
d2 = f2 + e2 = 3 e2.
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X-rays have wav elengths comparable to the size of unit cells and produce diffraction
patterns on passing through crystals from which lattice spacing and atomic radii may be
derived. For a given wav elength of x-ray light, λ, constructive interference (bright light) is
produced between beams of light reflected from adjacent layers in a crystal at certain angles
of reflection, θ , dependent on the the spacing between layers of the lattice, a, according to the
Bragg formula,

2 e sin(θ ) = n λ (16. 2) ,

where n is a positive integer, called the order of refraction, and θ has units of degrees.
The lattice spacing may be combined with the density of the crystal to derive the unit

cell packing. Expressing the density first in macroscopic variables, then in microscopic vari-
ables produces the formula:

D =
m
V

=
(mass/atom) (atoms/cell)

(volume/cell)
=

AM (atoms/cell)
NAe3

, (16. 3)

where AM is atomic mass in g/mol, NA is Avogadro’s number, and e is the lattice spacing.
X-ray data may be combined with density measurements to estimate the radii of atoms, as the
following procedure explains.
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Crystal Atom Radius Algorithm

Purpose: To determine the radius of an atom in an atomic crystal.
Procedure:

1. Determine the lattice spacing from the x-ray reflection angle for a given
wavelength, according to Eq. (16.2).

2. Use Eq. (16.3) to determine the number of effective atoms per unit cell from
the lattice spacing, atomic mass and density of the crystal. SC, BCC and
FCC unit cells have 1, 2 and 4 atoms/cell, respectively.

3. From the lattice spacing and geometry of the unit cell, determine the atomic
radius. For SC, r = e/2, for BCC, r = √3e/4, for FCC, r = √2e/4, where e is
the unit cell edge length and r is the atomic radius. It may be assumed that
the lattice spacing and unit cell edge length are the same.

Example 16.3 Calculate the radius of a sodium atom from the experimental observation
that X-rays of wav elength 149.3 pm are reflected at an angle of 10° in first order (n = 1).

1. From the data and Eq. (16.2), the lattice spacing e = 430 pm. e =
(1)(149. 3)
(2) sin(10°)

2. The density of metallic sodium is 0.97 g/cc, and the atomic mass is 23.0. Rearrang-
ing Eq. (16.3) to solve for (atoms/cell), the given data yields 2.0 atoms/cell. This
corresponds to the packing in a BCC unit cell.

3. Since r = √3e/4 for BCC, assuming e = 430 pm yields r = 186 pm.
If the cell type is known, the atomic radius can be found directly from the density using

Eq. 16.3.
Example 16.4 Calculate the radius of an neon atom from the experimental density of
1.444 g/cc.
Assuming that noble gases are close-packed in a FCC lattice, the number of atoms per
unit cell is 4. From the data and Eq. (16.3), the lattice spacing may be deduced:

e = (
AM x atoms/cell

D x NA
)1/3
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e = (
20. 179 g/mol x 4 atoms/cell

1. 444 g/cm3 x 6. 022 × 1023 atoms/mol
)1/3 = 4. 528 × 10−8cm = 452. 8 pm

This is close to the experimental lattice spacing from x-ray analysis of 445.5 pm, con-
firming that Ne indeed does pack in the most efficient way.

Since r = √2e/4 for FCC and e = 452.8 pm, r = 160 pm.

16.2. Lattice Energy
The energy required to separate all the species (atoms, molecules or ions) at the lattice

sites in a crystal to infinity is called the crystal lattice energy (LE) of the crystal. In 1923
Max Born applied the first law of thermodynamics to obtain experimental values of crystal
lattice energies (LE). The direct heat of formation of a solid substance is equal to the heat of
an indirect path passing through separated particles (atoms or ions).

∆E1 ∆E2

∆E2
elements solid

gas

Fig. 16.1 Born Cycle

The arrows indicate the directions from initial to final states. Applying Eq. (10.4) to the
cycle leads to

∆Ecycle = ∆E1 + ∆E2 + ∆E3 = 0
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∆E1 can be obtained experimentally from sublimation energies, bond energies (and ionization
potentials and electron affinities for ionic crystals)

∆E1 = ∆Esublimation + BE + IP + EA

∆E3 is the negative of energy of formation of the crystal from the elements. It too can be
obtained experimentally (Chapter 13). ∆E2 is the negative of the lattice energy, which may
be deduced from the experimentally measured quantities. Thus, solving for the lattice energy
of a metal-nonmetal (MN) ionic crystal,

L̃E(MN) = ∆Ẽsublimation(M) + B̃E(N) + ĨP(M) + ẼA(N) − ∆Ẽf(MN) 16.5

Example 16.5 Determine the experimental lattice energy of NaCl.
The sublimation energy of sodium metal is 107 kJ/mol, the ionization energy of gaseous
sodium is 496 kJ/mol, the bond dissociation energy of gaseous dichlorine is 243 kJ/mol
of molecules (Table 8.1), or 243/2 kJ/mol of atoms, the electron affinity of gaseous
atomic chlorine is −348 kJ/mol, and the heat of formation of crystalline sodium chloride
is −411 kJ/mol. Putting this information into Eq. (16.9) gives

L̃E(NaCl) = ∆Ẽsublimation(Na) + B̃E(Cl2)/2 + ĨP(Na) + ẼA(Cl) − ∆Ẽf(NaCl)

L̃E(NaCl) = 107 + 243/2 + 496 − 348 + 411 = 788 kJ/mol

Lattice energy is a measure of the bonding strength in the solid and is closely related to
the interparticle binding energy. To make a connection between the energy of the entire lat-
tice and the individual interparticle bond energies, it is necessary to recognize that the parti-
cles are packed closely and interact with significantly with neighbors beyond the nearest
neighbors. The total interaction energy is the accumulation of all the interactions at the sites
of increasing distance from a given site. This generates a series (with alternating signs for
attractions to opposite charged nearest neighbors, repulsions for like charged next neighbors,
etc.) which converges because interaction energies fall off with increasing distance (Eq.
(8.5)). The total energy is proportional to an individual pair energy through the series, called
the Madelung constant. Madelung constants depend on the geometry of the lattice, but are
small numbers greater than unity. The connection between total lattice energy and bond
energy provides a way to calculate lattice energies from bond energies.

Example 16.6 Estimate the lattice energy of NaCl, given the lattice spacing from X-ray
analysis is 282 pm and the Madelung constant is 1.747558.
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Since NaCl is essentially ionic, we can assume at first that the total binding potential
energy in the lattice is due to the Coulombic attraction of the two ions at their lattice
separation (282 pm) multiplied by the Madelung constant for all neighboring interac-
tions. The total ionic attraction is then given by Coulomb’s Law, Eq. (4.9), with charge
q = 1 for both Na+ and Cl−, e equal to the charge on the electron,
1. 518919 × 10−14 (Jm)1/2, k equal to the Madelung constant, and Re equal to the ion sep-
aration.

LE =
q2e2k

Re

LE =
(1. 518919 × 10−14 (Jm)1/2)2(1. 747558)

282 pm
(
1012 pm

1 m
)(

6. 022 × 1023 molecules
1 mol

)(
1 kJ
103 J

) = 861 kJ/mol

A strictly ionic model ignores the repulsive contribution to the total potential energy. The Mie
potential (Eq. (8.5)) takes both attraction and repulsion into account, and should give a more
accurate estimate of the lattice energy. From the footnote to Eq (8.5), we see that

De =
B
Rn

e
(1 −

1
m

)

where LE = De, B is the Coulombic potential coefficient q2e2k, and n = 1. The 1 −
1
m

term

corrects the attractive potential for repulsion. Taking m = 12, a common value for repulsive
interactions, corrects the lattice energy for NaCl to 789 kJ/mol.

Note that the simple ionic model for solids requires knowledge only of the lattice spac-
ing to estimate the lattice energy. Lattice spacing can in turn be estimated by adding ionic
radii. For example, r(Na+) + r(Cl−) = 97 + 181 = 278 pm, close to the X-ray value of 282
pm.2 Hence, useful information about a large number of solids can be obtained from a rela-
tively small table of radii.

Table 16.1 illustrates trends in lattice energies due to size and charge. (Values are
experimental except the alkai oxides are estimated theoretically. Values may have uncertaini-
ties of a few kJ/mol.) The table is blocked into groups by charge which clearly show higher

2 The diatomic radii in Table 8.1, where Re(NaCl) = 236 pm, are for gas molecules, not solids.
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charge produces higher lattice binding energy. Within each block lattice energy decreases
with increasing size for both positive and negative ions.

Table 16.1 Lattice Energies (kJ/mol)

H− F− Cl− Br− I− OH− O2− CO2−
3 SO2−

4

Li+ 920 1036 853 807 757 1039 2799 2269 2142
Na+ 808 923 786 747 704 900 2841 2030 1938
K+ 714 821 715 682 649 804 2238 1858 1796
Rb+ 685 785 689 660 630 773 2163 1795 1748
Cs+ 694 740 659 631 604 724 _ 1702 1658
Be2+ 3295 3505 3020 2914 2800 3629 4293 _ _
Mg2+ 2706 2957 2526 2440 2327 3006 3795 3122 _
Ca2+ 2394 2630 2258 2176 2074 2645 3414 2810 2480
Sr2+ 2253 2492 2156 2075 1963 2483 3217 2688 2484
Ba2+ 2121 2352 2056 1985 1877 2239 3029 2554 2378
Cu2+ 4135 3327 2166
Al3+ 5924 5215 5492 5361 5218 5627 15916 _ _

Lattice energies can be used to determine experimental values of bonding energies since
they equal the sum of sublimation from crystal to gas molecules and dissociation of the gas
molecules.

LE(crystal) = ∆Esublimation(crystal) + ∆Ebond(molecule) (16.6)

Example 16.7 Estimate the dissociation energy of gaseous NaCl to its ions.
We will apply Eq. (16.6), using the lattice energy obtained from Example 16.4 and the
experimental value of the sublimation energy of NaCl, 234 kJ/mol.

∆Ebond(molecule) = LE(crystal) − ∆Esublimation(crystal) = 788 − 234 = 554 kJ/mol

Another estimate adds to the value of the bond dissociation energy (to neutral atoms) in
Table 8.1 the sum of the ionization potential of Na and the electron affinity of Cl, 412 +
496 − 348 = 560 kJ/mol.
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Summary
The solid state is dominated by order, the gas state is dominated by chaos. Each of

these extreme conditions can be put to advantage in developing practical models to describe
the behavior of collections of molecules. In solids, the molecules are relatively fixed and
solid geometry may be employed to determine crystal structures, atomic radii and packing
efficiencies. Simple bonding models provide semiquantitative values for the properties of
solids.
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SOLID STATE EXERCISES

1. Describe the structure of glass, SiO2.
2. Find the size of an argon atom from the density of the solid, 1.65 g/cc.
3. Determine the lattice energy of LiF from the sublimation energy of lithium metal,

158 kJ/mol, the ionization energy of gaseous lithium, 520 kJ/mol, the bond dissoci-
ation energy of gaseous difluorine, 159 kJ/mol of molecules, the electron affinity of
gaseous atomic fluorine, −333 kJ/mol, and the heat of formation of crystalline LiF,
−614 kJ/mol.

4. Estimate the lattice energy of LiF, giv en the ionic radii r(Li+) = 68 pm and r(F−) =
133 pm.

SOLID STATE EXERCISE HINTS

1. Crystalline quartz and amorphous glass are two known forms of silica. The radius
of Si = 41 pm, that of O = 140 pm.

2. Ar is close packed.
3. Follow Example 16.4.
4. Assume m = 12.


