
Chapter 1. The Game

1.1. Systematic Problem Solving
Let’s begin with an attempt to define our subject. Science (Latin scientia - knowledge)

seeks to understand the what, how and why of things. Answers are sought to questions, solu-
tions to problems.1 We are all familiar with problems - life is full of difficulties, setbacks,
failures and conflicts. But we are thinking of those situations which can be resolved, that is,
problems that have solutions. A problem may be thought of as an unresolved situation. We
will be interested only in resolvable problems, not because unsolvable problems don’t exist,
but because solvable problems are more in harmony with the image of absolute truth popu-
larly associated with science. Hopefully in introductory classes, teachers and textbook writ-
ers are careful to present problems which can be resolved unambiguously (according to the
rules and conventions of the game of science). Nevertheless, humans are not perfect and it
would be naive to assume that every published statement and every printed answer is without
flaws.2

Problems can be presented in the form of questions with implied answers. The solution
to the problem may be thought of as the path that connects the question to the answer. The
term solution is sometimes used for the answer itself. This ambiguous usage may be a little
more acceptable if one recognizes that if the path to the answer is known, the answer can
always be found. Fig. 1.1 illustrates the relationship between the problem, its resolution and
the path leading to resolution. Note that there does not necessarily have to be an unique solu-
tion path to a given problem, only that there has to be an unique answer. The fact that an
unique answer can be reproduced is fundamental to rational science. That some problems
may exist for which no answer can be obtained is also possible, and much more difficult to
deal with.

1 Terms introduced for the first time are emboldened and are defined in the Glossary for reference.
2 Recently a physics student gained notoriety for finding a calculational error which had lain undiscovered

for 300 years in the venerable Isaac Newton’s great classic Principia Mathematica.



4 Chapter 1 The Game

a solution path

(question)

Resolution
(answer)

another solution path

Problem

Fig. 1.1 Solution Space

With the what out of the way, let us turn to the how (and leave the why to another dis-
cussion). How do we solve problems? There may be as many different answers as there are
problems to solve and people to solve them. One does not get out of debt necessarily the
same way one plans a trip to Europe (although there may be a connection between the two!).
It is our contention, however, that many problems can be grouped into classes with common
methods for solution. These include performing arithmetic calculations (addition, subtrac-
tion, multiplication and division), filling out income tax forms, and most of the chemistry
exercises students encounter in college courses. Our specific purpose here is to help you
develop and use methods for solving chemistry problems, although the ideas apply to a much
broader spectrum of experience.
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Chemistry deals with the study of material objects, or matter. Many questions regard-
ing material properties and behavior can be answered systematically by following logical
processes. This does not mean that the guesswork is totally removed from chemical investi-
gation, but rather that it is shifted from deducing a statement regarding a particular situation
to understanding the processes for obtaining general information, and then applying those
processes to solving particular problems.

Do systematic procedures for solving problems exist? Some time ago a woman was
taking beginning chemistry. Her husband was not taking the course, but would take her
exams after she brought copies home. He never read the textbook, he never went to lecture,
he never took a chemistry course, didn’t know the definitions or terminology, yet would have
received a B letter grade in the class based on his performance on the exams. When asked
how he was able to do so well, he replied that he was a philosophy major, and applied only
logic and reasoning to the questions on the exams. He must have been acquainted with some
basic mathematics, but beyond that he must have had some skill in decoding information and
general problem solving as well (possibly coupled with an understanding of the psychology
of exam taking).

An heuristic (Gr. heuriskein, to discover) is a strategy for accomplishing some purpose,
such as solving a problem. There is a hope but no guarantee that a given heuristic will lead to
an acceptable solution because heuristics characteristically have no formal proofs that they
accomplish their intended purpose. They are akin to hypotheses. Examples of heuristics are
battle plans (including logistics and reconnaissance), business practices (including risk esti-
mation and marketing), game strategies (including opening moves and bluffing), and scien-
tific experiments (including design and analysis). An algorithm, on the other hand, is a
guaranteed procedure for accomplishing some purpose, such as solving a problem. The term
algorithm is derived from the name of the Arabian mathematician Mohammed
A-Khowârizmî (Latin, Algorismus), one of the major contributors to the rules (procedures) of
arithmetic in the West. (The term algebra is also derived from the same name.) While there
is no single simple prescription for solving every problem one is ever going to encounter,
here are some heuristics which can help one to decode information and develop solutions.3

3 A popular book by George Polya, How to Solve It, (Doubleday & Company, 1957), presents the subject in
the context of teaching and learning mathematics.
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To solve a problem:
1. Extract the Essential Information. The statement of the problem should specify an

unambiguous goal (answer, output, product) and often (but not always) provides
input (givens). The information could be numerical, verbal or pictorial. The state-
ment of the problem may include hints for directions to take along a solution path.
Sometimes irrelevant information for a particular solution is given; this needs to be
identified and disregarded.

2. Categorize. Try to identify the class of problem. What is the topic? Is this particu-
lar problem similar to anything you have seen before? Is there a familiar example?
Can the problem be broken down into a set of smaller problems?4

3. Use Visual Aids. It usually helps to write something down, or at least try to visual-
ize something. Chemists drew pictures of molecules as tiny connected spheres of
atoms a hundred years before electron microscopes confirmed their existence. Data,
equations, graphs, tables all help to organize one’s thinking. Some of the proce-
dures we will consider in this book will be in mathematical equation form, some in
graphical form, some in tabular form. It is amazing how useful a picture of a chemi-
cal process, such as mixing two solutions, can be to the understanding of a calcula-
tion.

4. Work in Two Directions. Do not be afraid to work backwards (that is, from the
point of view of the desired result, not from the answer at the back of the book). It
is difficult to get where you are going if you don’t know where it is. It is entirely
acceptable to construct the solution path through the forest in initially unconnected
parts, so long as they eventually link together.

5. Try Something. Don’t be afraid to guess. Try to construct a simpler example of the
problem and work that through to discover the process of solution. While there may
be only one correct answer, sometimes we get the feeling there is only one way to
obtain that answer. Most situations have sev eral approaches to understanding (just
note the variety of opinions on almost any subject). Most problems have a number
of solution methods. Yours may be unique, yet equally valid to some other
method.5 Usually solutions are arrived at after several false starts. The unconscious

4 "Life by the yard is hard, life by the inch is a cinch."
5 One of President Teddy Rosevelt’s contributions to humanity was a novel proof of the Pythagorean Theo-
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mind can be as valid a tool as the conscious mind.
6. Check Your Work. Are you sure you answered the correct question? Is your

answer reasonable? If your checkbook balances to something larger than the
national debt, it may be time to hire an accountant (or perhaps an attorney!). Repeat
the process leading to solution, with refinement where possible.

7. Derive Defensively. Textbook answers may not be given, or may be hidden among
false and partially-correct possibilities, or may even be incorrect. In the real world,
answers are usually neither given nor are they known. How can you be sure you
have the right answer? As you work through a solution or derivation, imagine a lit-
tle imp on your shoulder which nags at you constantly with questions like, ‘‘Are you
sure that’s right?’’, or ‘‘Can you prove it?’’. Get in the habit of proving to yourself
that your work is correct.

8. Practice. There is no substitute for experience. Practice makes perfect. Repeat the
process leading to the answer on different examples until you are confident it is cor-
rect. Patience can be a virtue. A useful strategy is to make up your own problems.
You may be surprised how many times something similar or identical appears on
examinations (since exams are supposed to find out if you have arrived at a certain
level of understanding and competence).

1.2. Artificial Intelligence and the Algorithmic Approach
The development of computer technology has revolutionized many aspects of our soci-

ety, not the least of which are the ways we think about problems and the ways we go about
solving them. The field of computer science addresses issues in logic, language, game the-
ory, and artificial intelligence, among others. All of these are areas of human thinking and
processing and we have learned new approachs to problem solving from building and using
computers.

rem (of which there are dozens). When children were given the problem of connecting nine dots arranged in a
square matrix with as few straight lines as possible without lifting the pencil from the paper, one creative indi-
vidual folded the paper with the dots and pushed a pencil through the paper connecting the dots with a single
line! (Four connected straight lines on flat paper is the standard expected answer.)
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The 1968 Nobel Prize in Economics was awarded to Herbert Simon, who pioneered the
application of using computers to discover natural laws. Simon was able to ‘‘teach’’ a com-
puter to ‘‘discover’’ the inverse proportional relationship between volume and pressure of a
gas, known as Boyle’s Law, and to find the family behavior of the chemical elements, known
as the Periodic Law.6 Discovering scientific laws using the computer reflects non-trivial
human thought processes, and this accomplishment was a scientific milestone.7

Much remains to be learned about creativity and thought processes. Much remains to
be learned about creativity and thought processes. Humans exhibit such a wide variety of
thinking styles that it would be inappropriate at this stage to declare any particular one as bet-
ter than any other. Superficially, some of this textbook can be thought of as a ‘‘cookbook’’
contains ‘‘recipes’’ for solving a variety of problems one might encounter in an introductory
chemistry course. If your style is to ‘‘plug and chug,’’ you are welcome to go directly to the
boxed procedures and follow the recipes. On the other hand, if you want to learn how to
catch fish, you will want to learn how to dev elop your own recipes for success. Developing
the skill to invent solutions to problems is termed an algorithmic approach to problem solv-
ing.

Algorithms are planned procedures for producing guaranteed (consistent and repro-
ducible) results. Heuristics are planned procedures for producing results as well; however,
they lack the component of proof. Assembly instructions, operation handbooks, diagnostic
and repair manuals all employ algorithms to achieve their stated purpose. Heuristics include
cooking recipes, surgical procedures and legal processes; hopefully they produce their
desired purposes. Algorithms and heuristics are somewhat like road maps; they tell which
route to take to get from one place to another.8 We are all familiar with algorithms; we use
them to calculate change, tie our shoes, cook meals, and change automobile tires. For

6 Simon was awarded the prize specifically for his work on economic theory, but the computer science com-
munity claims him as the ‘‘first Nobel laureate in computer science,’’ a field for which there has been no specific
recognition by the Nobel committee.

7 Current alternatives to digital electronic computers include analogue computers that work on mechanical
principles, and neural network machines which attempt to mimic biological learning and memory processes.

8 Printed road maps, however, don’t giv e all the information needed to make a successful journey. Hazards
and repairs are not given for example. Because of this road maps may be more like heuristics than algorithms
since they show a possible but not guaranteed strategy.
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example, an algorithm to escape a maze follows a path which follows walls along just one
side (right or left) of the path. It may not be the shortest route to an exit, but it can be shown
to be a certain route.

In problem solving, the starting place is the statement of the problem, the destination is
the final answer, and a solution is a route to take to get from the question to the answer.
Algorithms and heuristics are courses of action which require something to act on something
else to produce a result. A recipe without a cook and some ingredients by itself will not pro-
duce a cake. Humans are trained and computers programmed to assemble and maneuver
automobiles, write fugues, follow dress patterns, call square dances, play chess, yes, and even
solve chemistry problems. A cooking recipe gives a specific procedure to follow to produce
a specific product. The basic ingredients of scientific problems are the input data, the recipe
is the algorithm which manipulates the input to produce the answer, and the final dish is the
answer. If the answer isn’t correct, perhaps the wrong ingredients (data) were used, or per-
haps the wrong recipe (algorithm or heuristic) was used, or perhaps the recipe (procedure)
wasn’t followed (implemented) correctly.

1.3. Science and Algorithms
There is a subtle difference between algorithms and heuristics, related to truth. In the

sense that nothing can be proven absolutely true, the best that can be hoped for is that a given
conclusion is consistent within the context of the system used to derive it. In science no con-
clusion can be better than the premises on which it is based. Mathematical equations are used
to describe physical systems. These are referred to as mathematical models. It may be possi-
ble to use mathematical logic to derive a certain result from a mathematical model of a physi-
cal system, but although it is consistent with the model, the result may not describe a measur-
able property of the system with the desired degree of accuracy. In this case, the derivation is
algorithmic, but the model is heuristic. Thus science uses both algorithms and heuristics.
Confusion about scientific statements often results from not making a clear distinction
between the two.

Distinctions between algorithms and heuristics are particularly important to scientific
endeavors such as chemistry. Until the major premise that gross matter is made up of tiny
components became established in the Twentieth Century, most of chemical insights were
heuristic in nature. That is, chemical models were useful tools for predicting and controlling
the behavior of matter, but they were not provable in the sense that logic is used in
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mathematics. To the degree that chemistry is still an open subject, not fully derivable from
basic principles, it can be challenging to discern the difference between fact and fiction, real-
ity and wishful thinking.

Where do heuristics and algorithms come from? They are the products of intuition (e.g.
it feels like rain, perhaps I’ll take an umbrella), invention (e.g. a better mouse trap), inno-
vation (e.g. the model T Ford automobile plant - the first assembly line using interchangeable
parts), insight (e.g. I wonder what things would look like if I traveled on a light beam?), in
short, some form of intellectual activity. Ingenuity plays a role, and developing new algo-
rithms and heuristics takes practice. In this book we will attempt to describe the concepts of
chemistry so that algorithms and heuristics used by chemists can be appreciated and applied
to problem solving.

1.4. How to Dev elop an Algorithm
Charles L. Dodgson was a Nineteenth Century mathematical lecturer at Oxford Univer-

sity who entertained the Dean’s daughters with manufactured stories that were published as
Alice’s Adventures in Wonderland, under the pen name Lewis Carroll. Carroll the story-teller
couldn’t entirely ignore Dodgson the mathematician, and numerous logical amusements
accompany Alice’s fantastic adventures. Witness Alice’s encounter with the Cheshire-Cat:9

‘‘Would you tell me, please, which way I ought to go from here?’’
‘‘That depends a good deal on where you want to get to,’’ said the Cat.
‘‘I don’t much care where---’’ said Alice.
‘‘Then it doesn’t matter which way you go,’’ said the Cat.
‘‘---so long as I get somewhere,’’ Alice added as an explanation.
‘‘Oh, you’re sure to do that,’’ said the Cat, ‘‘if you only walk long enough.’’
If this situation sounds hypothetical, it is not very different from what happens the first

time a human tries to communicate with a computer, or, for that matter, the first time a stu-
dent tries to solve a new type of problem.

9 The Complete Works of Lewis Carroll, Random House, Inc., New York, nd, pp 71-72.
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Developing an algorithm to solve a scientific problem requires a clear understanding of
the principles involved, whether they be mathematical, physical or chemical. In developing
our algorithms, we will start with the underlying principles. Part of the fun of developing
algorithms is reducing principles to simple, precise and clear statements. This usually trans-
lates to understanding the principles and how they may be applied to obtain information.
Once the principles are understood, various applications should become apparent.

In addition to understanding principles, algorithm development requires logic skills,
intuition, and experience. Life would be easier if we could give you a universal algorithm to
develop algorithms (the ‘‘algorithm of algorithms,’’ if you will). What we can do here is to
illustrate possible approaches. One approach that may be useful is to pretend that you are
explaining the problem and its solution to someone else. This works best if you imagine you
are talking to the person on the phone, or writing a letter to them. You may even find it use-
ful to talk to your calculator. ‘‘Now this is what I want you to do ...’’ As you give the direc-
tions, you will see what questions are relevant, how to org anize the information and your
thinking, and what steps you may have overlooked in the solution process.

Don’t expect instant success. When Bertrand Russell began his magnum opus on the
foundations of mathematics at the beginning of the Twentieth Century with Alfred North
Whitehead, he describes how he would come to his office, day after day, and sit in front of a
blank sheet of paper. Following several agonizing weeks with nothing to show on paper, the
ideas began to fl ow. The resulting seminal work on the fundamental algorithms of mathemat-
ics was appropriately titled Principia Mathematica, the same title Isaac Newton had used two
centuries earlier to announce the algorithms of fundamental physics to the world. Similarly,
Newton himself described his first encounter with Euclid’s Elements (of geometry). He states
that he could barely understand the beginning of the treatise, so he laid it aside for some
months. The next time he tackled the Elements, he was able to read it straight through, and
went on to write his first mathematical paper (at age 13!). We may not all be Newtons, but
there is a lesson for all of us here. Information that accumulates or builds on previous infor-
mation, requires understanding of each point before the next can be understood. Before
going to the next idea, it is wise to try to understand each concept on which it is based as well
as possible.10

10 Three R’s of comprehending accumulative information: reread, review, refer (to another source for com-
parison, or explanation).
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An example of a process that is often taken for granted, but is actually rather compli-
cated, is arithmetic (addition, subtraction, multiplication, division, powers and roots of num-
bers). Familiarity, derived from much practice, makes the process seem automatic, but
attempting to deduce precise, correct procedures from fundamental principles, which can be
communicated and explained clearly to someone unfamiliar with the procedures, reveals the
effort required to develop general, efficient algorithms.

Example 1.1 Develop an algorithm for multiplying two positive decimal integers.
One possible way to proceed is to recall memorizing multiplication ‘‘tables’’. Based on
that experience, one could develop the following algorithm: to multiply two positive
decimal integers, locate a table of all possible products of integers and look up the
result. Needless to say, this becomes inefficient for arbitrarily large numbers. Another
possibility, based on recalling the definition of multiplication as multiple additions,
could proceed by adding one of the integers n times, where n is the other integer. This
too becomes inefficient for large integers. Note that these are not incorrect algorithms,
merely impractical algorithms.
A better way to proceed is to break the problem down into smaller problems from which

the final result can be accumulated. ‘‘Long-hand’’ multiplication using a pencil and paper is
based on the understanding of the notation for integers as expansions of products of digits
times powers of the base (the base is 10 for decimal integers), and the distributive and asso-
ciative laws of arithmetic. These properties allow the multiplication of arbitrarily large inte-
gers to be reduced to the sum of partial products obtained from the multiplication of just two
digits at a time. Thus multiplication of decimal integers reduces to looking up products in a
short table of products of single digits (containing 55 unique entries). (According to position
notation, multiplication of a number by a power of the base simply appends a number of
zeros to the right of the number, equal to the value of the power.) As example, consider the
following expansion of the two digits and the accumulation of the products according to the
rules of associativity and distributivity:

123 × 456 = (1 × 102 + 2 × 101 + 3 × 100) × (4 × 102 + 5 × 101 + 6 × 100)

= (1 × 102 × 4 × 102 + 1 × 102 × 5 × 101 + 1 × 102 × 6 × 100)

+ (2 × 101 × 4 × 102 + 2 × 101 × 5 × 101 + 2 × 101 × 6 × 100)

+ (3 × 100 × 4 × 102 + 3 × 100 × 5 × 101 + 3 × 100 × 6 × 100)



How to Develop an Algorithm 13

= (4 × 104 + 5 × 103 + 6 × 102) + (8 × 103 + 10 × 102 + 12 × 101) + (12 × 102 + 15 × 101 + 18 × 100)

= (40000 + 5000 + 600) + (8000 + 1000 + 120) + (1200 + 150 + 18)

= 56088

Note that associativity has been used to isolate multiplication of single digits from mul-
tiplication of powers of the base (e.g. 1 × 100 × 4 × 100 = 1 × 4 × 100 × 100).

Generalizing the process outlined in the example yields an algorithm for multiplying
arbitrary integers in an arbitrary base:

Integer Multiplication Algorithm

Purpose: To obtain the product of two arbitrary decimal integer numbers.
Procedure:

1) Expand the digits of each of the given numbers into sums according to the
place notation of integers. That is, for each digit of the number scanned from
right to left, repeatedly multiply the digit by the base raised to the power of
the position of the digit minus one.

2) Expand the product of the sums according to the distributive property.
3) Replace the products of digits according to the multiplication table for digits.
4) Replace the products of powers of the base by appending a number of zeros

to the right of each product in the previous step, equal to the sum of the pow-
ers of the base of each multiplicand.

5) Sum the sub-products to obtain the result.
6) Assign the sign of the product to be the product of the signs of the numbers.

This procedure may appear rather complicated, but what it lacks in simplicity it gains in
generality, what it appears to lack in clarity it gains in precision. Some effort may be required
to understand the steps, but once mastered, it can be applied with confidence to any situation
involving integer multiplication.
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The Integer Multiplication Algorithm algorithm illustrates a number of features of algo-
rithms in general, such as the use of logical operations and mathematics, and following a
sequence of steps to a final result. Notice the use of nested operations in step 1; this happens
with repetitive processes. It is not uncommon for one algorithm to apply sub-algorithms in
its steps. In fact, reducing a process to its most fundamental steps could involve many layers
of subprocesses.

Digital computers can do the equivalent of long-hand decimal integer multiplication
efficiently by working in a binary base representation, which has only two digits, 0 and 1
(called binary digits, or bits). Arbitrary integers are represented as binary numbers by a
string of binary digits (0 or 1), representing a sum of binary digits (0 or 1) times powers of
the base (2), similar to decimal number place notation. Scanning the digits of one number
(step 1) is effected by shifting the number one place (bit) to the left and reading the last digit
(bit). Multiplication of a given number by a binary digit (step 3) simply produces 0 (if the
binary digit is 0), or reproduces the given number (if the binary digit = 1). Multiplication of
powers of the base (step 4) is effected by shifting to the left (and filling in a zero). Step 5
becomes binary addition. The process is very efficient because binary operations (the sub-
processes) are very basic, efficient process in digital computers, and therefore among the
fastest operations.

Summary
Problems ask questions, solutions find the answers. There is no universal way to solve

all problems; heuristics are guesses to solutions and algorithms are systematic procedures for
obtaining answers to selected classes of problems.

Problem solving requires a clear understanding of what is given and what is asked.
There may be many bridges from question to answer. Clearly stated procedures for correct,
efficient solution paths usually requires introspection, creativity and experience.
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PROBLEM SOLVING EXERCISES
1. What are some possibilities if your answer to an exercise doesn’t agree with the

published answer?
2. Analyze the statement: chemistry should be reasonable.
3. Can you think of some other logical traps Alice could fall into during her conversa-

tion with the Cheshire-Cat?
4. How would a binary digital computer multiply 123 × 456?
5. Write out an algorithm for balancing a checkbook.
6. Develop a strategy for never loosing at tick-tack-toe.
7. Develop a strategy for passing Chemistry.

PROBLEM SOLVING EXERCISE HINTS

1. There are at least three reasons two people may not agree on the implications of a
given set of facts.

2. Consider the meanings of the words and the logic of the statement.
3. Are there any assumptions about existence and/or uniqueness?
4. First convert the multiplicands from decimal (base 10) to binary (base 2).
5. What is the input and what is the desired output? It may help to purchase a calcu-

lator that does arithmetic accurately.
6. With the proper algorithm, if you are the first player you need never loose; if your

opponent is the first player the best they can do is draw against you. To explore all
the possible plays and counter plays (called exhaustive search11) may be asking a
bit much, even though there are only three possible first moves (center, side and
corner), so concentrate on the case of being the first player.

11 Exhausting may be more appropriate.
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7. First register for the course?


