
Chapter 4. Models

4.1. Reductionism
Rational human beings seek for order and control through understanding. Scientific

knowledge falls broadly into categories, factual and conceptual. Alchemy grew into the sci-
ence of chemistry when Lavoisier and Dalton began to study matter quantitatively. Similar to
most intellectual efforts, science tries to understand systems through observation and specula-
tion. These experimental and theoretical efforts complement each other: observations lead to
generalizations (also called abstractions) which, in turn, suggest further testing. And so sci-
ence marches on, at least in principle.

The first order of business is to identify the object of study, the area of investigation. A
system is anything of interest. It may be tangible or intangible, real or imagined, stable or
unstable, simple or complex. Tangible systems include persons, molecules and universes;
intangible systems include ideas, feelings and mathematics. Objective reality requires inde-
pendent existence; stability suggests persistence. Simplicity signals conciseness, while com-
plexity connotes aggregation of subsystems. A description of a system requires a language to
express its attributes and possibly how it differs from other systems. Components of the lan-
guage are used to specify the state of the system, that particular set of values of its attributes
which are subject to variation, called variables. Attributes which are needed for the descrip-
tion of the system, but which don’t change are called parameters.1 A relationship describes
how the state variables of a system are connected. Some variables may be dependent or inde-
pendent of others. A causal system is one for which there is a cause-and-effect relationship
between its variables. Change one state variable and some other(s) respond by changing as
well. Another term for causal relationship is functional relationship.

1 This definition differs from the common misuse of the term parameter to refer to a variable. The confusion
arises since similar systems may differ only in the values of their parameters. Thus the parameters appear to
vary, but only between different systems, not within a giv en system.
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Causal relationships abound. ‘‘Pay your money, take your choice.’’ Let go of an object
near the surface of the earth and it responds to gravity. Apply resources to a project and it
may achieve some goal. This last example shows that while a causal relationship may exist,
it may be unknown, or unrecognized.

The way to bring order to the understanding of a system is to identify the relevant state
parameters and variables, and (hopefully) discover relationships between the variables. This
requires varying amounts of effort and insight and only approaches completeness for the sim-
plest systems (by the definition of simple), but once accomplished, it becomes possible to
predict future behavior. This is the essence of the scientific method. But scientists are not
content with only describing behavior or even predicting behavior, they want to know why it
behaves the way it does. This results in further probing of the underlying causes. Thus sci-
ence proceeds in cycles of observation, description, explanation. The process leading from
observation to description and from description to explanation is where the real work is done,
where the real ingenuity comes in. It is not to be taken lightly, for it is the quintessence of
science. For the sake of efficiency, or perhaps pride, tradition encourages reporting only the
finished polished product of effort. In reality, the entire forrest often must be hacked down
before the path through the forrest can be discovered.

4.2. Physical Models
A model is a representation (real, abstract or imaginary) of an actual system. It is in

this generalized sense that we speak of model cities and economic theories, as well as fashion
models and mathematical models. Chemistry and physics and many other areas make use of
various models to represent their objects of interest.

Physical models are actual objects and may be used to simulate other objects. Miniature
trains and planes are familiar examples. Under an assumption of scaling, namely that multi-
plying variables by a given amount doesn’t alter relationships, inexpensive models may be
constructed to study the properties of the more expensive objects they represent. Wind tun-
nels are used to study responses to changes in the hydrodynamic environment. Architectural
models provide a visualization of the final product.

Models can assist in bridging the familiar to the unfamiliar. Bouncing billiard balls may
be used to represent events at the molecular level. Lines of force between objects in space
may be likened to elastic strings. The future behavior of an individual may be patterned after
that of some ‘‘roll model’’.
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Models may be used to simulate action and behavior. Analog computers use physical
objects like fluids and gates to simulate mathematical operations such as arithmetic and logic.
Digital computers use electrons and wires for the same purpose, and have the further advan-
tage that the course of events may be ‘‘programmed’’ to simulate system behavior of arbi-
trary complexity.

Physical models have a place in science, but must be used with caution to the extent that
they represent only an idealization or simplification of reality.

4.3. Mathematical Models
Because mathematics provides a logical language for abstraction, physical science may

be thought of as applied mathematics. Experiments are analyzed with statistics and theories
are expressed by mathematical formulas. These mathematical procedures are called mathe-
matical modeling, and the abstract mathematical entities and relationships which are sup-
posed to represent real objects and their behavior are called mathematical models. Progres-
sion in understanding comes via the process experiments 〉 data 〉 relationships 〉 tables, graphs
〉 equations 〉 predictions, explanations.

Consider growth. Populations increase (‘‘grow’’) with time, economies grow, as do
energy consumption, bacterial colonies, living organisms, mountains and raindrops. If there
are no constraints on the system, growth may continue indefinitely. But that is unrealistic;
resources run out, competing factors may come into play and controlling influences may pre-
dominate. In the absence of such limiting factors, a reasonable model for growth assumes the
amount of growth in a given time is proportional to the amount accumulated during past
growth. Robert Malthus considered such a model for human population growth in the 18th
Century. Mathematically, the model is described by an exponential function with P(t) repre-
senting the population at time t,2

P(t) = P(0)ekt (4.1)

and a ‘‘Malthusian’’ population ‘‘explosion’’ results as time progresses.

2 The model states that the rate of population growth is proportional to the population:

dP
dt

= kP

where k is the proportionality constant (‘‘growth constant’’), a parameter for a given system. Rearranging to
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While you were ‘‘growing up’’ your height and weight increased with time up to a cer-
tain point, where they beg an to lev el off. This is representative of constrained growth with
growth-limiting factors taken into account. The relationships between height and weight and
age are not necessarily simple. Let’s consider height as a function of age. Measurements of
height vs age could be expressed in tabular form, and then converted to equivalent graphs or
equations, as described in Section 3.3. We expect to see similar results for different individu-
als, but not necessarily exactly the same observations for all individuals. In making the tran-
sition between observations and models, time is treated as an independent variable, and
height, which depends on time, is a dependent variable. Table 4.1 and Fig. 4.1 show some
typical data.

Table 4.1 Average U.S. Male Height vs Age

Age (yr) Height (cm)
0 51
2 88
4 80
8 130

12 150
16 173
18 175

isolate (‘‘separate’’) the variables allows integration (of equal quantities) (cf. Table 3.1)

dP
P

= d ln(P) = kdt

ln(P) − ln(P0) = k(t − t0)

or

P = P0ekt
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Fig. 4.1 Av erage U.S. Male Height as a Function of Age

The shape of the growth curve of Fig. 4.1 is not simple. It increases continuously (and
ev entually might decrease as well) but it is neither linear (except over a relatively small inter-
val), quadratic (or some higher power) or exponential (except possibly in some restricted
region). Whereas each of these functions might match (fit) the curve over some given inter-
val, none passes through all of the points. A curve shaped like Fig. 4.1 is sometimes called
‘‘sigmoid’’ because it resembles the letter S. If we seek a mathematical formula to describe
the data, how are we to proceed? First we need to recognize that the experimental process
itself introduces uncertainties in values - no measurements are infinitely precise. So we may
settle on some function which passes as close as possible to the points, if not through them.
Matching experimental data to mathematical functions is called regression in statistical anal-
ysis. Closeness may be optimized by minimizing the distance between the experimental
points and the curve. Least squares regression analysis is discussed in Section 3.4. The curve

shown in Fig. 4.1 has the form y =
b

1 + ae−kx
, with b = 180 (the maximum value), a = 3.4

y(0) = b/(1 + a) and k = 0.27. These parameter values were found empirically as discussed in
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the next paragraph.
An analytic function which describes a realistic growth curve requires some mathemati-

cal model. One model based on competitive growth was proposed by P. Verhulst in 1845,
which he referred to as the ‘‘logistic’’ equation. The model is of constrained growth, where
growth is limited by some feedback phenomena, such as disease, resources, competition, etc.
If the total population is P, the mathematical model states that the rate of growth is propor-
tional both to the population P at that time and to the residual population (L - P) from some
limiting amount L:

dP
dt

= kP(L − P) (4.2)

L plays the roll of a limiting feedback parameter. Note that if P < L, the population
increases, while it decreases if P > L, and P = L represents a ‘‘stable’’ population (P constant
with time, no change). The equation is expressed in simpler form if it is transformed such
that p represents the fractional population relative to a limit L (i.e. P/L is replaced by p) and
the proportionality constant k is replaced with k′ = kL

dp
dt

= k′p(1 − p) (4.3)

This equation may be solved by standard differential equation techniques with the result

p(t) =
1

1 + ae−kt
(4.4)

where the parameter a is related to the initial population, a =
1 − p0

p0
. Since p is a fraction, it

ranges between zero and unity.
A discrete logistic equation would model generations of periodic growth. The discrete

analogue to the (continuous) differential logistic equation (Eq. (4.3)) is a difference equation
with discrete unit time steps of the form

pn+1 = kpn(1 − pn) (4.5)

This equation has been extensively explored and has very interesting behavior. For certain
values of the parameter k, pn converges to a constant value. For other values, the population
oscillates with various periodicity (period two bounces between two values, period three
between three, etc.). For particular values of k the periodicity becomes infinite, meaning pn
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does not return to a previous value until it has visited an infinite number of other values. Such
a system is called ‘‘chaotic’’. It is a remarkable recent discovery to find simple models
(equations) with such complex behavior.

As the analysis of the logistic model shows, behavior depends on the values of parame-
ters, and can change qualitatively with small changes in parameters. No model analysis is
complete without some exploration of the dependence on parameters. Such analysis is called
‘‘sensitivity analysis’’ in numerical analysis. Since parameters are supposed to represent mea-
surable properties of systems, values which produce unusual behavior are particularly inter-
esting.

4.4. Wav e Models
Cyclic motion is one of the fundamental themes of nature. Ultimately periodic (recur-

rent) motion is the only possible final destiny of a system. Two extreme forms are a static
(fixed) state of period one, and chaotic (random) behavior of infinite periodicity.3 Cyclic
motion is seen in water ripples, undulating flags, seasons, and phases of the moon. Vibration
models have been used to describe the behavior of springs (Robert Hooke, 1678), fluids
(James Bernoulli, 1738), light (Thomas Young, 1802), electricity and magnetism (James
Clerk Maxwell, 1856), and sound (Lord Rayleigh, 1877).

Anyone who has played with a rope, water in a bathtub, or a musical instrument knows
something about wav es. Holding a rope at one end and ‘‘waving’’ it produces bumps that
propagate along the rope. How can this phenomenon be described mathematically? The
bump can be described in terms of a function, f called the wave function, that represents the
displacement of the rope from its resting (equilibrium) state. The function describes how the
bump travels down the rope, and so should be a function of space, or distance along the rope,
x, and time, t. To understand the dependence on space and time, consider how the system
behaves for each variable separately. Take a snapshot of the rope at any instant. At that time
the hump is somewhere on its journey along the rope. At a later time it has moved a distance
given by the product of the velocity of propagation of the hump, v and the time, t. Now
chose some point along the rope and visualize its motion. As wav es pass by this point the

3 That is, never returning to a former state until all other possible states have been ‘‘visited’’. (We will pass
on the discussion of what the possible states are and how they may be determined.)
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rope oscillates with time. A mathematical function which combines these behaviors is the
sine function:

f(x, t) = A sin[
2π
λ

(α + x − vt)], (4.6)

where A, α and λ are parameters, or constants characteristic of the system. A graph of the
sine function shows a characteristic wavy curve for the displacement f as a function of dis-
tance or time, with the value of the function at any point on an axis repeated λ units further
ahead (i.e. the function is periodic). A is the maximum displacement, or amplitude of the
wave, λ is the distance between points having equal displacement, or wavelength, and α is
the initial phase, determining the displacement at zero time and distance. Where the motion
starts is not important, and α can be set to 0 for convenience. Fig. 4.2 shows a plot of sin(x),
which represents Eq. (4.6) at time t = 0 for the case phase α = 0, wav elength λ = 2π and
amplitude A = 1.
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Fig. 4.2 The Sine Wav e



Wa ve Models 59

More complicated wav e forms can be described with a sum of trigonometric functions.
Such a sum is called a linear combination, or ‘‘superposition’’ of functions. In fact, restrict-
ing our discussion for the moment to a single independent variable x (which could represent
space or time), there is a theorem which states that any arbitrary periodic function may be
expressed as a (possibly infinite) sum of sine and/or cosine functions.4

f(x) =
∞

n = 0
Σ [An sin(nx) + Bn cos(nx)] (4.7)

Now consider two people generating wav es from each end of a rope. The function
describing the motion from one end is Eq. 4.6 and that for the other end is the same with the
minus sign replaced with a plus sign for motion in the opposite direction. There will be an
interaction of the two wav es and the displacement at any point will be the sum of the two sep-
arate displacements. If the parameters (amplitudes, phases, wav elengths and velocities) are
equal from both sources, the combined function can be shown from trigonometry (using the
expansion for the sine of the sum or difference of two arguments) to have the form

f(x, t) = 2A sin(
2π x

λ
) cos(2πν t), (4.8)

where the frequency of oscillation, ν is related to wav elength by

λν = v. (4.9)

Such separation of motion into two factors is characteristic of standing waves, consisting of a
basic wav e form which does not move along the system but oscillates in a direction perpen-
dicular to the system.

Now consider a string of length L firmly attached at the ends, such as a guitar string.
The requirement that it have no displacement at the ends generates a constraining condition
on the allowed wav elengths. The condition f(0, t) = 0 is satisfied by zero phase. The condition

f(L, t) = 0 requires
2π L

λ
= nπ , or λ =

2L
n

, where n = 0, 1, 2, . . .. n = 0 describes the system

at rest (no vibrational motion), n = 1 corresponds to a musical fundamental and n > 1  to

4 Commonly called Fourier series for the French mathematician Jean Baptiste Joseph Baron Fourier
(1768-1830) who employed them to study the propagation of heat, although used earlier by Daniel Bernoulli
(1700-1782) in connections with vibrating strings.
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harmonic overtones. The wave form has zero displacement at n + 1 places (including the two
end points), called nodes. Constrained systems in general result in constrained values of the
variables, called eigenvalues, and constrained forms of the wav e function, called eigenfunc-
tions.

We hav e described only one-dimensional idealized wav es, without friction and sinu-
soidal in shape. What about more general wav es? Sinusoidal oscillation in time is assumed
to be the same for all waves (the cosine part of Eq. 4.8), but the space part differs for each
system, and is assumed to obey a general governing equation called the space wave equation.
In one dimension the space wav e function looks like this:

d2f
dx2

= − (
2π
λ

)2f (4.10)

This equation differs from ordinary algebraic equations in that the term on the left is a
derivative operation, which roughly means in this case (second derivative), compute the cur-
vature of the function f.5 Equations involving derivatives are called differential equations.
Fortunately we do not have to know how to solve differential equations to discuss their
results, the most important of which is that their solutions yield functions and values,
whereas algebraic equations yield only values. Eq. 4.10 seeks, in effect, those functions
whose curvatures are proportional to their value at each point. Those familiar with calculus
can verify (by differentiating twice with respect to t) that the sine function of Eq. 4.8 satisfies
Eq. 4.10, and therefore is a solution of the one-dimensional wav e equation.

Wa ve motion in three dimensions is described by an equation similar to Eq. 4.10 with
the wav e function extended to three variables, traditionally given the Greek letter ψ (pro-
nounced ‘‘sigh’’), and the operator extended to three dimensions, traditionally given the
Greek letter ∇2 (pronounced ‘‘del squared’’), and called the Laplacian operator in honor of
the Eighteenth Century mathematician Pierre Simon Le marquis de Laplace:

∇2ψ =
d2ψ
dx2

+
d2ψ
dy2

+
d2ψ
dz2

(4.11)

5 Derivative operations are treated in calculus (cf. Section 3.11) and represent limiting slopes of curves (Sec-
tion 3.3).

Curvature of a function at a point can be measured in terms of the inverse of the radius of a circle tangent to
the function. (Straight lines have zero curvature, circles constant curvature.) The sign of the curvature deter-
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The general space wav e equation in terms of these quantities is:

∇2ψ = − (
2π
λ

)2ψ (4.12)

4.5. Matter Models
A law of nature is an universal fundamental relationship. Laws of nature describe

behavior, and by extension may be said to explain behavior and to direct behavior. Explana-
tion is simplification - the behavior of the more complex is described in terms of the behavior
of the simpler. This idea is called reductionism. For example, certain physiological or psy-
chological behaviors may be explained in terms of a particular genetic and environmental
makeup, which in turn may be determined by a set of molecular sequences and compounds.
Molecular structure and behavior may be described by various physical theories. Broadly,
biology builds on chemistry which builds on physics which builds on the foundation of math-
ematics. To the degree that complex systems are more than the sum of their parts however,
this is but a limited model of reality.

The process of seeking the simplest description of nature has led to the quest for ‘‘The
Theory (model) of Everything’’, a single statement with the capacity to explain all physical
objects and behavior. Along that quest physicists have dev eloped what they refer to as the
‘‘Standard Model’’ to describe the current understanding of the fundamental nature of matter
and energy. The smallest particles of matter are classified into two groups, quarks and lep-
tons, each containing six types distinguished by their mass (rest energy) and charge.6 Combi-
nations of these fundamental particles make larger particles such as protons (two up quarks
plus one down quark) and neutrons (two down quarks plus one up quark). The forces which
hold the fundamental particles are carried (‘‘mediated’’) by three classes of other fundamen-
tal quantities called gluons (for strong nuclear attractions), photons and W and Z bosons (for
weak electromagnetic attractions), and gravitons (for very weak gravitational attractions).
The search is still on for a unified theory of force.

mines whether the curve bends upward (positive) or downward (negative).
6 All have spin 1/2, a quantum property. For the curious, the names (masses in electron volts, charges in

atomic charge units) of the quarks are up (360 MeV, +2/3e), down (360 MeV, -2/3e), charmed (1500 MeV,
+2/3e), strange (540 MeV, -2/3e), top (100 GeV, +2/3e) and bottom (5 GeV, +2/3e). The leptons are comprised
of electrons (e), muons (µ), tauons (τ ) and neutrinos (ν ): e− (511 keV, -e), µ− (107 MeV, -e), τ − (1784 MeV, -e),
ν e (<30 eV, 0), ν µ (<0.5 MeV, 0), ντ (<250 MeV, 0).
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4.6. Reality
Models are not reality, but merely representations of reality. They may be useful or even

essential to apprehending reality, but they cannot substitute for it. In this sense they are ideal-
izations, abstractions. Yet models have a valid existence of their own, even when they hav e
no analogue in experience. This leads to an interesting dilemma. Consider mathematical
models. Not all phenomena are describable by mathematics and not all mathematics describe
phenomena for that matter. The fact that there exists any overlap at all is extraordinary. Ein-
stein once said, ‘‘The fact that the universe is comprehensible at all is the most incomprehen-
sible thing.’’

Philosophical questions arise from this line of reasoning. Is mathematics absolute or rel-
ative? Is it the language of nature, or only one of many possible languages? Or is it the inven-
tion of humans, which, in turn, are products of nature? Will it possible to discover an ulti-
mate theory, a ‘‘theory of everything’’, or are there phenomena for which there can be no
explanation, problems for which no solution can exist? Is the universe deterministic, chaotic,
or some combination? Can free will be exercised without imposition? In science, we are
beginning to appreciate the distinction between simple phenomena with simple descriptions
and explanations, and complex phenomena which do not lend themselves to simple analysis.
Yet we cannot seem to resist the temptation to seek for the simplest explanations, structures
and models to explain existence.

Summary
Models are used as representations to explain phenomena. The principle of economy,

referred to as the law of parsimony or Occam’s ‘‘razor’’ leads to a reductionist view of prop-
erties and behavior. Complex systems resist simple analysis.
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MODELS EXERCISES

1. Describe the state variables, parameters and functional relationships of biological
systems.

2. Discuss some economic models.
3. Which parameter in the growth model equation Eq. (4.2) determines the maximum

size?
4. Use a computer mathematics program like Maple to integrate Verhulst’s growth

differential equation.
5. Iterate the discrete logistic equation, Eq. (4.5), for k =0, 1, 2, 3, and 4, starting

p0 = 0. 1. and 1.
6. What would the plot of the wav e function Eq. (4.6) look like for varying time and

fixed space?

MODELS EXERCISE HINTS

1. Do you know the difference between genotypes and phenotypes?
2. For starters, consider the ‘‘law of supply and demand’’.
3. What happens to the growth function when the parameters vary?
4. For Maple, read the on-line manual and study the examples on dsolve.
5. You can demonstrate this even with a pocket calculator (although a computer might

be more convenient).
6. Refer to Fig. 4.2.


