
Chapter 19. Chemical Equilibria

19.1. Dynamic Equilibrium
Tw o fundamental questions to address for any chemical reaction are where is the reac-

tion going and how fast is it getting there? Chemical reactions go to a state of equilibrium,
where there is no further detectable change in amounts of the participants in the reaction. As
we shall see, although the amounts of substances participating in a reaction follow the laws
of stoichiometry, it is not necessary, and indeed is usually not the case, that the maximum
amount of product will be produced, even if there is no limiting reagent. Where reactions are
going is the subject of the present chapter. How fast reactants get to products is the subject of
chemical kinetics (Chapter 18).

The notion of equilibrium connotes stasis, lack of motion, lack of change. On the
macroscopic scale this means that ordinary measuring apparatus can no longer detect any
change, if one occurred at all. The quantities of interest which change as a chemical reaction
approaches equilibrium are the amounts of substances, usually measured in terms of grams or
mols for gases, liquids or solids, and concentrations for solutions. Concentration is usually
measured in molarity for for liquid solutions and partial pressures for gaseous solutions.

The fundamental notion of chemical equilibrium is that all chemical reactions are
re versible, to some extent. This means that after a reaction has had time to equilibrate, there
will always be some remaining reactants as well as products produced. To be sure, the
amounts of reactants or products left may so small that the reaction will be observed to ‘‘go
to completion’’, or perhaps to not ‘‘go’’ at all, but in many reactions of practical interest, sig-
nificant amounts of both products and reactants remain after a very long time.

The equations which govern chemical equilibria are relatively simple, involving concen-
trations to powers and exponential functions of temperature. These functional forms are sim-
ilar to those found in the study of kinetics and suggest an association between equilibrium
and kinetics. This association is called microscopic reversibility, which says that although
there may not be any observed changes occurring on the macroscopic scale, on the micro-
scopic (molecular) scale, much is happening indeed.
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Consider a jar containing water. If left open, the water eventually evaporates. It takes
some time to evaporate (at ordinary temperatures) because liquid molecules must surmount
the bonding barrier at the surface of the liquid before they can vaporize. Now consider what
appears to happen when a lid is placed on the jar. If evacuated above the liquid initially,
some liquid vaporizes as evidenced by a careful measurement of the height of the surface.
Eventually, the surface ceases to descend, signaling the onset of an equilibrium state. How-
ev er, if the molecules were visible, we would find that at the surface molecules are leaving
and returning at rapid rates. The reason the surface level doesn’t change is due to the fact
that the rate of condensation has become equal to the rate of evaporation. This state of
apparent macroscopic calm with microscopic frenzy is referred to as dynamic equilibrium1

Dynamic equilibrium forms a bridge between equilibrium and kinetics. For a general
reversible reaction,

aA + bB + . . . = pP + qQ + . . . ,  (19.1)

When the backward and forward rates become equal, the concentrations reach steady (con-
stant) state values. From the kinetic rate law, Eq. (8.12).2
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1 One way to demonstrate dynamic equilibrium directly is to inject some liquid tritiated water (water con-
taining the hydrogen isotope of mass three). Since tritium is radioactive, its presence may be detected with a ra-
dioactive sensitive counter. No matter which phase is tritiated, very soon, radioactivity is detected in both phas-
es, changing in intensity until it becomes equal in abundance (fraction) in both phases.

2 Although derived for a one-step process, the result is valid for a multi-step process as shown below.
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where square brackets are an alternative notation denoting concentrations which prove con-
venient when additional subscripts are used to express concentration conditions. This equa-
tion is called the law of mass action. The units of K depend on the units chosen for concen-
tration. By convention molarities are used for solutions and atmospheres for gases, which are
proportional to molarity for ideal gases:

p = (
n
V

)RT = MRT

Pure liquids and solids are not dissolved in anything and have no concentration. However
their densities have the dimensions of concentration. Since densities are constant, their val-
ues may be combined with the other constants in the equation, effectively (but not actually)
rendering their concentrations equal to unity. The convention is that K includes any such
constants. Subscripts on K are used to provide additional information, such as units (KC for
molarity, Kp for pressure), class of reaction (Ki for ionization, Ksp for solubility product), etc.
In practice, the units on K (which can be mixed and of fractional power) are usually not
included with the numerical value, and are inferred from the reaction, which should always
be given (including phases) to avoid any ambiguity in K.

Unlike the general rate law equation, in the mass action equation the powers of concen-
trations are always identical to the stoichiometric coefficients in the balanced chemical equa-
tion. This suggests that equilibrium is independent of reaction mechanism, which follows
qualitatively from the idea that products must return to reactants over the same path as reac-
tants pursued to products. This argument is made plausible by considering what could hap-
pen if alternate paths could be used to communicate between reactants and products. In such
a case it would be possible to tap the cycle to generate energy without doing any work,
thereby producing a perpetual motion machine, violating the laws of thermodynamics.

Note that, according to the definition of K, doubling a reaction generates a correspond-
ing K that is squared, and in general multiplying a reaction by a factor n raises the corre-
sponding K to the nth power.



272 Chapter 19 Chemical Equilibria

R → nR => K → Kn (19. 3)

As a special case, re versing a reaction (multiplying the reaction equation by minus one)
causes K to be inverted (1/K).

K is a positive number which indicates what the ratio of products to reactants is at equi-
librium. It is a proportionality constant between reactant concentrations and product concen-
trations; roughly CP = KCR. When K < 1, then the product of the reactant concentrations
(raised to powers) is less than the product of the product concentrations (raised to powers),
and the reaction is said to ‘‘lie to the left’’, or ‘‘favor reactants’’. Conversely, when K > 1, the
opposite situation exists, and the reaction is said to ‘‘lie to the right’’, or ‘‘favor products’’. K
= 1 indicates comparable amounts of reactants and products at equilibrium. The following
table summarizes the general situation.

Table 19.1. Magnitude of the Equilibrium Constant

K P/R Situation
K < 1  P < R Reactants dominate (lies left)
K = 1  P = R Reactants ≈ Products (balanced)
K > 1  P > R Products dominate (lies right)

The temperature dependence of the equilibrium constant can also be derived from the
temperature dependencies of forward and backward rate coefficients:
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 (19.4)

Note that Eforward − Ebackward = ∆Ereaction.

19.2. General Mass Action
Equilibrium is a special case of a more general situation with arbitrary amounts of reac-

tants and products. A more general derivation requires a more general theory, and we turn to
thermodynamics to derive expressions for the general situation. The natural thermodynamic
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quantity for chemical reactions is the Gibbs free energy, ∆G. Expressing ∆G in terms of ∆H
by Eq. (13.27), and ∆H in terms of ∆E by Eq. (13.25) (using the product rule of differentia-
tion), we have for a process taking place at a given temperature,

∆G = ∆H − T∆S = ∆E + P∆V + V∆P − T∆S (19.5)

From Eq. (13.1) ∆E = q + w. Expressing the heat for a process taking place at constant tem-
perature as q = T∆S from Eq. (13.13) (see Eq. (13.14)), and the work at constant pressure as
w = − P∆V, leaves

∆G = V∆P (19.6)

From the ideal gas law, Eq. (15.7), PV = (
n
V

)RT = CRT, where C represents concentration

(molarity or pressure, which is proportional to molarity). Taking the limit of small changes
in Eq. (19.6), and noting that at constant temperature dP = RTdC and V = n/C from the defi-
nition of molarity, we hav e (cf. Table 3.1)
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n
C

RT dC = nRT
dC
C

= nRT d ln(C) (19.7)

Integrating (cf. Table 3.1)

G − G0 = nRT ln(C) − nRT ln(C0) = nRT ln(
C
C0

) (19.8)

The reference state is called the standard state and refers to unit concentrations (C0 = 1),
leaving

G = G0 + nRT ln(C) ≡ G0 + RT ln(Cn) (19.9)

Now consider a chemical reaction.

∆Grxn = Gproducts − Greactants (19.10)

There is a relationship like Eq. (19.9) for each component, leading to an expression for the
total difference in free energy between products and reactants:

∆Grxn = ∆G0
rxn + RT ln

+P, −R

Π Ci
ni ≡ ∆G0

rxn + RT ln(Q) (19.11)

where Q, called the reaction quotient, is the quotient of products of product and reactant
concentrations raised to powers equal to the stoichiometric coefficients in the balanced
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chemical equation:
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Applying the thermodynamic condition for equilibrium, ∆Grxn = 0, to Eq. (19.11) leads
to

∆G0
rxn = − RT ln

+P, −R

Π (Ce)i
ni (19.13)

Identifying the product on the right as the equilibrium constant in Eq. (19.2) gives

∆G0
rxn = − RT ln(K) (19. 14a)

K(T) = e −
∆G0

rxn

RT (19. 14b)

R is the molar gas constant in energy units, 8.31441 J/mol-K. This fundamental relationship
links thermodynamics to equilibrium. Given the equilibrium constant for a reaction (from
experiment), the free energy of reaction can be calculated from Eq (19.4a). Conversely given
the free energy of reaction (from thermodynamic tables), the equilibrium constant can be cal-
culated from Eq (19.4b).

Example 19.1 Estimate the vapor pressure of water at 25 °C.
Vapor pressure is due to equilibrium between liquid and gas: H2O(liquid) = H2O(gas),
for which the equilibrium constant equals the vapor pressure: Kp = pH2O. (Recall that
concentrations for gaseous reactants are expressed in atmospheres, and that pure liquids
do not enter the mass action expression.)
The free energy of vaporization can be obtained from tables of formation free energies.
∆Gvaporization = ∆Gf(gas) − ∆Gf(liquid). At standard temperature (25 °C), the values
combine to ∆Gvaporization = − 228. 6 kJ − (−237. 2 kJ) = 8. 6 kJ.
The van’t Hoff equation (when rearranged to solve for K) is

Kp(25°C) = pH2O = exp(−
∆G0

vap

RT
) = exp(−

8, 600
8. 31441 × 298. 15

) = 0. 0311 atm (
760 torr
1 atm

) = 23. 6 torr.
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Note that ∆G is converted to Joules to be compatible with R and that 25 °C is converted
to Kelvin. The vapor pressure of 23.6 torr compares very well with the experimental
value of 23.76 torr.
Combining Eq. (19.11) and (19.14) leads to a general relationship:

∆Grxn = RT ln
Q
K

(19. 15)

We will refer to this connection between thermodynamics and reaction equilibrium as the
generalized law of mass action, or van’t Hoff equation. Note that Q = 1 recovers Eq.
(19.14) and Q = K recovers the equilibirum condition ∆G = 0.

If an arbitrary mixture of reactants and/or products is allowed to react, Q indicates how
the reaction will proceed. If Q is less than K, product concentrations are too low for equilib-
rium and/or reactant concentrations are too high, so the reaction builds up products at the
expense of reactants (the reaction (19.1) proceeds to the right). The opposite holds for Q > K.
Unlike the Arrhenius equation for kinetics where the activation energy is (for all practical
purposes) always positive, leading to a universal increase in rate coefficient with increasing
temperature, ∆Grxn will be positive for endothermic reactions but negative for exothermic
reactions, with the result that the equilibrium constant will increase with increasing tempera-
ture for endothermic reactions, but decrease with increasing temperature for exothermic reac-
tions (Eq. (19.14)). The equilibrium constant increases (reaction shifts right) with increasing
temperature for endothermic reactions, and decreases (reaction shifts left) with increasing
temperature for exothermic reactions. This is one manifestation of Le Chatelier’s Principle,
which says essentially, equilibria shift to offset stress.3 Applied to the concentration relation-
ship of the law of mass action, Le Chatelier’s Principle says that perturbing an equilibrium
system by adding or removing a reactant or product will cause a shift in the equilibrium
which tends to remove or replace it, respectively. The shift is not absolute in the sense that
the added substance is completely removed or the removed substance is completely replaced,
however. Reactants and products will all adjust simultaneously until the ratio of products and
reactants again equals the value of the equilibrium constant, according to the mass action law,

3 This fundamental principle, borrowed from chemistry, has been applied ubiquitously to many areas, from
psychology (people like to remain ‘‘status quo’’), to economics (law of ‘‘supply and demand’’).



276 Chapter 19 Chemical Equilibria

Eq. (19.3). The following table summarizes the general situation.

Table 19.2. Reaction quotient vs Equilibrium Constant

Q/K ∆G Situation
Q < K ∆G < 0  P ← R (goes left)
Q = K ∆G = 0 P = R (equilibrium)
Q > K ∆G > 0  P → R (goes right)

19.3. Mass Action Calculations
The law of mass action and the van’t Hoff equation constitute the fundamental relations

of equilibrium. Equilibrium applications involve solving the mass action or van’t Hoff equa-
tion for one unknown. This suggests that values for all the variables but one must be pro-
vided in equilibrium calculations. In the case of concentrations, values may not be given
explicitly, but may be inferred from the balanced chemical equation. Stoichiometric ratios
effectively provide additional equations to reduce the number of unknowns. Although the
algebra can become subtle, the fact remains that one equation can be solved for only one
unknown. The key to solving equilibrium problems is to reduce the problem to one equation
in one unknown.

The ‘‘law’’ of mass action, Eq. (19.2), is an equation involving three types of quantities,
concentrations ([A], [B], etc), powers of concentration (a, b, etc) and equilibrium constant
(K). For a given reaction, the stoichiometric factors a, b, etc are known. Although K is a
parameter (constant for a given reaction), rather than a variable like concentration, there are
times when the value of K may be sought. For example, the value of the parameter K must
be determined experimentally from equilibrium experiments before it can be used in predict-
ing other experimental conditions. Thus mass action problems fall into two categories: con-
centration(s) unknown, given the balanced reaction and K, or K unknown, given the balanced
reaction and concentrations. The balanced chemical equation provides stoichiometric rela-
tions between the concentrations which may used to effectively reduce the number of
unknowns to unity. The Mass Action Table introduced in the algorithm below helps organize
the stoichiometry. This perspective leads to an algorithm for solving problems based on the
mass action law. Some facility with algebra may be required to cast equilibrium concentra-
tions in terms of one variable, and to solve the (polynomial) mass action equation.4

4 Introductory chemistry problems are usually restricted to linear and quadratic equations, easily solved by
humans. Higher-order equations that appear are reduced to lower degree through approximations. Computers
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The Mass Action Equilibrium Algorithm

Purpose: To apply the law of mass action, Eq. (19.2) to equilibrium calculations.
Procedure:

1. Write down the balanced chemical reaction for the process being considered:
aA + bB + . . . = pP + qQ + . . .

2. Identify the givens and unknowns from the input. If some of the concentra-
tions are not known, construct a mass action table to organize stoichiomet-
ric ratios in terms of a common variable, x (values are in mols or concentra-
tions, consistent with initial values before reaction takes place, x is the
change from the Initial state to the Final state, and Final refers to equilibri-
um):

aA + bB + ... pP + qQ + ...
Initial: a0 b0 ... p0 q0 ...
Change: −ax −bx ... +px +qx ...
Final: a0 − ax b0 − bx ... p0 + px q0 + qx ...

3. Solve the mass action equation for the appropriate unknown variable K, con-

centration ([ ]), or x: K =
[P]p[Q]q . . .

[A]a[B]b . . . or K =
[p0 + px]p[q0 + qx]q . . .

[a0 − ax]a[b0 − bx]b . . . .

4. Convert any requested concentrations expressed as functions of x to final
concentrations from the entries in the mass action table.

Example 19.2 Find the value of K for the reaction between dihydrogen and diiodine,
given the experimental observation that introduction of H2 at an initial concentration of
5.30 M and I2 at an initial concentration of 7.94 M into a flask results in an observed
equilibrium concentration of HI of 9.49 M, all values at 717.7 K.

can solve equations of any degree approximately, using numerical algorithms. See Section 3.6 on Solving Gen-
eral Equations for One Variable.
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1. The chemical equation must be identified, or K cannot be defined. Since reactants
are dihydrogen and diiodine, and the product concentration of hydrogen iodide is
given, it may be assumed no other products are formed. The balanced reaction and
associated mass action equation, then, are:

H2 + I2 = 2 HI

K =
CHI

CH2
CI2

≡
[HI]2

[H2][I2]

2. The givens are initial concentrations of H2 and I2 and the equilibrium concentration
of HI. Unknowns are the equilibrium concentrations of H2 and I2 and the value of
K. Since the equilibrium concentrations for H2 and I2 are not explicitly given, they
must be deduced from the balanced chemical equation. The mass action table is:

H2 + I2 2HI

Initial: 5.30 7.94 0
Change: −x −x +2x
Final: 5.30−x 7.94−x 2x = 9.49

Note that the variable x is written as an unknown related to the given final concen-
tration of HI: x = 9. 49/2 = 4. 745. The equilibrium concentrations of H2 and I2 can
now be readily obtained from the expressions for their final concentrations:

[H2]f = 5. 30 − 4. 745 = 0. 555 M

[I2]f = 7. 94 − 4. 745 = 3. 195 M

The mass action equation can now be solved for K:

K =
(9. 49)2

(0. 555)(3. 195)
= 50. 8

Example 19.3 Find the values of the concentrations of all species at equilibrium if H2
and I2 are introduced into a flask with initial concentrations of 5.30 M and 7.94 M,
respectively. The value of the equilibrium constant is 50.8 at 717.7 K. (This is the
inverse problem of the previous example.)
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1. The chemical equation may be inferred to be the same as that of the previous exam-
ple:

H2 + I2 = 2 HI

K =
[HI]2

[H2][I2]

2. Since none of the equilibrium concentrations are given, construct the mass action
table:

H2 + I2 2HI

Initial: 5.30 7.94 0
Change: −x −x +2x
Final: 5.30−x 7.94−x 2x

3. In this case the variable x is unknown, and must be found from the mass action
equation:

K =
(2x)2

(5. 30−x)(7. 94−x)
= 50. 8

Expanding and collecting terms in x gives:

0. 921x2 − 13. 24x + 42. 08 = 0

The Quadratic Equation Solving Algorithm from Section 3.5 may be employed to
solve for x = 4.745. The equilibrium concentrations of H2 and I2 can now be readily
obtained:

H2 = 5. 30 − 4. 745 = 0. 56 M

I2 = 7. 94 − 4. 745 = 3. 20 M

HI2 = 2 × 4. 745 = 9. 49 M

It would prove instructive to solve the quadratic equation from the last example using
the iteration method of section 3.8. It is more tedious than applying the quadratic formula,
but becomes essential when higher degree polynomials result from the Mass Action Equilib-
rium Algorithm.
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Before leaving the general subject of equilibria it is worthwhile observing that in many
industrial processes reactions are not permitted to reach equilibrium. This can be achieved by
removing products or continually recycling reactants. In such flow processes, it is possible to
drive reactions asymptotically to completion using Le Chatelier’s principle.

19.4. Solubility Equilibria
Slightly soluble salts have equilibria constants called solubility product constants, Ksp.

Solubility is measured by the amount which dissolves so if dissociation occurs, stoichiomet-
ric ratios must be considered. For a typical salt comprised of a metal (M) and nonmetal (N)
part,

MmNn = mMn+ + nNm−

If s represents the mols of MmNn dissolved, then there are ms mols of Mn+ and ns mols of
Nm− produced. The general expression for the solubility product is

Ksp = Cm
Mn+ Cn

Nm− = (ms)m(ns)n = mmnnsm+n (19.16)

Example 19.4 What is the molar solubility of Bi2S3 in water if Ksp = 1. 6 × 10−72?

In this case m = 2 and n = 3 so Ksp = 2233s5 = 108s5 and s = (
Ksp

108
)1/5 = 1. 7 × 10−15 M.

19.5. Acid Base Equilibria
Alchemists divided substances into three general categories, depending on certain prop-

erties of their aqueous solutions. Acidic solutions taste sour (L. aciditus) and turn litmus
fungus red. Basic solutions taste bitter (L. low) and turn litmus fungus blue. Salt solutions
are neither acidic nor basic and may result from neutralization reactions between acidic
solutions and basic solutions, or directly from dissolving salts into water. Acids and bases
are further classified as strong or weak. For practical purposes the common strong acids are
nitric, sulfuric, hydrochloric, hydrobromic and hydroiodic; other common acids may be
assumed to be weak; the only common strong bases contain hydroxide ion. A more refined,
quantitative measure of acid and base strength is based on equilibrium concepts.

The notion of chemical substances as compounds of elementary matter led to the idea
that acids and bases have something common to their class which distinguishes their



Acid Base Equilibria 281

categories. Lavoisier, who was fascinated with the role of oxygen in combustion, corrosion
and respiration, believed that oxygen was a common component in all acids. This is not
inconsistent with modern observation for several acids (HNO3, H3PO4, etc.), but inconsistent
for others, including common hydrochloric ("muriatic") acid, formed by dissolving hydrogen
chloride gas into water.

An improved explanation of acidic and basic behavior, giv en by Arrhenius near the end
of the Nineteenth Century, assumed that acids produce hydrogen ions in water, and bases pro-
duce hydroxide ions; Neutralization was described as ‘‘acid plus base gives salt plus water’’.
Arrhenius’ concept of acids and bases could account for much of the behavior of acids and
bases, but unfortunately could not explain, for example, why ammonia gas dissolved in water
produces a basic solution.

An more general notion of acids and bases was published independently by Bronsted
and Lowry around 1923. This concept adopted Arrhenius’ notion of acids, but expanded the
base concept to include any substance which accepts protons. Neutralization, according to
Bronsted and Lowery, inv olves the transfer of a proton from an acid to a base, producing in
the products another acid and base, said to be ‘‘conjugate’’ to the reactant base and acid,
respectively. Bronsted linked acids and bases in conjugate pairs, which are related by the
acceptance or release of a proton. Neutralization in the Bronsted sense states that an acid
reacts with a base to produce a new acid and new base through the transfer of a proton. A
significant insight of the Bronsted approach is the recognition of the role of the solvent,
water, which can act as either an acid (proton donor), or a base (proton acceptor). Such abil-
ity to play the dual role of reacting as an acid or a base is called amphoterism.

A useful heuristic envisions acid/base reactions as occurring in two steps, one with the
acid producing the proton and the other with the base accepting a proton. Such component
steps are called ‘‘half reactions’’. A complete acid/base reaction results from combining two
half reactions in such a way that protons are conserved (transferred without loss or gain).
Subtracting two half reactions ensures this requirement.

A listing of half reactions, called a Bronsted Table, summarizes a multitude of possible
acid/base combinations (n entries can be combined into n(n − 1) ≈ n2 pairs). Total reactions
are always constructed by subtracting two half reactions (to cancel protons).5 Similar to the

5 Note that, just like arithmetic and algebra, subtracting two chemical half reactions is equivalent to re vers-
ing one half reaction and adding it to the other.
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way a periodic of element properties can be used to deduce the properties of many combina-
tions of elements, a table of half reactions can be used to derive information regarding a large
number of total reactions obtained by combining two half reactions.

In the Bronsted Table given below, acids are on the left with their conjugate bases on the
right, with the general reaction given at the head. The notation HBq denotes a Bronsted acid
with a general charge q, capable of dissociating to a proton and its conjugate base with one
less charge, Bq−1. The value of q can be positive, neg ative or zero, as illustrated by the entries
in the table, with the common case of negative values resulting from ionization of neutral
acids (q = 0). Acids are listed according to decreasing strength (value of Ka), with their con-
jugate bases increasing in strength. The values of Ka give a quantitative measure of acid
strength, but qualitative trends can be deduced from a consideration of bond strengths. A
useful heuristic is that the strength of hydro acids of the form HB, increases with decreasing
strength of the H-B bond. The relative strengths of H-B bonds can be deduced from the
charge density (charge/size ratio) on the B atom. The larger the charge density on B, the
stronger the H-B bond, and the weaker the acid. This can be illustrated with the hydrohalide
acids, HBr, HCl, and HF. According to The Periodic Trend Algorithm of Section 8.4, fluo-
rine is smaller than chlorine, which is in turn smaller than bromine. Thus charge density
increases with decreasing size in the order Br, Cl, F, and HB bond strength increases and acid
strength decreases in the same order. Actual bond strengths are given in Example 12.13:
HBr(378 kJ/mol), HCl(477 kJ/mol), HF(590 kJ/mol). Oxyacids, of the form HOB, have a
proton bound to oxygen, which is in turn bound to B. In this case, the proton responds to the
charge density on B indirectly, and the strength of oxy acids of the form HOB, increases with
decreasing strength of the H-O bond, caused by increasing strength of the B-O bond. There-
fore, increasing the charge density on B strengthens the B-O bond, and drawing the electron
cloud into the bond weakens the O-H bond. Thus the larger the charge density on B, the
stronger the O-B bond, the weaker the O-H bond, and the stronger the acid. Thus, going
across the second row of the periodic table the charge on the element (oxidation number)
increases while the size decreases.
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Table 19.3. Properties of Hydroxy Compounds of the Second Row of the Periodic Table

Compound Name Oxidation Number pKa Classification

NaOH sodium hydroxide +1(Na) 14 strong base
Mg(OH)2 magnesium hydroxide +2(Mg) insoluble strong base
Al(OH)3 aluminum hydroxide +3(Al) 11.2 amphoteric
OSi(OH)2 silicic acid +4(Si) 9.6 very weak acid
OP(OH)3 sulfurous acid +5(P) 2.1 weak acid
O2S(OH)2 sulfuric acid +6(S) −2 strong acid
O3ClOH perchloric acid +7(Cl) −7.3 very strong acid

This trend is further is illustrated by the oxyhalo acids, such as HClO, HClO2, HClO3, and
HClO4. In this case the charge density increases with the formal charge on Cl (values are +1,
+3, +5, +7 in the order listed). Acid strength increases in the same order, as seen in the Bron-
sted Table.
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Table 19.4 The Bronsted Table

Name HBq++1 = H++ ++ Bq Ka(25°C) pKa

Hydrobromic HBr = H+ + Br− ≈ 10+9 −9
Hydrochloric HCl = H+ + Cl− 3 × 10+8 −8.5
Perchloric HClO4 = H+ + ClO−

4 2 × 10+7 −7.3
Permanganic HMnO4 = H+ + MnO−

4 ≈ 10+8 −8
Chloric HClO3 = H+ + ClO−

3 5 × 10+2 −2.7
Sulfuric (1) H2SO4 = H+ + HSO−

4 1 × 10+2 −2
Nitric HNO3 = H+ + NO−

3 2 × 10+1 −1.3
Hydronium (1) H3O+ = H+ + H2O 1. 00 = 100 0.00

Trichloroacetic CCl3COOH = H+ + CCl3COO− 2 × 10−1 0.70
Oxalic (1) HOOCCOOH = H+ + HOOCCOO− 5. 90 × 10−2 1.23
Dichloroacetic CHCl2COOH = H+ + CHCl2COO− 3. 32 × 10−2 1.48
Sulfurous (1) H2SO3 = H+ + HSO−

3 1. 54 × 10−2 1.81
Sulfuric (2) HSO−

4 = H+ + SO2−
4 1. 20 × 10−2 1.92

Chlorous HClO2 = H+ + ClO−
2 1 × 10−2 2.0

Phosphoric (1) H3PO4 = H+ + H2PO−
4 7. 52 × 10−3 2.12

Glycinium ion (1) CH2(NH3)COOH+ = H+ + CH2(NH2)COOH4. 46 × 10−3 2.35
Hydrotelluric (1) H2Te = H+ + HTe− 2. 3 × 10−3 2.64
Bromoacetic CH2BrCOOH = H+ + CH2BrCOO− 2. 05 × 10−3 2.69
Chloroacetic CH2ClCOOH = H+ + CH2ClCOO− 1. 40 × 10−3 2.85
Nitrous HNO2 = H+ + NO−

2 4. 6 × 10−4 3.34
Hydrofluoric HF = H+ + F− 3. 53 × 10−4 3.45
Formic HCOOH = H+ + HCOO− 1. 77 × 10−4 3.75
Hydroselenic (1) H2Se = H+ + HSe− 1. 7 × 10−4 3.77
Benzoic C6H5COOH = H+ + C6H5COO− 6. 46 × 10−5 4.19
Oxalic (2) HOOCCOO− = H+ + −OOCCOO− 6. 4 × 10−5 4.19
Acetic CH3COOH = H+ + CH3COO− 1. 76 × 10−5 4.75
Aluminum ion hydrate (1) Al(H2O)3+

n = H+ + Al(OH)(H2O)2+
n−11. 5 × 10−5 4.82

Propionic CH3CH2COOH = H+ + CH3CH2COO−1. 34 × 10−5 4.87
Hydrotelluric (2) HTe− = H+ + Te2− 1 × 10−5 5.0
Carbonic (1) CO2 + H2O = H+ + HCO−

3 4. 3 × 10−7 6.37
Sulfurous (2) HSO−

3 = H+ + SO2−
3 1. 02 × 10−7 6.91

Hydrosulfuric (1) H2S = H+ + HS− 9. 1 × 10−8 7.04
Phosphoric (2) H2PO−

4 = H+ + HPO2−
4 6. 23 × 10−8 7.21

Hypochlorous HOCl = H+ + OCl− 2. 95 × 10−8 7.53
Hypobromous HOBr = H+ + OBr− 2 × 10−9 8.7
Ammonium ion (1) NH+

4 = H+ + NH3 5. 62 × 10−10 9.25
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Hydrocyanic HCN = H+ + CN− 4. 93 × 10−10 9.31
Glycine (2) CH2(NH2)COOH = H+ + CH2(NH2)COO−1. 67 × 10−10 9.78
Hydroselenic (2) HSe− = H+ + Se2− 1 × 10−10 10.0
Carbonic (2) HCO−

3 = H+ + CO2−
3 5. 61 × 10−11 10.25

Hypoiodous HOI = H+ + OI− 2. 3 × 10−11 10.6
Methylammine ion CH3NH+

3 = H+ + CH3NH2 2. 20 × 10−11 10.66
Hydrogen peroxide H2O2 = H+ + HO−

2 2. 4 × 10−12 11.62
Hydrosulfuric (2) HS− = H+ + S2− 1. 1 × 10−12 11.96
Phosphoric (3) HPO2−

4 = H+ + PO3−
4 2. 2 × 10−13 12.67

Water (2) H2O = H+ + OH− Kw = 1. 00 × 10−14 14.00

Sodium ion hydrate Na(H2O)+ = H+ + NaOH ≈ 10−20 20
Ammonia (2) NH3 = H+ + NH−

2 ≈ 10−30 30
Hydroxide (3) OH− = H+ + O2− ≈ 10−36 36
Hydrogen H2 = H+ + H− ≈ 10−38 38

In addition to showing qualitative trends in acid/base strength, Bronsted Tables may
display quantitative information about acid/base reactions in the form of equilibrium con-
stants, K, which measure the extent of completion of a reaction; the larger the K, the more
products formed. The Bronsted Table given above also lists (redundantly) a logarithmic func-
tion of extent of reaction, pKa = − log10 Ka; the smaller Ka is, the larger pKa is. When two
reactions are combined into a net reaction by subtraction, the equilibrium constant corre-
sponding to the net reaction is the quotient of the equilibrium constants for the two half reac-
tions, with numerator and denominator equal to the equilibrium constants of the added and
subtracted half reactions, respectively.

Typical Bronsted acid/base exercises determine the underlying half reactions for a given
complete reaction. How can we develop a procedure to do this (given the total, find the
parts)? Half reactions in the Bronsted Table are subtracted to conserve protons. Thus, given
a Bronsted Table, the appropriate pair can be identified from the given reactants and products.

HBq
1 = H+ + Bq−1

1 K1

− [ HBq
2 = H+ + Bq−1

2 ] (K2)−1

________________________________________
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HBq
1 + Bq−1

2 = HBq
2 + Bq−1

1 Ktotal =
K1

K2

Recall from Section 2 that reversing the second reaction inverts its K.

Bronsted Table Algorithm

Purpose: To identify acid/base half reactions from a given total reaction.
Procedure:

1. Scan the Bronsted Table for the reactants and products of the given reaction.
2. From the possible matches, identify two entries which have conjugate pairs

in the given reaction.
3. Reverse one entry half reaction and add to the other in such a way that the

resulting reactants and products agree with those of the given reaction.
4. If a net equilibrium constant is requested, divide the equilibrium constant for

the reversed half reaction into that of the added half reaction.

Example 19.5 What is the value of the equilibrium constant for the reaction
H2S + S2− = 2HS−?
1. H2S appears only one place in the Bronsted Table, under the hydrosulfuric (1) entry,

as does S2−, under the hydrosulfuric (2) entry (the numbers refer to first and second
ionizations processes).

2. In both cases, HS− is the conjugate species.
3.

H2S = H+ + HS− K1 = 9. 1 × 10−8

−[HS− = H+ + S2−] (K2 = 1. 1 × 10−12)−1

__________________________________________

H2S + S2− = HS− + HS− Ktotal =
K1

K2
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4. Ktotal =
K1

K2
= 8. 27 × 10+4

Example 19.6 Discuss the reaction of ammonia with water.
NH3 appears twice in the Bronsted Table, once as a acid (left side) and once as a base
(right side). As water also appears as an acid and a base, two possible reactions between
ammonia and water are possible:

NH3 + H2O = NH−
2 + H3O+

NH3 + H2O = NH+
4 + OH−

The equilibrium constants for the respective reactions are
10−30

100
= 10−30 and

10−14

5. 62 × 10−10
= 1. 78 × 10−5. Both reactions lie to the reactants side at equilibrium, but

the second dominates over the first by twenty-five orders of magnitude and lies suffi-
ciently to the products side to produce a basic solution. Thus the first reaction is negligi-
ble and ammonia is a base in water.
Note that the ionization of a base in water that is conjugate to an acid has a ionization

constant complementary to that of water. The second ammonia ionization above illustrates
this general result. to the analog of Eq. (19.24) using Eq. (19.19) and Kw = KaKb

KaKb = Kw (19. 17)

The quantitative measure of the acidity or basisity of an aqueous solution is the concen-
tration of hydrogen ion (or hydrated hydrogen ion, called hydronium ion H3O+), or equiv-
alently its negative logarithm:
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pH ≡ − log10(CH+) (19. 18a)

CH+ = 10−pH (19. 18b)

pOH ≡ − log10(COH−) (19. 18c)

COH− = 10−pOH (19. 18d)

From the Bronsted Table Algorithm the meaning of strong acids and bases becomes apparent.
Consider the acids above hydronium (i.e. with K > 1). Since hydronium has an equilibrium
constant value of unity, combining the half reaction for hydronium with any acid above it will
produce a reaction where the acid is converted to hydronium with a total equilibrium constant

equal to than that of hydronium, a value greater than unity:
K1

1
= K1. Equilibrium constant

values greater than unity indicate greater concentrations of products than reactants, and the
equilibrium is said to ‘‘lie to the right’’. The strongest acids lie far to the right, indicating
(nearly) complete conversion to hydronium, or, equivalently, complete ionization to hydrogen
ion. A similar argument holds for the bases below hydroxide as an base. In fact, in aqueous
solution the strongest acid that can exist is hydronium and the strongest base is hydroxide.
Stronger acids and bases than these are essentially totally converted to them, a process
referred to as leveling. Weak acids and bases lie between hydronium and hydroxide in the
Bronsted Table (the two boxed entries in the table). Note that the first ionization of diprotic
acids is significantly greater than the second ionization. For example, sulfuric acid is a strong
acid, but hydrogen sulfate ("bisulfate") ion is a weak acid.

The Mass Action Equilibrium Algorithm can be applied to weak acids and bases to
solve for equilibrium constants from pH values, or vice versa.

Example 19.7 Calculate the pH of pure water.
The acid base reaction in pure water is

H2O + H2O = H3O+ + OH−

for which the equilibrium constant from the Bronsted Table is Kw = 1. 00 × 10−14. Since
K = CH3O+COH− and and CH3O+ = COH− , Kw = C2

H3O+ and CH3O+ = √ Kw = 1. 0 × 10−7.
Therefore the pH of water is −log(1. 0 × 10−7) = 7.
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Note the general realtionship between hydrogen and hydroxide concentrations:

CH+COH− = 1 × 10−14 (19. 19a)

pH + pOH = 14 (19. 19b)

Example 19.8 Calculate the value of the equilibrium constant for the ionization of
formic acid from the observed pH = 2.38 for a 0.10 M solution.
The Mass Action Equilibrium Algorithm gives the path to an answer.
1. Neutral acids are substances of the form HB which dissociate in aqueous solution

into ions (ionize), one of which is hydrogen ion:

HB = H+ + B−

2. From Eq. (19.18b)

CH+ = 10−pH = 10−2.38 = 4. 17 × 10−3.

Since the equilibrium concentrations of the remaining species (HB and B−) are not
given, we construct a mass action table:

HB H+ + B−

Initial 0.10 0 0
Change −x +x +x
Final 0.10−x +x = 4. 17 × 10−3 +x

3. Solving the mass action equation for K gives:

K =
(x)(x)

(0. 10 − x)
=

(4. 17 × 10−3)2

(0. 10 − 4. 17 × 10−3)
= 1. 81 × 10−4
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19.6. Acid Base Titrations
Titrations consist of addition of one reactant to another until equivalent amounts of each

are mixed. Acid/base titrations add acids to bases or vice versa. We will discuss the common
case of aqueous solutions of strong base added to acids. Titration curves show the pH as a
function of titrant added to the other solution. As seen in Fig. 19.1, as the acid strength
decreases, the region of changing pH near equivalence narrows and it becomes increasingly
more difficult to detect the end point of the titration.
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Ka = 10−9

weak acid buffer equivalence base

mL base
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Fig. 19.1 Titration of 100 mL 0.1 M Acid with 0.1 M Base

The key to determining the pH along the course of a titration is to let the reaction first
go conceptually to completion and then let it ‘‘relax’’ to equilibrium.

Example 19.9 Calculate the pH of a 0.10 M acetic acid solution which has been titrated
1/4 the way to neutralization. For acetic acid, Ki = 1. 8 × 10−5
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The Mass Action Equilibrium Algorithm again gives the path to an answer. We will
first work out the case for when the titration is a general fraction f of the way to comple-
tion.
1. Acid equilibria was introduced in the previous example:

HB = H+ + B−

Titration involves neutralization by reaction of acids with bases. Simple strong
bases ionize to produce hydroxide ion, OH−, which reacts with the acid, represented
by HB:

HB + OH− = H2O + B−

2. pH is defined as pH = − log[H+], suggesting solving for [H+] at equilibrium. How-
ev er, before equilibrium is achieved, the neutralization reaction occurs. This sug-
gests a modified mass action table:6

HB + OH− H2O +  B−

Initial a0 = 0. 10 0 -  0
After reaction (1 − f)a0 0 -  fa0
Change −x +x - +x
At equilibrium (1 − f)a0 − x  x - fa0 + x

3. The mass action equation is:

K =
[H+](fa0 + x)
[(1 − f)a0 − x]

Solving for [H]+,

[H+] = K
[(1 − f)a0 − x]

(fa0 + x)
≈ K

((1 − f)a0)
(fa0)

= K(
1
f

− 1)

The approximation comes from recognizing that the shift in equilibrium after reac-
tion (x) is small compared to the concentrations produced by the neutralization.

6 No entry is given for the concentration of liquid water. Its density of 1 g/mL corresponds to 55.5 M.
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For the case f = 1/4,

[H+] = 3 K = 5. 4 × 10−5

Finally, the pH can be calculated from its definition:

pH = − log[H+] = − log[5. 4 × 10−5] = 4. 27

Here is some typical Maple input used to generate titration curves like Fig. 19.1.

# Monoprotic weak acid/strong base titration

Ka:=Float(1.76,-5); # Weak acid ionization equilibrium constant

Va:=100; # Initial mL weak acid

Ma:=1; # Weak acid molarity

Mb:=1; # Strong base molarity

MH:= proc(Vb) # Hydrogen ion molarity (MH) as a function of mL base added (Vb)

option operator;

V:=Va+Vb; # Total volume of solution

Ca:=(Va*Ma-Vb*Mb)/V; # Concentration of acid after reaction

Cb:=Mb*Vb/V; # Concentration of conjugate base

solve(Ka=MH*(Cb+MH)/(Ca-MH),MH) # Solve mass action equation for MH

end:

interface(plotdevice=postscript, plotoutput=‘T.ps‘); # Specify an available plotting device

pH_vals:= [[Vb,evalf(-log10(MH(Vb)[1]))] $ Vb=0..99]: # Compute a 100 point titration curve

plot(pH_vals, ‘+mL base‘=0..100, pH=0..14, title=‘Acid/Base Titration Curve‘);

quit; # Finish executing maple
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The general aqueous calculation process can be shortened by performing the algebra
and making approximations (which need to be checked when used). In aqueous solution
there are always multiple equilibria, as the solvent participates as well as any solutes. We will
consider the case of an acid or base dissolved in water. We will ignore the roll of water in the
equilibria as the formulas are unchanged when the pure solvent concentration is unity. For
notational simplicity, we will show charges in reactions, but delete them in algebraic equa-
tions. Also we will let letters stand for concentrations. The two basic equilibria are the disso-
ciation of water and the solute:

HOH = H+ + OH− Kw = (H)(OH) (19.20)

HBq = H+ + Bq−1 Ka =
(H)(B)
(HB)

(19.21)

These are two equations in four unknowns, H, OH, HB and B. Tw o additional equations are
obtained from conservation of mass. B is distributed between HB and B and equal to the
original total concentration of HB and B.

Ca + Cb = HB + B (19.22)

Conservation of H atoms recognizes water and the acid as sources.7 Since H − OH represents
the H in solution in excess of that contributed by water,

Ca = HB + H − OH (19.23)

Adding Eqns. (19.22) and (19.23) solves for B:

B = H + Cb −
Kw

H
Using this equation and Eq. (19.21) to eliminate B and HB in Eq. (19.22) leads to

Ca + Cb = (
Ka + H

Ka
)(H + Cb −

Kw

H
) (19.24)

This equation describes all the situations of a single species in water, strong acid, weak acid,

7 An alternaive (but not independent) equation conserves total charge to maintain solution neutrality.

H − OH + qHB + (q − 1)B = 0
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strong base, weak base and buffer (weak acid/weak base conjugate pair). However it is a
cubic equation with no simple analytic solution. Solutions can be obtained numerically, or
approximate analytic formulas can be obtained for the various cases. We will develop the
approximate formulas.

For the case Cb = 0 (acid solutions), Eq. (19.24) becomes

Ca = (
Ka + H

Ka
)(H −

Kw

H
) (19.25)

When Ka >> H (strong acid), H >>
Kw

H
as well, and Eq. (19.25) becomes

HSA ≈ Ca (19.26)

as expected for total ionization of a strong acid. When Ka << H (weak acid), Eq. (19.25)
becomes

KaCa ≈ H −
Kw

H
which is a quadratic. Solving,

HWA ≈ √ KaCa + Kw (19.27)

For the case Ca = 0 (base solutions), Eq. (19.24) may be transformed to a base analog of
Eq. (19.25) using Eq. (19.17) and Eq. (19.20):

Cb = (
Kb + OH

Kb
)(OH −

Kw

OH
) (19.28)

Thus the same approximate equations apply for bases as acids:

HSB ≈ Ca (19.29)

OHWB ≈ √ KbCb + Kw (19.30)

For the case Ca ≠ 0, Cb ≠ 0 the solution is a buffer, consisting of a weak acid/weak base

conjugate pair in solution. In order for the buffer to be effective, Cb >> H,
Kw

H
and Eq.

(19.24) becomes

Ca + Cb = (
Ka + H

Ka
)(Cb )
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or

Hbuffer ≈
Ca

Cb
Ka (19.24)

Note the result is the same for weak acid plus salt (weak base) buffers as well as weak base
plus salt (weak acid) buffers. Also note the weak acid and weak base formulas apply to
hydrolysis of salts of weak acids and bases as well, which are themselves weak conjugate
bases and acids, respectively.

A summary of the formulas relevant to aqueous acid base equilibria follows:
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Acid/Base Equilibria Formulas

pH ≡ − log[H+] = 14 − pOH pK ≡ − log K

Ka ≡
[H+][Bq−1]

[HBq]
Kb ≡

[HBq][OH−]
[Bq−1]

KaKb = Kw ≡ [H+][OH−]

General case: Ca + Cb = (
Ka + CH+

Ka
)(CH+ + Cb −

Kw

CH+
)

Strong acid case (Cb = 0, large Ka): [H+]SA ≈ Ca

Weak acid case (Cb = 0, small Ka): [H+]WA ≈ √ KaCa + Kw

Strong base case (Ca = 0, large Kb): [OH−]SB ≈ Cb

Weak base case (Ca = 0, small Kb): [OH−]WB ≈ √ KbCb + Kw

Buffer case (Ca, Cb ≠ 0, small Ka): [H+]buffer ≈
Ca

Cb
Ka

Example 19.10 Calculate the pH of a 0.10 M acetic acid solution which has been
titrated 1/4 the way to neutralization, using approximation formulas.
The situation is partial neutralization of weak acid with strong base, so the solution is a
buffer. From the Category table we see that x represents the proton concentration, Ca the
concentration of remaining acid and Cs the concentration of conjugate base. Using the
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modified mass action table of the previous example and the buffer approximation for-
mula,

[H+] ≈
(1. 8 × 10−5)(3(0. 10)/4)

0. 10/4
= 5. 4 × 10−5

and the pH = 4.27 just as before.
It is worth noting that during acid/base titrations pH ≈ pKa + log(Cb/Ca), which

means that when Cb = Ca, that is, half way to the equivalence point (for unity stoichio-
metric ratio), pH = pKa. This provides a method for determining the value of pKa:
Titrate to the equivalence point noting the pH, then read the pH half-way to equivalence.

19.7. Oxidation Reduction Equilibria
The concept of acids and bases was greatly expanded by G. N. Lewis, who published

his ideas about the same time as Bronsted and Lowery. Lewis reasoned that since all chemi-
cal reactions involve rearrangements of chemical bonds, and that chemical bonds are the
result of electronic structure in molecules, acid/base reactions should be understandable in
terms of the rearrangements of electrons. In a sense, Lewis shifted the focus from the proton
(which is usually hidden beneath filled subshell core electrons) to its opposite, the electron.
Lewis acids are electron acceptors and Lewis bases are electron donors. The range of acids
with this notion is extended to non-aqueous solutions and pure substances in the solid, liquid
and gaseous states. Although the Lewis perspective is broader than that of the Bronsted per-
spective, the Bronsted concept is still popular for the common cases of aqueous solutions.

Example 19.11 The classic strong acid, strong base reaction is between hydrochloric
acid and sodium hydroxide to produce sodium chloride and water (‘‘acid plus base gives
salt plus water’’). However, gaseous hydrogen chloride can react with solid sodium
oxide to produce the same products (Write out the reaction). It is difficult to describe the
reaction in Bronsted half-reaction terms. More striking, sulfur trioxide is the anhydride
of sulfuric acid (i.e. yields sulfuric acid when added to water), as is calcium oxide the
anhydride of calcium hydroxide. However the essential reaction taking place in aque-
ous solution can occur without any water being involved:

SO3(g) + CaO(s) = CaSO4(s)
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In a sense, Lewis theory goes beyond acid/base reactions to include all rearrangements
of electrons, but one class of reactions is particularly appropriate to Lewis acids and bases,
namely oxidations and reductions. Oxidation generalizes simple reaction with oxygen to
include any reaction for which electrons are lost (and oxidation number therefore increases).
Reduction can be thought of as the opposite of oxidation, namely reaction involving the gain
of electrons (and reduction in oxidation number). The generalization of the idea that oxygen
oxidizes substances through strong electronegativity (electron greed), is that oxidation is
caused by reaction with an oxidizing agent, and reduction by reaction with a reducing agent.

Since matter (including electrons) must be conserved in chemical reactions, oxidation is
always accompanied by reduction in chemical reactions, and oxidation/reduction reactions
involve the transfer of electrons. Thus one can say a substance that is oxidized by an oxidiz-
ing agent itself acts as a reducing agent to the oxidizing agent. The coupling of oxidation and
reduction, sometimes called redox, together with the understanding of the transference of
electrons suggests decomposing redox reactions into pairs of oxidation or reduction half-
reactions, as with aqueous acid/base reactions. A table of such half reactions is appropriately
called a Lewis Table, also called a standard reduction table. It is arbitrary whether redox half
reactions are written as reductions or oxidations: we will choose to write them all as reduc-
tions (corresponding oxidation half reactions are reversed reductions). Pairs of reduction or
oxidation half reactions may be combined to eliminate the transferred electrons by subtrac-
tion, just as they were combined to eliminate the transferred protons in acid/base reactions.
One important difference between a Lewis Table and a Bronsted Table is that redox half reac-
tions can involve the loss or gain of several electrons, whereas aqueous acid/base involve the
loss or gain of single protons. A second difference is that the measure of oxidation or reduc-
tion strength is made through electropotential, or electromotive force (EMF), measured in
volts, instead of through equilibrium constant. Actually, there is a relationship between EMF
and K, somewhat similar to that between pK and K:

E0 =
RT
neF

ln(K) (19. 31)

where E0 is the cell potential, R is the molar gas constant (8.3145 J/mol-K in energy units), T
is temperature in Kelvin, ne is the number of mols of electrons transferred (number of
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equivalents), and F is the charge of one mol of electrons, called the Faraday8, with value
9. 648456 x 104 J/mol − V. The superscript 0 on E denotes the standard state of 25 °C and
concentrations of solutions and pressures of gases of unity. In the Lewis Table below, oxida-
tion strength increases and reduction strength decreases with increasing positive reduction
potential, E0,

8 Michael Faraday (1791-1867), discoverer of several chemicals including benzene, electrical induction,
electric polarization of light, inventor of the electric motor and generator. Faraday did not have facility with
mathematics, but his insights and experiments were developed into the unified theory of electricity and mag-
netism by his colleague Clerk Maxwell. Faraday’s popular Christmas Lectures, published as The Chemical His-
tory of a Candle are still recommended reading for their accuracy, clarity and beauty. He experimented with
conduction of electricity through gas plasmas in tubes that were the precursors to radio, cathode ray and televi-
sion tubes, and mass spectrometers. Although Faraday interpreted his solution electrolysis experiments in terms
of a fundamental particle of charge and identified chemical affinity with electrical force, he was not attracted to
Dalton’s atomic theory. Considered by many to be one of the great experimental geniuses of all time, he ap-
pears to have suffered from mercury poisoning (from electrical conduction experiments), which left him in a de-
bilitated mental state for much of his life. He declined elections to the presidency of the Royal Society of Lon-
don and knighthood, but did accept a retirement apartment at Hampton Court from Queen Victoria.
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Table 19.5 The Lewis Table

Reduction E0 (Volts)

F2(g) + 2e− = 2F−(aq) +2.866
Co3+(g) + e− = Co2+(aq) +1.842
H2O2(aq) + 2H+(aq) + 2e− = 2H2O +1.763
PbO2(s) + 4H+(aq) + SO2−

4 (aq) + 2e− = PbSO4 +1.691
Ce4+(g) + e− = Ce3+(aq) +1.61
MnO−

4(aq) + 8H+(aq) + 5e− = Mn2+(aq) + 4H2O +1.51
Au3+(aq) + 3e− = Au(aq) +1.498
Cl2(g) + 2e− = 2Cl−(aq) +1.358
MnO2(s) + 4H+(aq) + 2e− = Mn2+(aq) + 2H2O +1.229
O2(g) + 4H+(aq) + 4e− = 2H2O +1.229

Br2(l) + 2e− = 2Br−(aq) +1.066
NO−

3(aq) + 4H+(aq) + 3e− = NO(g) + 2H2O +0.964
Ag+(aq) + e− = Ag(s) +0.800
Fe3+(aq) + e− = Fe2+(aq) +0.771
O2(g) + 2H+(aq) + 2e− = H2O2(aq) +0.68
MnO−

4(aq) + 2H2O + 3e− = MnO2(s) + 4OH−(aq) +0.595
I2(s) + 2e− = 2I−(aq) +0.536
O2(g) + 2H2O + 4e− = 4OH−(aq) +0.401
Cu2+(aq) + 2e− = Cu(s) +0.342
AgCl(s) + e− = Ag(s) + Cl−(aq) +0.222
Cu2+(aq) + e− = Cu+(aq) +0.153
AgBr(s) + e− = Ag(s) + Br−(aq) +0.095
2H+(aq) + 2e− = H2(g) 0.000
Pb2+(aq) + 2e− = Pb(s) −0.126
Sn2+(aq) + 2e− = Sn(s) −0.137
AgI(s) + e− = Ag(s) + I−(aq) −0.151
Co2+(g) + 2e− = Co(aq) −0.277
NAD+(aq) + H+(aq) + 2e− = NADH −0.320
PbSO4(s) + 2e− = Pb(s) + SO2−

4 (aq) −0.359
Fe2+(aq) + 2e− = Fe(s) −0.447Zn2+(aq) + 2e− = Zn(s) −0.762
2H2O + 2e− = H2(g) + 2OH−(aq) −0.828
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Mn2+(aq) + 2e− = Mn(s) −1.128
Al3+(aq) + 3e− = Al(s) −1.662
Mg2+(aq) + 2e− = Mg(s) −2.357
Na+(aq) + e− = Na(s) −2.714
Ca2+(aq) + 2e− = Ca(s) −2.868
Sr2+(aq) + 2e− = Sr(s) −2.888
Ba2+(aq) + 2e− = Ba(s) −2.906
K+(aq) + e− = K(s) −2.936
Li+(aq) + e− = Li(s) −3.040

Note the correlations of EMF for elements with the Periodic Trend Algorithm of Sec-
tion 6.5. The halogens, alkali metals and alkaline earths are ordered roughly the same as in
the periodic table with the most electron greedy elements at the top of the Lewis Table and
the most generous at the bottom.

In the case of oxidation/reduction reactions, electrical energy may be captured by physi-
cally separating the half reactions into half cells and connecting them with electrical and
chemical conductors (solutions containing mobile ions). The EMF is called the cell poten-
tial, measured in volts, and is computed as the difference between two half-cell potentials in
the Lewis Table. This is seen by applying Eq. (19.31) to two half reactions:

necell
Ecell = nered

Ered − neox
Eox (19. 32)

where the subscripts refer to the half cells in which reduction and oxidation take place. The
values to use in Eq. (19.32) are for standard conditions are listed in Lewis Tables. In the
usual case of transfer of electrons, necell

= nered
= neox

and ne can be ignored. Note how divi-
sion of the equilibrium constants resulting from differencing half reactions in the Bronsted
Table becomes subtraction of half cell potentials in the Lewis Table. This is a consequence of
the logarithmic relationship between E and K. The negative sign on Eox comes from revers-
ing the half reaction in a reduction table, corresponding to inverting K. The Bronsted Table
Algorithm has a corresponding Lewis Table Algorithm:

Lewis Table Algorithm
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Purpose: To identify oxidation/reduction half reactions from a given total reaction.
Procedure:

1. Scan the Lewis Table for the reactants and products of the given reaction.
2. From the possible matches, select two entries which have conjugate pairs in

the given reaction.
3. Subtract one entry half reaction from the other in such a way that the result-

ing reactants and products agree with those of the given reaction.
4. If a net EMF is requested, subtract the EMF for the subtracted half reaction

from that of the added half reaction.

Example 19.12 Identify the Lewis half reactions and calculate the EMF for the reaction
2Li(s) + F2(g) = 2LiF.
1. The reactants are found at the top and bottom of the Lewis Table.
2. There are no other reactions involving fluorine and lithium.
3. The fluorine reaction needs to be added and the lithium reduction subtracted

(reversed) to agree with the given reaction.
4. According to Eq. (19.32), ne = 2 and the standard cell EMF is

2E0
cell = 2EF2

− 2ELi+ = 2(+2. 87) − 2(−3. 05) V = 2(5. 92) V

E0
cell = 5. 92 V

This reaction, which involves the most electronegative and positive elements, has under-
standably one of the largest possible cell potentials. How are EMF cells used to produce
larger voltages? Individual cells are connected in a series of cells, called batteries, for which
the voltages are additive according to the laws of electricity.

Example 19.13
The Lewis Table shows that zinc should dissolve in acids to produce dihydrogen:
Zn + 2H+ = Zn2+ + H2, 2Ecell = 2(0. 000) − 2(−0. 828) V, or Ecell = + 0. 828 V and
∆G = − neFE is negative causing the products to dominate over reactants at equilib-
rium.
If Zn dissolves in acids, why doesn’t it dissolve in water, which always has a little

acid in it? According to the Nernst Equation, the potential would be less in neutral
water, where the concentration of H+ is 10−7, than in 1 M acid by
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−
0. 05916

2
log

pH2

CH+
= − 0. 209 V at room temperature for the same PH2

. The cell poten-

tial is still positive (0.828 - 0.209 = 0.619 V), indicating the reaction should proceed.
However, thermodynamics is not the total story. The rate of reaction is dependent on
concentrations and, if proportional to hydrogen ion concentration, would proceed 10−7

times slower than in 1 M acid. Thus what would react in 10 s in 1 M acid would require
107 s to react in neutral water, or about 3 years.
Example 19.14 Entries in the Lewis Table can be used to explain corrosion protection.
Metals above dioxygen do not react with dioxygen because the resulting cell potential
would be negative (corresponding to an equilibrium constant less than unity), while
those below dioxygen can react with dioxygen to form oxides. Thus, gold plating is one
corrosion protection stratagem (E0

Au/O2
= − 0. 27 V). Some metals, like silver,

chromium, aluminum and tin are protected from further oxidation through formation of
thin but impenetrable oxidized coats by reacting with atmospheric gases. ‘‘Tin’’ cans
used to store foods are actually tin-coated iron; when the tin coating is breached, the tin
reacts with the iron with positive cell potential (E0

Sn2+/Fe = + 0. 30 V), and rusting is
accelerated. Zinc, on the other hand, is below iron, so if iron were oxidized it would, in
turn, preferentially oxidize the zinc (E0

Fe2+/Zn = + 0. 32 V). Coating iron with zinc is
called galvanizing the iron, and metals above iron, such as zinc and magnesium are used
to form ‘‘sacrificial’’ couples with iron.
Identifying the free energy as the available work in an electrochemical cell,

∆G = − neFE, leads from Eq. (19.14) to the relationship between cell potential and equilib-
rium constant, Eq. (19.31). The more general Eq. (19.15) leads to a more general relation-
ship for cell potential under arbitrary concentrations, called the Nernst equation:

E = E0 −
RT
neF

ln(Q) (19. 33)

A convenient form for calculations at 25°C is

E = E0 −
0. 05912

ne
log(Q)

Note at equilibrium Q = K; thus E goes to zero and the cell becomes ‘‘dead’’.
Example 19.15 Concentration cells derive from a curious result of the Nernst equation
applied to electrochemical cells having the same half reaction in each half cell, but at
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different concentrations. In this case, E0
cell = E0

red − E0
ox = 0, and

E = −
RT
neF

ln(Q) = −
RT
neF

ln(
Cdilute

Cconcentrated
) ≥ 0

At 25 °C each ten-fold difference in concentration between half cells generates
+0.0591/ne V, where ne is the number of electrons in the half-reaction.

Summary
Chemical equilibrium is static on a macroscopic scale, but dynamic on a molecular

scale. The fundamental law of equilibrium is an equation which relates the concentrations of
reactants and products to a parameter, called the equilibrium constant.

Tw o special categories of chemical reactions, acid/base and electrochemical exchange
protons and electrons, respectively. The exchange property allows quantitative tabulation of
numerous possible reactions in terms of a relatively small number of half reactions.
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CHEMICAL EQUILIBRIA EXERCISES

1. If K for the HCN = HNC rearrangement is 4, what is the concentration of HNC at
equilibrium after one molar HCN is introduced into an empty flask?

2. Compare the acid strengths of H2S and HS−.
3. What is the maximum voltage a hydrogen fuel cell could produce?
4. Is an aqueous hydrogen peroxide solution stable?

CHEMICAL EQUILIBRIA EXERCISE HINTS

1. This is a particularly simple mass action equilibrium problem for the reaction of
the form A = B.

2. H2S and HS− are both hydro acids.
3. A oxygen/hydrogen fuel cell has the same reaction as the combustion of gaseous

hydrogen.
4. Consider the reaction: 2H2O2 = 2H2O + O2.


