
Chapter 18. Chemical Kinetics

18.1. The Kinetic-Molecular Theory Paradox
The two grand questions of chemical reactions are where are the reactants headed, and

how fast are they getting there? Where the reactants are headed is the subject of chemical
thermodynamics. In this chapter we will investigate how fast chemical reactions occur, the
subject of chemical kinetics, or chemical rates. Since, as we shall see, chemical kinetics
has a firm basis in the kinetic-molecular theory, dev eloped in great detail during the last half
of the Nineteenth Century, principally by J. Clerk Maxwell and Ludwig Boltzmann, most of
the analysis is quantitative in nature. Consequentially, most of the algorithms of this unit will
involve mathematical equations and numerical analysis.

One of the disturbing features of Nineteenth Century kinetic-molecular theory was the
prediction that chemical reactions should take place almost instantaneously! This result,
known as the ‘‘paradox of kinetic molecular theory’’, could not resolve the known frequency
of molecular collisions with measured rates of chemical reactions, assumed to be the result of
such molecular encounters. Nitrogen and oxygen molecules under room conditions travel on
av erage about 300 m/s and experience about 10 billion collisions per second (see Example
15.5). On this basis, the average lifetime of a nitrogen molecule should thus be only one ten-
billionth of a second in the atmosphere! Yet we know that (fortunately for us) the atmo-
sphere does not spontaneously convert itself into nitrogen oxides, at least with any haste
under ordinary conditions. On the other hand, elemental hydrogen released into the atmo-
sphere doesn’t last very long, and can be converted into water with explosive speed.

Why does oxygen tolerate the presence of nitrogen, but not hydrogen? Since chemical
reactions result from the breaking of reactant-molecule bonds and the formation of new
bonds in the products, a clue comes from considering the chemical bonding of the molecules
involved in the reaction. Recall that diatomic oxygen has unpaired electrons (is paramag-
netic) contributing to its electronegativity and chemical reactivity. (See Example 12.12 in
Section 12.10 on Molecular Orbital Bond Theory.) The encounter between an oxygen
molecule and a hydrogen molecule can be therefore productive in producing the more stable
bonding arrangement found in water. Dinitrogen, on the other hand, has filled octets and a
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triple bond, rendering it fairly inert to chemical attack. A second clue comes from the obser-
vation that under the right conditions nitrogen does burn rapidly in the atmosphere. Such
conditions are found in lightning thunder storms, and inside internal combustion engines
(where the principle chemical process is supposed to be combustion of petroleum fuel). What
do these conditions have in common? Both involve the availability of intense energy, suffi-
cient to disrupt the strong chemical bond of dinitrogen. On the basis of these considerations,
it should be easy to understand why every encounter between molecules may not be effective
in producing products.

18.2. The Collision Rate Model
The key to reconciling observed rates of chemical reactions with the kinetic-molecular

prediction that molecules experience on average about 10 billion collisions per second, is the
phrase ‘‘on average’’; average molecular collisions do not have sufficient energy to produce a
chemical reaction. However, the kinetic-molecular theory is not limited to describing aver-
age behavior only. The complete theory recognizes that even if all the molecules in a system
started out with the same speed, in a very short time random collisions would result in some
molecules moving slower than the average, and some faster, resulting in a distribution of
molecular speeds, the Maxwell-Boltzmann distribution. Since kinetic energy is related to
speed, a certain fraction of the molecules will have the necessary speed to bring sufficient
kinetic energy to the collision to cause a chemical reaction. This amount of energy is called
the activation energy of the reaction, which is of the order of magnitude of chemical bond
energies, characteristic of the reaction taking place. The kinetic-molecular paradox was
resolved when the fraction of molecules having kinetic energy at least equal to the activation
energy was calculated. A typical value for the fraction of neutral molecules would be 10−18.1
In addition, molecules must approach each other in the correct orientation to transfer the
kinetic energy into the proper bond to cause a chemical reaction to occur. The fundamental
notion of chemical kinetics is: chemical reactions occur between molecules undergoing effec-
tive collisions (sufficient kinetic energy and proper orientation). In quantitative terms the
reaction rate (r) = collision frequency (Z) times the fraction with favorable energy (fEa

) times

1 This corresponds to Boltzmann distribution factor of e
−

Ea

RT , with Ea = 100 kJ/mol at T = 300 K (Section
13.9). Ions might be attractive, thus lowering the value of Ea and raising the fraction having sufficient energy to
react.
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the fraction with favorable orientation (forientation)

r = Z × fEa
× forientation (18.1)

Considering molecules to be approximate spheres, a collision occurs when molecules pass by
each other close enough to touch. The appropriate model is a 2-body problem (Section 5.4)
consisting of an effective molecule with reduced mass (µAB)of the two interacting molecules
A and B moving with relative velocity vAB. As this molecule travels it sweeps through
molecules colliding with those within distance rA + rB, where rA and rB are the radii of the
molecules. In a giv en time t a disc of effective target area

AAB = 4π (rA + rB)2 (18.2)

sweeps out a cylinder of length LAB = vAB/t.2 The collision frequency Z is equal to the num-
ber of collisions per unit time and depends on the concentrations of projectile (say, A) and
target molecules (say, B):

Z =
number of collisions

time
=

number of molecules
volume

×
volume

time
= CACB ×

AABLAB

t
= CACBAABvAB(18.3)

The kinetic molecular theory provides a formula for the mean velocity of molecules:3

vAB = √ RT
2π µAB

(18.4)

where µAB is the reduced mass of A and B. For n-ary collisions between a molecules of type
A, b molecules of type B, representing the chemical reaction aA + bB + cC ..., the total num-
ber of collisions is proportional to the concentration of molecules of each type colliding. The
total collision frequency becomes

Z = 4π (rA + rb)2 √ RT
2π µABC

. . . Ca
ACb

B
. . . (18.5)

where Ci is the concentration of species i.

2 Useful analogies are collecting rain in a bucket or running mindlessly through a crowd with the ability to
change direction only on bumping into someone else.

3 This velocity is in one direction and differs somewhat from that for three-dimensional motion given in Sec-
tion 15.6.
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The Boltzmann distribution Eq. (13.23) gives the number of molecules with sufficient
energy to rearrange bonds. All molecules with at least that energy will contribute to fEa

f(E ≥ Ea) = e−Ea/kT (18.6)

The total reaction rate expression is

r = 4π (rA + rb)2 √ RT
2π µABC

. . . × forientation × e−Ea/kTCa
ACb

B
. . . (18.7)

which has the general form

r = A(T) e−Ea/kTCa
ACb

B
. . . ≡ k(T)Ca

ACb
B

. . . (18. 8)

where k is called the (specific) rate coefficient4 The temperature dependence of the rate coef-
ficient is expressed in the Arrhenius equation

k(T) = A(T) e−Ea/kT (18. 9)

The preexponential factor is the product of the collision frequency and the orientation factor:

A(T) = 4π (rA + rb)2 √ RT
2π µABC

. . . × forientation (18.10)

The preexponential factor is seen to have some temperature dependence, but it is insignificant
compared to the exponential term in Eq. (18.9).

4 Sometimes called the rate ‘‘constant’’ because it plays the role of a proportionality constant between the
rate and the concentration terms. The term constant is unfortunate however, as k  clearly is a function of the
temperature.
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18.3. Rate Laws
Consider the general reaction

aA + bB + cC + . . . → Products (18.11)

It should be apparent that increasing the concentration of A molecules will increase the num-
ber of collisions they experience, and also increase the number of effective collisions to pro-
duce reaction as well. The same holds for the other reactant molecules. Thus rates of reac-
tion in general depend on concentrations of reactants. From the effective collision model it is
seen that the rate of reaction should depend on the temperature too (which determines the
kinetic energy distribution). Rates of reaction thus depend on concentrations of reactants and
temperature; these are referred to as rate variables. Howev er, reactions do not have to pro-
ceed in a single collision encounter. Multiple-step processes affect the observed concentra-
tion dependence of rates. Determining the mathematical dependence of rate on concentra-
tions and temperature is the basic task of experimental chemical kinetics.

Experimentally, it is found that rates of reaction have rather simple concentration depen-
dencies, specifically, rates of reactions at a given temperature are proportional to powers of
reactant concentrations. The particular set of powers depend on the reaction, and specifying
the values determines the rate law (or rate equation) for the reaction. The rate law for the
general reaction aA + bB + cC + ... → Products, is expressed mathematically in the form:

r(
→
C, T) = k(T)CA

nACB
nBCC

nC . . . (18. 12a)

r(
→
C, T) = k(T)

reactants

Π Ci
ni (18. 12b)

where Ci is the concentration of the i-th reactant.5 By convention the units of concentration

are Ci = Mi ≡ [i] (molarity) for solutions and Ci = Pi =
MiRT

V
(partial pressure) for gases.

Each of the powers of concentration ni is called the order of reaction with respect to the
reactant i. The sum of the powers (orders) is called the overall or total order of the

5 Rate laws ordinarily (but not exclusively) involve only reactants.
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reaction. The proportionality factor, k, is the rate coefficient of the reaction. Its value
depends on the temperature and two parameters, A and Ea (Eq. (18.8) above), but at a given
temperature it remains constant.

18.4. Reaction Mechanisms
Clearly the collision rate is proportional to the number of molecules of each reactant,

and since the number in a given volume is the concentration, the rate of reaction will also be
proportional to the concentration of each reactant. This generates an observed overall, or
total (mixed) order of two. In fact, most gas-phase collisions are bimolecular because the
probability of three or more molecules finding themselves at the same place at the same time
is quite small.6 On the other hand, many chemical reactions involve sev eral species with
coefficients greater than one in the balanced reaction. Such processes are most likely to pro-
ceed in stages, or steps involving a series of elementary processes, such as bimolecular col-
lisions leading to products. Along the way, temporary intermediate species, or substances
may be produced in one of the steps, only to be consumed in another. Although the sum of
the steps must add up to the overall reaction equation, these intermediates cancel out and
therefore don’t appear in the total balanced reaction.7 The series of elementary reactions
leading from reactants to products is called the mechanism of the reaction. While it may not
be possible to deduce a definitive mechanism from an observed rate law, the opposite is a
straightforward process, that is, deriving the rate law from a given mechanism. The funda-
mental rule of mechanisms is that in each elementary step of a reaction the orders (powers of
concentration) equal the stoichiometric coefficients of that step. It logically follows that
reactions for which the orders equal the stoichiometric coefficients may proceed in one ele-
mentary step; reactions for which the orders do not equal the stoichiometric coefficients
must proceed by way of a mechanism involving a sequence of more than one elementary
step. The qualification for the case where the orders equal the stoichiometric coefficients
derives from the fact that it is possible for some multi-step mechanism to generate the same

6 Have you ever encountered an acquaintance in a strange place? How many times have you encountered
two other acquaintances (who were unacquainted themselves) in the same place?

7 However, fleeting intermediates may be (and have been) detected with sufficiently sensitive equipment. Es-
tablishing their existence provides experimental evidence in support of a suggested mechanism.
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rate law as a one-step mechanism.8

Generating a mechanism to account for all the information known about a given chemi-
cal reaction may be an uncertain process at best; more evidence may arrive at some future
time precipitating a reevaluation. Nevertheless, mechanisms are the frosting on the cake of
kinetics. In deducing the steps in a mechanism, much speculation can be (and is) made about
the way the molecules interact to break and form bonds by chemical detectives. The tools of
the trade here are based on experience and guesswork, aided by chemical intuition about
bond strengths, molecular vibrations and rotations. Reasoning by analogy serves the same
purpose here as it does in reading the periodic table.9

Due to the complexity of the subject of chemical mechanisms, introductory treatments
are usually limited to the sure subject of analysis of a given mechanism. In any valid pro-
posed mechanism, the sum of the steps must equal the overall reaction equation. Each step in
a proposed mechanism is assumed to be a simple collision process, for which the orders of
reaction equal the stoichiometric coefficients of the step.10 In the process, a rate-limiting
slowest step is identified, which restricts the rates of all the steps; the observed rate should
equal the rate of the rate-limiting step. If the rate-limiting slow step is not the first step in the
mechanism, intermediate species may be involved. They must be eliminated in order to com-
pare the rate law derived from the mechanism with the experimentally derived rate law
(which is expressed solely in terms of reactant concentrations). A method for eliminating
intermediates mathematically is to assume that all the elementary processes (steps) preceding
the slow, rate-limiting step are re versible, and achieve equilibrium between their reactants

8 Despite the arguments given above from the kinetic-molecular collision model for reactions, it may be
speculated that there are in fact no reactions which proceed by a simple bimolecular single-step mechanism.
The classic textbook example of the reaction between dihydrogen and diiodine, for which the rate law was de-
termined in the Nineteenth Century to be mixed second order, was shown by John Sullivan in 1967 to proceed
by a multistep process.

A modern theoretical and experimental view sees reactions as more continuous processes, with the bonds
extending and compressing on very short (but experimentally accessible) time scales uniformly. In this sense,
the elementary chemical ‘‘act’’ is not so discrete as classical mechanistic models describe it to be.

9 Time-dependent quantum mechanical calculations simulate reactions in a definitive manner, but remain
currently beyond reach for all but the simplest systems.

10 Bimolecular collisions which produce order two, and termolecular which produce order three are the most
common cases.
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and products. Equilibrium implies that the forward and backward process proceed at equal
rates.

rbackward = rforward (18.13)

Since each elementary step assumes an elementary collision encounter, the rate orders equal
the stoichiometric coefficients in the elementary step. Thus for aA + bB + ... = pP + qQ + ...,
where one of the species is the intermediate to be eliminated:

kbackward[P]p[Q]q . . . = kforward[A]a[B]b . . . (18.14)

This provides an algebraic relationship which may be used to solve for the intermediate con-
centration, and subsequently eliminate from the slow step rate expression. There will be one
equation of the form (18.14) for each intermediate in the mechanism. In this way, any of the
intermediates can be eliminated from the rate law expression for the rate-determining step,
and the rate law can be compared with experiment.
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Mechanism to Rate Law Algorithm

Purpose: To determine the rate law (orders of reactants) from a given mechanism.
Procedure:

1. Assume each step is elementary in the sense that the orders of reactants
equal the stoichiometric coefficients in the balanced step.

2. If not given, assume one of the steps, called the rate-limiting step, to be sig-
nificantly slower than the others. The rate of the total reaction is then equal
to the rate of the rate-limiting step.

3. If the rate-limiting slow step is the first step in the mechanism (or only step
in a one-step mechanism), the corresponding rate law for the slow step
should match the observed rate law.
If the rate-limiting slow step is not the first step in the mechanism, it may in-
volve intermediate species. They must be eliminated by expressing their con-
centrations in terms of reactant concentrations to compare the rate law for
the mechanism with that derived experimentally.
a) For each non-limiting elementary step involving an intermediate of the

form aA + bB + . . . = pP + qQ + . . .,

kbackward[P]p[Q]q . . . = kforward[A]a[B]b . . . (18.15)

b) Eliminate intermediates from the rate law by solving for them from equi-
librium expressions, and substituting for them in the rate-limiting rate
law.

Example 18.1 Deduce the rate law for the following proposed mechanism and compare
with experiment:

NO2 + NO2
k1
→ NO3 + NO (slow)

NO3 + CO k2
→ NO2 + CO2 (fast)
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1. Note first of all that the two steps of the mechanism sum algebraically to the overall
chemical reaction. Thus intermediates are eliminated in overall reactions.

2. The rate-limiting step is given as the first step in the mechanism.
3. The rate law for the first step can be deduced from the balanced reaction for that

step:

r = k1[NO2]2

The predicted rate law for the reaction NO2 + CO → NO + CO2 is second order in
NO2 but independent of CO concentration (zero order in CO), which matches exper-
imental analysis.

Example 18.2 Ozone decomposes according to the reaction 2O3 → 3O2. Deduce the
rate law for the following proposed mechanism:

O3

k1

→
←
k−1

O2 + O (fast)

O + O3
k2
→ 2 O2 (slow)

1. Note first of all that the two steps of mechanism sum algebraically to the overall
chemical reaction. Thus intermediates are eliminated in the overall reactions.

2. The rate-limiting step is specified as the second step in the mechanism.
3. The rate law for the second step can be deduced from the balanced reaction for the

step:

r = k2[O][O3]

In this case, the slow step involves the intermediate [O], which must be eliminated
to compare the rate law with experiment.
a) Eq. (18.15) applied to the fast, reversible equilibrium of the first step gives:

k−1[O2][O] = k1[O3]

Rearranging to solve for [O], and substituting the result into rate-limiting step



Reaction Mechanisms 265

rate expression gives:

r = 


k2k1

k−1




[O3]2

[O2]

with a predicted rate law which is second order in ozone and minus one order

18.5. Empirical Rate Laws

To determine the parameters of a reaction a ‘‘divide and conquer’’ technique is
employed which reduces the rate equation to a series of equations in one unknown parameter
each and collects the results together to obtain the total solution. By holding the temperature
constant, k is constant and the powers (orders) can be obtained one at a time. Taking the
orders (powers) as unknowns, Eq. (18.12) is just one equation in several unknowns. To con-
vert it to one equation in one unknown, take all the concentrations but one to be constant.11

The equation to analyze, then, is of the form

r = k′Cn (18.16)

where C stands for the concentration of the reactant which is allowed to change, and k′
equals k times the constant concentrations of all the other reactants raised to their powers,
resulting in a new constant.12 Knowing the orders of reaction, the temperature can be varied
and the temperature dependence parameters can be obtained. In this way, all the parameters
can be found and the rate law is known.

11 This can be realized experimentally by starting with reactant concentrations that are all large with respect
to the one being varied. Although all reactant concentrations change as the reaction proceeds, the only one
which changes significantly is the one with relatively small concentration.

12 There are many equations and graphs associated with kinetics, because it is a quantitative science. Stu-
dents more comfortable with the alphabet of algebra (x and y) than with other symbols may find it useful to
translate the parameters and variables into ‘‘algabrize’’. One must at least distinguish dependent variables from
independent variables, and independent variables from parameters. In Eq. (18.16), c is the independent variable
upon which r depends; k′ and n are parameters, effectively constant for a given system. Translated to algabrize,
the equation reads y = axb.
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There are several methods which may be used to determine n from Eq. (18.16), some
graphical, some numerical. Some methods are limited to integer values of n, but not all reac-
tions have integral orders. Here we will present a general algebraic method which works for
all orders n. It does require knowledge of rates of reaction for given concentrations. Ordi-
narily in rate experiments one measures concentration as a function of time. It is necessary to
derive rates from concentrations to use the algebraic method for determining orders. By defi-
nition, the rate of reaction is

r = −
1
a

∆CA

∆t
= −

1
b

∆CB

∆t
= −

1
c

∆CC

∆t
= . . . = +

1
p

∆CP

∆t
= +

1
q

∆CQ

∆t
= . . . (18. 17)

where t is time and ∆ means change, so that
∆CA

∆t
is the change in concentration A during a

given change in time, and similarly for the other participants (P and Q are typical products).
The stoichiometric quotients a,b, ... (from the balanced overall reaction) normalize the con-
centration changes so that the rate is independent of which reactant or product is used to mea-
sure it. The plus and minus signs insure that the rate is always a positive quantity, since reac-
tants decrease and products increase with time. Rates can be determined experimentally by
following a conveniently measured concentration as a function of time. The slope of a plot of
concentration vs time (multiplied by the proper sign and divided by the proper stoichiometric
coefficient) at a given concentration yields the rate for the given concentration. (See Section
3.2 on Functions and Graphs.)

Suppose the rate of reaction r is known for two values of the concentration C. Eq. 18.17
can be applied to the ratio of the rates to eliminate k, yielding a single equation in one
unknown, the order of reaction n. This reasoning is the basis for the following strategy to
determine the parameters of a reaction, order n and rate coefficient k:
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Empirical Rate Law Algorithm

Purpose: To determine the rate law, orders (powers of concentration) and proportion-
ality (rate) coefficient, for a reaction from rate data.
Procedure:

1. Vary the concentration, C, of each reactant, R, separately:
A. For a set of reactant concentrations {C1, C2, C3, etc}, determine a set of

corresponding rates of reaction {r1, r2, r3, etc} from slopes of plots of
concentrations as a function of time (Eq. (18.16)).

B. For N pairs of subscripts (i,j) in the set {(r1, C1), (r2, C2), (r3, C3), . . .},
calculate values of ni,j from the following equation (derived from Eq.
(18.17))13:

ni,j =
log 


rj/ri




log 

Cj/Ci




(18. 18)

The order of reaction with respect to R is the average of the N ni,j values:

n = Σ ni,j

N
(18. 19)

2. Given the order of reaction for each reactant, for N pairs of values with sub-
script i in the set {(r1, C1), (r2, C2), (r3, C3), . . .}, calculate a value of ki from
the following equation (derived from Eq. (18.15)):

ki =
ri

CA
nA
i CB

nB
i CC

nC
i

. . . (18. 20)

The average rate coefficient is then the average of the N ki values:

k = Σ ki

N
(18. 21)
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Note that Eq. (18.18) gives simple results for simple cases. E.g. if the rate increases
fourfold when the concentration doubles, r2 = 4r1 and C2 = 2C1, so

n =
log(4)
log(2)

=
log(22)
log(2)

=
2 log(2)
log(2)

= 2

For practical reasons, perhaps only a few rate measurements may be taken, perhaps the
minimum number to determine the rate law (one pair of rates for each pair of concentrations).
If the experiments are very precise this may be sufficient, but generally more data yields
more accurate results.

Example 18.3 Determine the rate law for the reaction 2N2O5 → 4NO2 + O2 from the
following data:

Time (min) PN2O5
(torr)

20 185.2
40 105.4
60 58.6
80 33.1

100 18.6
160 2.8

(Because the reactants are gases, concentration is expressed in pressure units: P =
(n/V)RT = MRT.)

13 It doesn’t matter which base of logarithms are used, because their ‘‘conversion factor’’ (2.302585093 in
the case of ln to log) cancels in the ratio expression.



Empirical Rate Laws 269

1.A. Note there is only one reactant, which simplifies the process since only one order
needs to be determined. The table contains the data for step 1.A). In order to com-
plete step 1, we need to derive rates for each concentration. Accordingly, we esti-
mate rates as differences for adjacent pairs of entries:14

i Time (min) Pi (torr) ri = − 1/2∆Pi/∆t
0 20 185.2
1 40 105.4 2.00
2 60 58.6 1.17
3 80 33.1 0.638
4 100 18.6 0.363

14 Note that rate are slopes connecting two points. If the line is curved, which point should the rate be associ-
ated with? We hav e chosen to associate it with the second point in this example. Perhaps it would be more hon-
est to associate each rate with the average time and concentration for each pair of times and concentrations from
which the rate was obtained.
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1.B. From each pair of rates Eq. (18.18) yields:

n1,2 =
log(0. 585)
log(0. 569)

= 0. 951

n1,3 =
log(0. 319)
log(0. 314)

= 0. 986

n1,4 =
log(0. 182)
log(0. 176)

= 0. 984

n2,3 =
log(0. 545)
log(0. 565)

= 1. 062

n2,4 =
log(0. 310)
log(0. 317)

= 1. 020

n3,4 =
log(0. 569)
log(0. 562)

= 0. 978

The average of the six values of n according to Eq. (18.19) is 0.998. Given experimen-
tal error, it may be assumed that the reaction is first order (n = 1): r = kPN2O5

. This illus-
trates that the order of reaction does not necessarily equal the stoichiometric coefficient
of the balanced overall reaction (2 in this example).15

15 Until 1925, the only known gaseous first-order reaction was the decomposition of nitrogen pentoxide.
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2. The rate coefficient may now be calculated for each rate value, according to Eq. (18.20):

k1 =
2. 00
105. 4

= 0. 0190 torrs−1

k2 =
1. 17
58. 6

= 0. 0200 torrs−1

k3 =
0. 638
33. 1

= 0. 0193 torrs−1

k4 =
0. 363
18. 6

= 0. 0195 torrs−1

The average value for k according to Eq. (18.21) is 0.0195 s−1, so the rate law is

r = 0. 0195PN2O5

Example 18.4 Determine the rate law for the reaction 2NO + 2H2 → N2 + 2H2O from
the following kinetic data:

Exp PH2
(torr) PNO (torr) r (torr/sec)

1 400 359 9.0
2 400 300 6.2
3 400 152 1.5
4 289 400 9.6
5 205 400 6.6
6 147 400 4.7

Step 1.A has already been done, first holding PH2
constant at 400 torr and deter-

mining the rate for varying PNO, then holding PNO constant at 400 torr and determining
the rate for varying PH2

.
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1.B. For each pair of experiments, Eq. (18.18) yields:

n1,2 =
log(0. 689)
log(0. 836)

= 2. 08

n1,3 =
log(0. 167)
log(0. 423)

= 2. 08

n2,3 =
log(0. 242)
log(0. 507)

= 2. 09

n4,5 =
log(0. 688)
log(0. 709)

= 1. 09

n4,6 =
log(0. 490)
log(0. 509)

= 1. 06

n5,6 =
log(0. 712)
log(0. 717)

= 1. 02

The orders of reaction are very close to integer second order in NO and integer first order in
H2, so the rate law is of the form:

r = k[NO]2[H2]

This again illustrates that the orders of reaction does not necessarily equal the stoichiometric
coefficients of the balanced overall reaction.
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2. Given the orders of the reaction, Eq. (18.20) yields for each experiment:

k1 =
9. 0

3592 × 400
= 1. 74 × 10−7 torr−2s−1

k2 =
6. 2

3002 × 400
= 1. 72 × 10−7 torr−2s−1

k3 =
1. 5

1522 × 400
= 1. 62 × 10−7 torr−2s−1

k4 =
9. 6

4002 × 289
= 2. 07 × 10−7 torr−2s−1

k5 =
6. 6

4002 × 205
= 2. 01 × 10−7 torr−2s−1

k6 =
4. 7

4002 × 147
= 1. 99 × 10−7 torr−2s−1

The average rate coefficient for this reaction is k = 1. 86 × 10−7 torr−2s−1, and the rate law is

r = 1. 86 × 10−7[NO]2[H2]

More consistent values for ki should be obtained if the calculated orders of 2.08 and 1.06 are
used instead of the rounded-off integer values 2 and 1 (try it!).

18.6. Temperature Dependence of Rates
Since the rate of reaction depends on effective collisions, it is reasonable to expect that

as the temperature increases, the kinetic energy increases, and the rate of reaction increases
as well. This agrees with experimental facts: rates of reaction always increase with increas-
ing temperature. Exactly how much a rate increases for a given temperature increase
depends on the reaction, but again the functional relationship between rate and temperature is
relatively simple and of universal form for all rates. The temperature dependence enters into
the rate coefficient k, since the concentration dependence is already explicitly accounted for
in the rate law. The earliest attempts to derive the temperature effect on rates led to a second
paradox. According to the kinetic-molecular theory, the number of collisions between
molecules increases by about 2 percent for a ten-degree increase in temperature at ordinary
temperatures. But many chemical rates were observed to increase much more, typically by
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an hundred percent for a ten-degree change in temperature. As discussed in the Section 1,
the paradox was resolved by recognizing that the molecules that react are not average, but
have exceptional high energies, at the tail end of the Maxwell-Boltzmann distribution. The
form of the temperature dependence of rate coefficients based on these consideration was first
derived by Svante Arrhenius in 1889, and bears his name:16

k(T) = A(T) e−
Ea

RT (18. 22)

The parameter A(T) represents the collision frequency of reactants,17 and Ea represents the
energy of the ‘‘activation’’ barrier that reactants must surmount to form products. R is the
molar gas constant in energy units, equal to 8.3145 J/mol-K. We will assume here that the
temperature dependence of A is negligible (it is revealed experimentally in curvature of
Arrhenius plots to be described below). The parameters A and Ea are unique to each reaction
and together characterize the temperature dependence of the rate of the reaction.

The Arrhenius equation can be transformed into linear form by taking the natural loga-
rithm, rendering it useful for experimental analysis in determining the parameters A and Ea:

ln(k) = ln(A) −
Ea

RT
(18.23)

A plot of ln(k) vs 1/T will thus be a straight line with slope = −Ea/R and intercept = ln(A).18

Since activation barriers are always positive, the negative slope indicates that k decreases
with 1/T, or increases with increasing T (the fundamental qualitative behavior of rates).
Application of the Arrhenius relation to pairs of rate coefficients leads to the following

16 y(x) = a e−b/x in algebrize. Arrhenius derived Eq. (18.22) from the kinetic-molecular theory by summing
up the total number of molecules in the Maxwell-Boltzmann distribution (Section 13.9) which have kinetic en-
ergy equal to the activation energy or greater. We will not show the derivation here; it is given in advanced
courses.

17 Perhaps times a steric factor to reflect the fraction of the time the collision occurs with the right orienta-
tion to disrupt the right bonds. We will assume this factor is unity.

18 Identifying ln(k) with y, 1/T with x, m with −Ea/R and ln(A) with b yields the familiar form y = b + mx.
Refer to Section 3.3 on Functions and Graphs.
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method for determining the parameters A and Ea:

Arrhenius Parameter Algorithm

Purpose: To determine the temperature dependence of rate coefficients (the Arrhenius
parameters A and Ea).
Procedure:

1. From the Empirical Rate Law Algorithm, obtain values of the rate coeffi-
cient, k, for at least two temperatures.

2. For each pair of temperatures, solve two versions of Eq. (18.23) for the two
unknowns Ea and A:

Ea = 


T1T2

T2 − T1




R ln 

kT2

/kT1




(18.24)

A = kT1
e

Ea

RT1 = kT2
e

Ea

RT2 (18.25)

If there are values at more than two temperatures, obtain the best values of
Ea and A by averaging.
Alternatively, if there are values at more than two temperatures, make an Ar-
rhenius plot of ln(k) vs 1/T, based on Eq. (18.22), and determine the best
slope and intercept from the data. Ea = − R × slope, and ln(A) = intercept.

Example 18.5 Determine the activation energy for the decomposition of nitrogen pen-
toxide from the following data:

Experiment Temperature (K) k (min−1)
1 273 0.0000472
2 298 0.00203
3 338 0.292
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1. The rate law analysis was carried out in Example 18.3 for one temperature. Once
the order of reaction is known, it remains only to find k for a number (at least one)
of other temperatures. This is how the data in the table was generated.

2. Applying Eq. (18.25) to the three pairs of data in the table:

Ea(1, 2) = 


273 × 298
298 − 273




× 8. 3145 × ln(0. 00203/0. 0000472) = 101, 765 J/mol

Ea(1, 3) = 


273 × 338
338 − 273




× 8. 3145 × ln(0. 292/0. 0000472) = 103, 038 J/mol

Ea(2, 3) = 


298 × 338
338 − 298




× 8. 3145 × ln(0. 292/0. 00203) = 104, 023 J/mol

To the proper number of significant figures, the average activation energy for the
decomposition of nitrogen pentoxide is 103 kJ.

If one prefers an automated method, the Example 3.3 of Section 3.12 determines
the least-squares regression slope to be −12399, from which one obtains an activation
energy of −12399 x 8.3145/1000 = 103.1 kJ.

Summary
Chemical reactions occur through molecular collisions which are effective in surmount-

ing an activation energy barrier. Multistep processes can be studied by kinetics analysis to
identify the elementary steps of the mechanism.
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CHEMICAL KINETICS EXERCISES

1. Determine the activation energy for the decomposition of nitrogen pentoxide from
an Arrhenius plot.

2. Try to guess a reasonable mechanism which accounts for the observed rate law of
nitrogen pentoxide. Derive the rate law for the proposed mechanism and compare
with the experimentally derived rate law in Example 18.3.

3. What are the units of a third order rate coefficient?

CHEMICAL KINETICS EXERCISE HINTS

1. See Example 18.5 for the data.
2. Reasonable mechanisms should involve bimolecular elementary processes, not

‘‘unimolecular’’ ‘‘collisions’’.
3. Solve the appropriate rate law for k.


