
Chapter 5. Mechanics

5.1. Introduction
Dogmatic presentations sometimes generate the perception that science is completely

logical and understood. This short-sighted view ignores the progress that continues to refine
and revolutionize our conceptualization of the natural world. We will trace some of that
progress here.

We cannot hope to give more than a superficial treatment of the deep and broad subject
of physics. Our goal is to present those aspects of physics that will benefit an understanding
of introductory chemistry. In the interest of space we will emphasize only the most signifi-
cant principles and insights of individuals while unjustly minimizing the pathfinding contri-
butions made by many others.

Debates on the nature of existence that the earliest thinkers could not resolve will con-
tinue into the future. Is matter continuous or discrete? Is the continuity of numbers real or
merely imagined? Is the universe holistic or reducible? Is the whole greater than the sum of
its parts? A sample of matter such as a cloud appears continuous on a macroscopic scale, but
passage through a fog suggests that the matter is divisible. Does the division ever end? What
are the consequences if it does and what if it doesn’t? The searches for more ‘‘fundamental
particles’’ and for unifying principles represent the modern attempt to explore the nature of
matter. As we shall see, the fundamental opposition between the notions of continuous and
discrete existence is a recurring theme in science.

5.2. Particle Mechanics
The studies of the structures and motions of material systems are called statics and

dynamics, respectively, and together form the subject of mechanics. The basic laws of the
mechanics of macroscopic objects, called classical mechanics, were first clearly stated by
Isaac Newton1 in Principia Mathematica, published in 1787, and form the cornerstone of
physics.

1 Sir Isaac Newton (British, 1642-1727), who weighed less than three pounds at birth on Christmas day, re-
turned to his birthplace at his mother’s farm to escape the plague of 1666, where he conceived of the laws of
gravitation as applying universally to all objects. His law explained the astronomical laws of planetary motion
derived by Keppler from the observations of Copernicus, and his friend Edmund Halley used the law to predict

the return of a comet. Paradoxically, Newton, whose object was to prove the existence of God (his religious
writings exceed those of his scientific writings), laid the foundations of a mechanistic, atheistic explanation of
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nature.

Newton’s occult hermetic and alchemical pursuits of element transmutation led to the explosive destruc-
tion of his laboratory at Trinity College in 1694. An atomist (believer in the discrete nature of matter), he eluci-
dated the nature of light using both corpuscular (particle) and wav e models. This, together with his vacillation
throughout his career between action at a distance versus action through an intervening corpuscular aether pre-
saged the Twentieth Century notion of duality of existence.
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Classical mechanics is founded on a model of finite particles moving in an absolute and
independent framework of space and time.2 The structure and motion (i.e. the ‘‘state’’) of
particles of matter are described in terms of coordinates, or positions of the component parts
of position r(t) relative to a point in space called the origin and distances and directions from
the origin. The bold notation serves to denote an array of component parts, r = [ri], or in vec-
tor notation →r = Σ ri

→ei, where →ei is the unit length along an axis. A Cartesian coordinate sys-
tem uses orthogonal (perpendicular) lines (axes) to measure the distances and directions of a
point relative to the origin (cf. Section 3.3). Directions may also be measured in terms of a
distance from the origin (radius) and angles of rotation about axes in polar coordinate sys-
tems (Fig 3.1). In three dimensions r = [x, y, z] = [r,θ , φ ], or
→r = x

→
i + y

→
j + z

→
k = r→er + θ →eθ + φ →eφ . Polar coordinate systems are useful for describing the

dynamics of particles which interact along lines connecting them together.
Motion adds the dimension of time to space and is measured in terms of changes, or dif-

ferences (cf. Section 3.11). The rate of change of (linear or angular) distance with time is a
measure of the velocity of an object, specifically

v = ṙ ≡
dr
dt

(5. 1)

Note that instantaneous derivatives are related to tangent slopes and finite differences refer to
av erage values, as discussed in Section 3.3. Newton and Leibnitz invented the calculus to
describe the motion of systems. The dot notation represent derivatives is Newton’s while the
d notation is Liebnitz’. Speed is the magnitude of velocity which we denote by symbol v to
avoid ambiguity with the SI symbol for seconds, s. The components of velocity in Cartesian
coordinates are [ẋ, ẏ, ż] whereas in polar coordinates they are [ṙ, θ̇ , φ̇ ].

Acceleration is defined as the change in velocity during a time interval,

2 ‘‘Give me matter and motion, and I will construct the universe,’’ said Descartes. Modern physics has modi-
fied all these notions, as discussed below.
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a = v̇ (5. 2)

Note that acceleration can be due to a change in velocity direction as well as change in veloc-
ity magnitude. Thus a particle moving at constant speed along a curve, such as a swinging
rock tied to one end of a string, experiences an acceleration due simply to the change in
direction of the velocity. If r is the radius of curvature of the curve (e.g. radius of a circle), it
can be shown that the magnitude of the acceleration due to change in direction of velocity is

a =
v2

r
. Any change in magnitude of angular velocity would add to this term.

Example 5.1 In 1904 Henry Ford drove an automobile one mile in 39.40 seconds.
What was his average speed in mi/hr?
Speed is velocity without regard to direction. His speed probably wasn’t constant, but
the definition of velocity can be used to calculate the average speed of his run. Convert-
ing the units gives

average speed =
∆d
∆t

= (
1 mi

39. 40 s
) × (

60 s
1 min

) × (
60 min

1 hr
) = 91. 37

mi
hr

Not bad for 1904!
Example 5.2 Compare the average acceleration of an automobile which accelerates uni-
formly from 0 to 60 mi/hr in 6.3 s to the acceleration of gravity of a freely falling object,
32 ft/s2.
From the definition:

average acceleration =
∆v
∆t

= (
60 mi/hr − 0 mi/hr

6. 3 s
) × (

5280 ft
1 mi

) × (
1 hr

3600 sec
) = 14. 0

ft
s2

or about 0.44 ‘‘g’’.
Mechanics formulates the laws of motion in terms of resistance to change in amount or

direction of motion, called inertia. The amount of inertia of a body is measured by a quantity
called mass (m) for linear motion, and moment of inertia (I) equal to mass times distance to
the origin squared for angular motion. The central quantity of Newtonian motion is momen-
tum, p, defined for both linear and angular motion as the product of inertia and velocity.
Common symbols are p (somewhat ambiguous) and l for linear and angular momentum,
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respectively. Thus

plinear ≡ mvlinear ≡ p (5. 3a)

pangular ≡ Ivangular ≡ l (5. 3b)

The fundamental law of a body which resists acceleration due to inertial mass is Newton’s
‘‘Second Law of Motion’’, or definition of force as the rate of change of momentum (angular
force, called torque may be denoted by n)

f = ṗ (5. 4)

The Newtonian mechanics program is: identify the functional forms for the forces acting on a
body and solve the (differential) equations of motion to determine positions as a function of
time (trajectories). For bodies whose mass remains constant, Newton’s Law of linear motion
takes the famous form f = ma.3 When no forces act on a body, momentum remains constant
(according to the rule that the derivative of a constant is zero), and a constant-mass system
continues its course with constant velocity. This special case of Newton’s Second Law is
called Newton’s First Law, but was inherited by Newton from his predecessor, Galileo.4

Systems are classified according to the forms of the forces they experience. Simplifying
assumptions in particle mechanics are that interactions somehow act over space (‘‘action at a
distance’’), and that the interactions of complex systems can be broken down into interactions

3 Since f =
dp
dt

=
dmv
dt

= m
dv
dt

= ma according to the rules for the derivative of a product and the derivative

of a constant as discussed in Section 3.11.
4 Galileo Galilei (Italian, 1564-1642) deduced that freely falling objects fall with constant acceleration inde-

pendently of mass, that swinging pendulums could measure constant time intervals independent of amplitude,
and that the Milky Way consists of a galaxy of stars independent of our solar system. His invention called the
telescope permitted him to remark ‘‘I now hav e visual proof of what I already knew through my intellect,’’ but
threatened the clergy who refused to view a potentially imperfect heaven, which led to a crisis between the
Church and Galileo. The Church inquisitioned, Galileo recanted, and lived out his last years under house arrest.
Newton paid tribute to Galileo (and Descartes and Keppler) in his laconic comment to his rival Robert Hooke,
‘‘If I have seen further than you and Descartes it is by standing upon ye sholders of Giants.’’
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between two particles at a time.5 Three examples of central (no angular dependence) forces
having simple mathematical forms (variable and parameter dependencies) deduced from
observations are Isaac Newton’s 1666 Law of Gravitational Attraction of inertial bodies,
Robert Hooke’s 1678 Law of Elastic Force of springs and Charles Coulomb’s 1784 Law of
Electrostatic Force of charged particles.

Newton’s Law of Gravitation has the mathematical form that the force is proportional to
product of the masses (m) of two bodies (the parameters), and falls off proportional to the
square of the separation (r) between them (the variable).

fgravitational = − G
m1m2

r2
12

, (5. 5)

where G is an universal constant equal to 6. 67259 × 10−11 N m2kg−2 called the gravitational
constant.6

Example 5.3 Deduce the mass of the earth from knowledge of the magnitudes of the
acceleration of objects at the surface of the earth and the earth’s radius.
An object of mass m at the surface of the earth experiences a mean acceleration of
g = 9. 80665 m/s2. The mean radius of the earth at the equator is Rearth = 6378. 140 km.
Of course the earth is not exactly spherical, due in part to expansion of at the equator
from rotational centrifugal forces of 21 km (.33%) over that at the poles. The equitorial
radius represents that of the majority of the earth, however. In identifying Rearth with r12
in Eq. 5.5, an assumption has been made that the earth acts as a single central particle of
mass equal to that of the entire earth.7

Applying Newton’s inertial law to gravitation:

f = ma = mg =
GMearthm

R2
earth

5 Holistic descriptions view all parts of the universe as internetworked and interacting simultaneously.
6 The experimental value of G may be determined directly by measuring the force of attraction of two ob-

jects of known masses.
7 In fact an object at the surface of the earth experiences gravitational attraction to all the particles distributed

throughout the earth. Newton struggled with this assumption for some time, and finally justified it with a proof
employing his recently invented method of calculus.
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we find (1 N = 1 kg m s−2)

Mearth =
gR2

earth

G
= 5. 979 × 1024 kg

to the accuracy of the equitorial radius approximation.
Coulomb’s Law of Electricity shares a common mathematical form with gravitation,

with charges (q) replacing masses:

felectrical = ke
q1q2

r2
12

, (5. 6)

where ke =
1

4π ε 0
, and ε 0 = 8. 85418 × 10−12C2/(Nm2) in SI units.8 While gravitational force

is always attractive (since mass is always positive), electrical force can be attractive (for
charges having opposite signs) or repulsive (for charges having the same sign).

Example 5.4 Find the ratio of electrostatic to gravitational interaction between two
electrons (masselectron = 9. 10939 × 10−31 kg, chargeelectron = 1. 602177 × 10−19 C).
From Coulomb’s and Newton’s Laws:

felectrical

fgravitational
=

kq2
electron

Gm2
electron

= 4. 1667 × 1042

and we see that gravitational forces are negligible compared to electrostatic forces for
the smallest charged particles. Classical mechanics assumes that properties of matter
like mass and charge are additive (the total amount is the sum of the part amounts).
This means that while atoms and molecules may be held together by net attractive elec-
trical forces of their subatomic particles, macroscopic matter is usually electrically neu-
tral, leaving gravitational forces (which are only attractive and accumulative) as the
dominant interaction.9

8 The unit of charge in SI units is the Coulomb (C), defined as one Ampere times one second (C = As). Oth-
er systems of units (Gaussian units) set k to unity.

9 A counterexample is a toy balloon which sticks to a wall after being rubbed against a piece of clothing.
Sufficient electrical charge is transferred between the balloon and clothing to render an imbalance which, in
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Hooke’s Law of Elastic Force simply states that the restoring force of a spring is propor-
tional to the stretch or displacement r from a resting, or equilibrium position of the spring:

fspring = − ksr, (5. 7)

where ks is the restoring force proportionality constant, a  parameter characteristic of the sys-
tem. An inertial system (mass) with elastic restoring force experiences an harmonic (oscilla-
tory) motion.

Example 5.5 Analyze the motion of a mass attached to a spring which is described by
Hooke’s Law that the restoring force is proportional to the stretch of the spring.
From Newton’s Law:

f = ṗ = mv̇ = mr̈ = − kr

where m, the mass of the spring, and k are parameters characteristic to the physical
properties of the spring. Dividing the last equality by m on both sides, we are led to
seek a function whose curvature (the double dot signifies second derivative with respect
to time) is proportional to itself. The trigonometric sin and cosine functions have this
property, for, as Table 3.1 shows, the first derivative of one of these is converted into the
other (with a possible sign change) and thus the second derivative converts it back
again.10 Sinusoidial motion is periodic, in that a given amplitude is repeated periodi-
cally after a certain time interval called the period. Such a system is called a simple har-
monic oscillator, and plays an important role as a model for periodic motion. This
model is developed in Section 4.4. The general motion solution to Newton’s equation is

f(t) = A sin (√ k
m

t) + B cos (√ k
m

t)

where A and B are arbitrary constants determined by the initial conditions of amplitude
f and velocity ḟ of the oscillator at t = 0. For example, a spring stretched out to a value

turn, induces an imbalance in the wall (polarization) with a resulting attraction to the wall sufficient to overcome
the gravitational attraction of the balloon to the earth.

10 The exponential function with imaginary argument also satisfies the equation of motion. The various so-
lutions are related by Euler’s identity exp ix = cos(x) + i sin(x).
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of B units and released from zero velocity at time zero vibrates with time as11

f(t) = B cos (√ k
m

t)

Since sin (θ + 2π ) = sin (θ ) the amplitude returns to its previous value after period of
time τ (Greek tau) equal to 2π √ m/k. The linear frequency of oscillation ν (Greek nu) is
the inverse of the period of oscillation. The angular frequency of oscillation ω (Greek
nu) equals 2πν

ω = 2πν =
2π
τ

= √ k/m (5. 8)

5.3. Energy
Invariance or constancy of a quantity is referred to as conservation of the quantity. For

example, the law of conservation of momentum means that momentum remains constant with
time. Conservation reflects an appealing basic symmetry of nature generates sweeping gener-
alizations regarding behavior. Formulating problems to reveal conserved quantities (for
example by coordinate transformation) reduces them to simpler problems with straightfor-
ward solutions.

There is a price to pay for everything, and in a cause and effect there is a loss of poten-
tial in that which causes the effect equivalent to the gain of potential in that which is affected.
In mechanics, energy, E is the currency of change and measures the ability to induce motion
in systems. In the 15th Century, Leonardo recognized that the imposition of a force external
to an object causes a change in the object. This led to the definition of work done on a sys-
tem by an external force as the accumulation (integral) of force and displacement, compatible
with the notion of a change in potential energy, PE if (potentially multicomponent) force is

related to potential energy through a (potentially multicomponent) derivative, fi = −
∂PE(r)

∂ri
:

11 Recall that sin(0) = 0 and cos(0) = 1, so f(0) = B and ḟ(0) = A.
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f = − ∇PE(r) (5. 9a)

PE(r) = − ∫ f(r) ⋅ dr (5. 9b)

wPE ≡
f

i
∫ f(r) ⋅ dr = − PEf − (−PEi) = − ∆PE (5. 10)

Leibnitz deduced in 1686 that when work results in motion, there is a change in another

quantity called kinetic energy, KE. From Newton’s law, f = ma ≡
∆v
∆t

and dr = vdt

KE ≡
mv2

2
=

p2

2m
(5. 11)

wKE ≡
f

i
∫ f ⋅ dr =

f

i
∫ m

dv
dt

vdt =
mv2

f

2
−

mv2
i

2
= KEf − KEi = ∆PE (5. 12)

Kinetic energy is due to motion of objects while potential energy is due to interactions
between objects.12 The universal law which relates kinetic energy to potential energy is that
the sum of the potential and kinetic energies, or total energy, of any isolated system is a con-
stant (conserved). Equating the two expressions for work in terms of energy leads to the law
of conservation of energy.

WKE = wPE

12 Alternative notation is T for KE, V for PE, and H for E. We reserve T for temperature and V for volume.
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KEf − KEi = PEi − PEf

KEi + PEi = KEf + PEf = Etotal

Since the total energy is the same for the final and initial states, it remains constant (con-
served).

Etotal ≡ PE + KE = constant (5. 13)

This is the Law of conservation of energy which governs all known objects of all kinds.
From this law the description of the state and motion of objects may be determined.

While kinetic energy is absolute (zero at zero velocity), potential energy is relative in
the sense that it measures attractions and repulsions and is characteristic of the type of inter-
action, including the gravitational attractions between all material objects (having mass), and
electrostatic attractions and repulsions between charged objects (opposite charges attract and
like charges repel). As the strength of interactions (usually) depends on distance, potential
energy is a function of separation. The magnitude of the energy of a system must be defined
in terms of some defined zero. In the case of gravitational or electrostatic interactions, it is
convenient to define the zero of energy to be at infinite separation, in the case of vibrating
systems, the zero of energy occurs at equilibrium (rest). The only truly absolute energy
would be the total energy of the universe, an obviously difficult quantity to determine.

Gravitational and electrostatic potential energy fall off inv ersely with distance, while
that of a spring (oscillator) increases with stretching. The functional form of potential energy
is derived from that of force using Eq. (5.9b). For Eqs. (5.5) through (5.7)

PEgravitational(r) =
kg

r
, kg ≡ − Gm1m2 (5. 14a)

PEelectrical(r) =
ke

r
, ke ≡ q1q2 (5. 14b)

PEoscillation(r) = kor2, ko ≡ mω 2 (5. 14c)

The proportionality constants contain the parameters (constant for a given system) for
each type of system.
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Fig. 5.1 compares these potential energy forms.

r

Oscillation

Gravity

Electrical repulsion

PE(r)

Electrical attraction

Fig. 5.1 Potential Energy for Typical Systems

Example 5.6 The change in gravitational potential energy of an object of mass m
changing its altitude by ∆h near the surface of the earth of radius RE >> ∆h can be
derived from the general expression Eq. (5.14a):

∆PE = − GmME(
1
Rf

−
1
Ri

) = − GmME(
Ri − Rf

RiRf
) = GmME(

∆h
RE(RE + ∆h)

) ≈ mg∆h, (5. 15)

where g ≡ GME/R2
E is the gravitational constant on Earth, 9.80697 m/s2 using the

data of Example 5.3. This relation expressing the work needed to raise an object in
the gravitational field was first mentioned by L.M.N. Carnot in 1803.
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Example 5.7 A simple example of a child’s swing illustrates energy concepts.
Fig. 5.2 shows the potential energy of an oscillating system. At rest the swing is at min-
imum potential (gravitational) energy, set arbitrarily to zero. If it is raised (by some
input energy source) to a higher point it acquires additional potential energy. In the
gravitational field the all the energy is potential energy with the value mg∆h according
to Eq. (5.15). When released, the swing falls as gravitational potential energy is con-
verted into kinetic energy. In motion, the maximum kinetic energy is realized at the bot-
tom of the course of the swing where all the potential energy available is converted into
kinetic energy (further fall is constrained by the rope). Conversely, at the top of the
course of the swing all the kinetic energy is converted back into potential energy. The
proof is that the velocity must pass through zero as it changes direction, and the kinetic
energy becomes zero according to Eq. (5.11). At any point along the course of the
swing the sum of the potential and kinetic energies is a constant (Eq. (5.13)). If no
energy is lost from the system, the swing continues its motion forever. This is an ideal
situation which assumes the swing is isolated, and ignores any interactions with its envi-
ronment, such as connections to the support, atmosphere, etc. These interactions in a
real case are called friction and dissipate energy of the swing to its surroundings, caus-
ing the motion of the swing to eventually cease. However, even in the real situation the
total energy of the larger system is conserved.

PE(r)

PE = Etotal, KE = 0

PE = 0, KE = Etotalr

Fig. 5.2 Energy of an Oscillating System
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It is possible to determine the maximum velocity of the swinging object from the law of
conservation of energy. At the top of the swing trajectory,

Etotal = PE = mg∆h

while at the bottom

Etotal = KE =
1
2

mv2
max

Equating the two expressions for the total energy and solving for velocity gives

vmax = √ 2g∆h

The higher the swing starts out, the greater the velocity at the bottom (but not propor-
tionately). The fact that the motion of a swinging object is independent of the length of
the connection to the support was first noticed by Galileo.13

Transforming from force to energy provides certain advantages to the analysis of
mechanical systems. Mathematicians in the Nineteenth Century transformed Newton’s law,
which is a set of second-order differential force equations in N variables, into a set of 2N
first-order differential energy equations. The total energy is symbolized by H and called the
hamiltonian of the system, in honor of Sir William Rowan Hamilton who developed the
energy form of mechanics in the 1830’s. The space of variables is generalized displacements
q ≡ {qi} and corresponding momenta p ≡ {pi} where p and q are shorthand representations
standing for all their components. The q could be Cartesian coordinates, polar coordinates, or
any others convenient to the description of the system. The set of displacement and momen-
tum variables is called phase space.

For any function f(x) of a set of variables x ≡ {xi} which are themselves functions of
another variable x(y), by the chain rule of differentiation (Section 3.11), the total derivative of
f is the sum of an implicit derivative and an explicit derivative:

df
dy

=
i
Σ ∂f

∂xi

∂xi

∂y
+

∂f
∂y

(5.16)

13 Supposedly from observing the motion of swinging chandeliers in a cathedral during mass.
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The partial derivatives denoted by the symbol ∂ simply means all variables other than those
with which the derivative is being taken (e.g. xi) are held constant. Since the total energy of
a system is in general a function of all the variables of phase space as well as the time,
H(p,q,t). According to the chain rule the total derivative of energy with respect to time is

dH
dt

=
i
Σ(

∂H
∂pi

ṗi +
∂H
∂qi

q̇i) +
∂H
∂t

(5. 17)

where the dot denotes time derivative (Newton’s notation). For systems for which the energy

is conserved (constant in time)
dH
dt

=
∂H
∂t

= 0, H = H(p,q), and Eq. (5.17) is satisfied if the

summation terms are each zero as well. Since q̇iṗi − ṗiq̇i ≡ 0 this will be ensured for

q̇i = +
∂H
∂pi

(5. 18a)

ṗi = −
∂H
∂qi

(5. 18b)

From the symmetry of the equations is is easy to see why pi and qi are called conjugate vari-
ables. Eqs. (5.18) are 2N first-order differential equations called Hamilton’s equations.
Hamilton’s equations are equivalent to Newton’s N second-order equations Eq. (5.4), and
form an alternate approach to mechanics in terms of potential energy instead of force. Thus

for H(p, q) = KE(p) + PE(q) =
p2

2m
+ PE(q)

q̇i =
∂H
∂pi

=
∂KE(p)

∂pi
=

∂(
p2

2m
)

∂pi
=

p
m

ṗi = −
∂H
∂qi

= −
∂PE(q)

∂qi
= f

The first equation is the definition of momentum, Eq. (5.3), while the second is Newton’s law
of force by Eqs. (5.4). The second equation also explains Eq. (5.9).
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Example 5.8 Analyze the motion of a mass attached to a spring which is described by
Hooke’s Law in energy form.
There is only one coordinate, the displacement, which we will identify by q. According

to Eqn. (5.14c) the hamiltonian is then H(p, q) = KE(p) + PE(q) =
p2

2m
+

kq2

2
. Hamil-

ton’s equations of motion of the spring, Eqs. (5.18), become

q̇ = +
∂H
∂p

=
p
m

ṗ = −
∂H
∂q

= − kq

Taking a second derivative of the first equation, we have

q̈ =
ṗ
m

= −
k
m

q

which is identical to Newton’s equation for the spring given in Example 5.5 and there-
fore has the same solution.
Since the last example ends up with the same mathematical equations as Newton’s

approach to mechanics, one might wonder what the advantage of Hamilton’s approach is.
Hamilton’s equations show directly that any variable which does not appear in the hamilto-
nian will lead immediately to a conservation law for that variable since according to Eq.

(5.18b) ṗi = −
∂H
∂qi

= 0 => p = constant. Conservation is a very fundamental property of a

system having to do with symmetry. Symmetry considerations permit immediate separation
of a complex problem into simpler problems. This will be illustrated in the next section.

5.4. N-Body Mechanics
Thus far we have considered the interactions of two bodies (particles). The analysis of

the motion of more than two interacting bodies does not admit mathematical solutions in
closed form for the general case. Then how does one treat even a three-body problem, such
as the earth-sun-moon motion? It is necessary to resort to numerical solutions for which the
electronic computer was developed in the Twentieth Century. Howev er it is always possible
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to separate a multiple-body problem into internal and external parts, which can be treated
separately. This leads to the concepts of reduced mass and center of mass. We will develop
the equations of motion for a two-body system to illustrate how motion separates.

If the interaction potential between two bodies depends only on the distance between
them, it proves beneficial to transform from Cartesian coordinates to center of mass coordi-
nates. Given

r2
12 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Let {X,Y,Z} be center of mass coordinates and {x,y,z} be internal coordinates defined by:

X ≡
m1x1 + m2x2

m1 + m2
Y ≡

m1y1 + m2y2

m1 + m2
Z ≡

m1z1 + m2z2

m1 + m2

x ≡ x2 − x1 y ≡ y2 − y1 z ≡ z2 − z1

The kinetic energy is then given by

KE =
1
2

(m1 + m2)(Ẋ2 + Ẏ2 + Ż2) +
1
2

(
m1m2

m1 + m2
)( ̇x2 + ẏ2 + ż2)

The quantity M ≡ m1 + m2 is the total mass of the system and quantity µ ≡ m1m2/(m1 + m2)
is called the reduced mass of the system. The total energy of the two-body system is

E =
1
2

M(Ẋ2 + Ẏ2 + Ż2) +
µ
2

(ẋ2 + ẏ2 + ż2) − PE(x, y, z)

Since the center of mass coordinate (X,Y,Z) dependency is separated from the internal
coordinate (x,y,z) motion, Hamilton’s equations of motion lead to

MẌ = MŸ = MZ̈ = 0

µẍ = −
∂PE
∂x

µÿ = −
∂PE
∂y

µ z̈ = −
∂PE
∂z

The first equation describes the motion of a body of mass equal to the total mass of the sys-
tem which responds to any external forces (none in the case of an isolated two-body system).
Interaction potentials which depend only on separation and not orientation suggest transform-
ing to coordinates which reflect the symmetry of the system. If the internal coordinates are
transformed to spherical polar coordinates a further separation of motion results.
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x = r sin(θ ) cos(φ )

y = r sin(θ ) sin(φ )

z = r cos(θ )

The internal motion is determined by the internal Hamiltonian

E =
µ
2

ṙ2 +
µ
2

r2θ̇ 2 +
µ
2

r2 sin2(θ )φ̇ 2 + PE(r)

We need to express the Hamiltonian in coordinates and generalized momenta p, where

p ≡
∂KE
∂q̇

so that

pr = µ ṙ

pθ = µr2θ̇

pφ = µr2 sin2(θ )φ̇

The internal motion Hamiltonian then is

E =
p2

r

2µ
+

p2
θ

2µr2
+

p2
φ

2µr2 sin2(θ )
+ PE(r) (5.19)

Hamilton’s equations of motion for momenta (5.18b) then yield

ṗr =
p2

θ

µr3
+

p2
φ

µr3 sin2(θ )
−

∂PE(r)
∂r

ṗθ =
p2

φ cos(θ )

µr2 sin3(θ )

ṗφ = 0

The third equation states that the angular motion about the z axis is conserved (constant) and
therefore the motion must lie in a plane perpendicular to the z axis with φ = π /2. The motion
thus reduces to that in a plane described by plane polar coordinates r and θ . The first equa-
tion determines the internal motion according to the form of PE(r). Note that viewed as as a
Newtonian force equation (cf. Eq. (5.4)), there is an additional force due to rotation (Corliolis
force). If r is constant, pr = 0 and the first equation of motion describes pure rotation of a
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system with a rotational ‘‘mass’’ equal to the moment of inertia I ≡ µr2 and angular momen-

tum squared p2
angular ≡ p2

θ +
p2

φ

sin2(θ )
. Hamilton’s equations of motion for coordinates (5.18a)

can be invoked to show that the total angular momentum is constant (conserved), even in the
general case where r is not constant. Since the angular motion is conserved the internal
motion is determined by the interactive potential. This is what has been assumed for the two-
body gravitational, electrostatic and elastic potentials in the previous sections.

It is instructive to apply the equations of motion to two bodies connected by a potential
such as that describing a spring, as this is a classical model for a diatomic molecule. In the
general case, the molecule undergoes both rotation and vibration and is called a rot-vibrator.
The effect of rotation is to add a rotational ‘‘barrier’’ to the quadratic potential and the first
equation of motion has the form ṗr = − ∂V(r)effective/∂r with

V(r)effective = V(r) +
p2

angular

2I(r)
(5.20)

To a first approximation (where I is assumed to be constant) the total energy is the sum of
two terms, one describing the vibration and the other describing the rotation.

5.5. Field Mechanics
Gravitational, electrical and magnetic interactions were observed anciently. These

forces acting over distance suggest some connection between objects over space. This spatial
extension of influence is called a field. Light does not appear at first to be related to mechan-
ical and electrical forces, but does share with them the ability to cause change. We might say
they all contain or convey energy. The discovery in the Nineteenth Century that electricity,
magnetism and light could be unified into one model generated a quest for a unified field the-
ory for all interactions in the twentieth.

Newton made equally profound contributions to the understanding of light as he did to
material objects. Newton used both a ‘‘corpuscular’’14 or particle model to explain some
aspects of the behavior of light, such as shadows (linear motion), reflection (returning from

14 A term first coined by Robert Boyle in 1666 to describe the atomic particles of matter.
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an interface) and refraction (bending through an interface), and a wav e model of light to
explain others, such as interference (regions of increased and decreased intensity of merging
beams) and color. Using a simple prism he demonstrated that light from the sun is not one
color but rather consists of a dispersion or ‘‘spectrum’’ of colors as seen in rainbows. The
various colors were associated with characteristic wav elengths of a periodic disturbance of a
transmitting medium, called the luminiferous aether. Newton correctly determined the
wavelengths of visible light to be of the order of fractions of a micrometer (millioneth of a
meter). The wavelength, λ (Greek lambda) is the distance between recurring peaks of inten-
sity along the direction of propagation; the frequency, ν (Greek nu, pronounced ‘‘new’’)
measures the rate of repetition to a stationary observer as the wav es pass by. Frequency and
wavelength are related through the velocity of the disturbance, given the symbol c in the case
of light:15

λν = c (5. 21)

Because there is an inverse relationship between wav elength and frequency, the proportional-
ity factor c acts as a conversion factor as depicted in Fig. 5.3.

15 The velocity of light (in a vacuum), c = 299,792,458 m/s.



Field Mechanics 81

1/frequencywavelength

c

Fig. 5.3 The Wav elength/Frequency Conversion Map

Example 5.9 What frequency of light corresponds to red light of wav elength 700 nm?
By Eq. (5.21)

700 nm (
1 m

109 nm
)(

1 sec
2. 998 x 108 m

) = 2. 335 x 10−15 s =
1
ν

Therefore, ν = 4. 28 x 1014 s−1.
In the Nineteenth and Twentieth Centuries the wav e model of light was extended to

regions beyond the visible spectrum to wav elengths longer than those of red light, or infrared
light (corresponding to thermal, or heat radiation), having wav elengths up to a millimeter,
and to shorter than violet, or ultraviolet light, with wav elengths ranging down to nanometers.

In 1856 James Clerk Maxwell16 developed an unified theory of electricity, magnetism
and light based on a model of radiating ‘‘electromagnetic’’ wav es generated by the accelera-
tion motions of oscillating charges.17 The discussion of wav e models in Chapter 4 describes

17 James Clerk Maxwell (Scottish, 1831-1879) ranked with Newton as a mathematical physicist, published
his first mathematical paper at age 14, won the Adams Prize at age 25 for proving that the rings of Saturn could
not remain solid under their mutual forces, developed unified theories of heat and of electricity, magnetism, and
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some of the mathematical relationships for wav es. Maxwell’s electromagnetic spectrum
ev entually included microwave and radio wav es having wav elengths ranging between cen-
timeters to kilometers, and x-rays and gamma rays with wav elengths down to picometers and
femtometers, respectively. Wav es tend to bend around obstacles producing diffraction pat-
terns of alternating intensity with spacing equal to the wav elength and falling off with dis-
tance from the obstacle. Radio wav es are long enough to be detected behind sizable obsta-
cles, but microwaves used for television transmission require direct visibility to the source for
good detection. Visible light diffraction patterns are too small to have been detected in New-
ton’s time although interference patterns from thin films such as soap bubbles could be seen.

A profound consequence of Maxwell’s model was that the velocity of propagation of
electromagnetic disturbances was both finite and absolute. Maxwell’s model is a theory of
fields of influence, distinct from particle models. It stimulated the development of two Twen-
tieth Century refinements of mechanics, quantum mechanics and relativistic mechanics. It
relied on the existence of a medium (the ether) which had the conflicting properties of con-
veying disturbances such as light with enormous velocities yet allowing material objects to
pass insensibly through it. Thus ether was some kind of medium apparently having simulta-
neously very high as well as very low density. The resolution of this dilema and the explo-
ration of an absolute value for the velocity of electromagnetic radiation led us into the revolu-
tions of modern physics.

5.6. Relativistic Mechanics
In Newtonian mechanics, space and time provide a framework for the motion of parti-

cles. Their supposed independence from each other and from objects was reevaluated near
the beginning of the Twentieth Century by Albert Einstein18, who generalized Newtonian

light, succumbed to cancer at the same age of his mother, 48.
17 Light was added to the electromagnetic theory upon discovery that the speed of propagation of electro-

magnetic wav es (equal to the ratio of the electromagnetic to electrostatic units of charge) is the same as the
measured speed of light.

18 Albert Einstein (German, 1879-1955) considered with Isaac Newton as the greatest physicists of all time.
Published three seminal papers in 1905 on special relativity, Brownian motion and the photoelectric effect.
Aw arded the Nobel Prize in physics in 1921 for the latter, as relativity was not yet verified. There was only one
book found in Einstein’s office after his death, and that had been left by a previous occupant.

Among his less famous numerous 1905 publications is his doctoral dissertation, titled (in English transla-
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mechanics to relativistic mechanics. The basic notions of relativistic mechanics are rooted in
common experience, such as the effects of elevators on objects. At rest or moving at constant
velocity, Newton’s Law of gravitation applies. Acceleration downward at the value of the
acceleration of gravity cancels the effect of gravity, whereas acceleration upward at the same
value doubles the gravity force. Thus acceleration isolated in space produces the same
effects as gravity. Einstein’s contribution was to explain the equivalence of inertial and gravi-
tational mass, called the principle of equivalence.19

The object of relativistic mechanics is to cast the laws (equations) of physics into forms
which are are independent of the motion of the frame of reference (same or ‘‘covariant’’
form).20 For frames of reference which move at constant relative velocity (Galilean frames),
this is achieved through recognition of the equivalence of space and time (the ‘‘fourth dimen-
sion’’). For frames of reference in relative acceleration, this is achieved through recognition
of the curvature of space/time due to motion or matter. Universal law (independence of
frames of reference) was assumed in Newtonian mechanics, but the assumption of the univer-
sality of the speed of light in a vacuum from electromagnetic mechanics suggested the erro-
neous notion that absolute motion could be detected.21 However, all attempts to detect abso-
lute motion of say, the earth through space (or the ether) were doomed to failure, as Einstein
showed in 1905.

Consider a falling object in a frame of reference which is in constant motion with
respect to a second frame of reference, which in turn may be considered stationary with

tion) A New Determination of Molecular Dimensions.
19 Weightlessness in an orbiting space station and its rotation to produce ‘‘artificial’’ gravity are applications

of the principle of equivalence.
20 ‘‘Motion is like nothing.’’ Galileo, 1638. ‘‘The laws of physics must be of such a nature that they apply to

systems of reference in any kind of motion.’’, A. Einstein, 1916.
21 Conceptually, Newton’s equations of particle mechanics are relativistic in the sense that f = ma involves

acceleration, or change in velocity. Hence objects moving with respect to each other at constant velocity experi-
ence the same laws of motion. Hence apples accelerate toward the earth the same way the moon does to keep it
from flying out of its orbit; thus comets, solar systems, stars and galaxies obey t he same laws of gravitation.

The unification of electric and magnetic phenomena through Maxwell’s equations of electromagnetic field
mechanics (not given here: see a text on electricity and magnetism) involve velocity and are only relativistic in
the sense that a moving charge (changing electric field) generates a magnetic field (Ampere’s Law) and a mov-
ing magnet (changing magnetic field) generates an electric field (Faraday’s Law).
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respect to the moving frame. In the moving frame it appears to fall vertically a certain dis-
tance in a given time, but in the stationary frame, the motion of the moving frame causes it to
appear to fall diagonally for a longer distance in the same time (cf. Fig 5.4). If however, the
object is a beam of light, according to the postulate that the speed of light is an universal con-
stant in all frames of reference, the object must take a longer time to fall the further distance
in the stationary frame than in the moving frame. The time dilation factor may be computed
from an application of the Pythagorean theorem to the situation as depicted in Fig. 5.4, in
which primed quantities refer to the moving frame and unprimed quantities refer to the sta-
tionary frame, and the velocity of light, c, has the same value in both frames.

(ct)2 = (ct′)2 + (vt)2

1 = (
t′
t

)2 + (
v
c

)2

t
t′

=
1

√ 1 − (
v
c

)2

(5.22)

Of course, from the vantage point of the moving frame, the stationary frame appears to be
moving, and hence appears in the moving frame to have a time dilation. Each observer
would claim that the other’s clock is running slow!

Note that time dilation refers to intervals of time. Relativity makes a similar statement
about intervals of distance: lengths appear to be contracted in frames moving relative to an
observer’s frame. The relative velocity (which is common to both systems) refers to distance
traveled by the moving system during a time interval measured in the moving system.

v =
x
t′

=
x′
t

Hence

x
x′

=
t′
t

= √ 1 − (
v
c

)2 (5.23)

which is less than unity for 0 < v < c.

Thus as velocity approaches the speed of light, mass increases, time slows down and space
contracts.
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Relativity asserts the impossibility to detect absolute motion. Detection connotes trans-
mission of information. The pitch of a sound generated on a moving vehicle (train, automo-
bile, etc) changes as it approaches and recedes from a stationary listener. This is due to the
fact that sound information is conveyed by colliding molecules whose velocities are additive
with that of the source. Not so with electromagnetic radiation which conveys information at
a universal speed independent of the motion of the source. Thus, two observers in relative
motion should both observe information radiating outward at velocity c in a sphere of the
form

x2 + y2 + z2 = c2t2

Einstein applied the equations of special relativity to Newtonian mechanics and was led to
correction terms to the kinetic energy of particles.

∆E = c2∆m (5. 24)

∆ (delta) refers to change, as usual, from initial state to final state. This result from special
relativity states that there is a proportionality between a change in mass, ∆m, and change in
energy with the proportionality constant equal to the square of the velocity of light, c.

Consideration of invariance of equations of motion in frames in relative acceleration led
Einstein to the theory of general relativity in 1916. Acceleration or equivalently mass warps
or curves space-time coordinates. Four consequences of general relativity have supporting
experimental evidence: a slight bending of light passing by massive celestial objects, a slight
slipping (advance of perihelion) of the orbit of planets, a slight shift in frequency of light near
massive celestial objects, and the expansion of the universe. While of cosmological signifi-
cance, these effects are minimal for non-gravitational systems such as atoms and molecules.

5.7. Quantum Mechanics
Experiments in 1887 by Heinrich Hertz confirmed Maxwell’s speculation that electro-

magnetic radiation of all types (including light and heat) traveled with the same speed. A
bonus was the discovery of that light could stimulate the generation of an electric current, or
flow o f electrons through space from active metals (like cesium), called the photoelectric
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effect. Exploration of the photoelectric effect showed that the strength of current, or number
of electrons generated over time, is proportional to the strength or intensity of light. But the
kinetic energy of the electrons is independent of intensity of light and depends instead on the
frequency of the light. Electrons are produced above a threshold frequency characteristic of
the active metal with varying kinetic energies up to a maximum value which is proportional
to the frequency of the stimulating light. The proportionality constant was found to have the
same value as that discovered by Max Planck22 in 1901 in his quantum mechanical23 expla-
nation of the distribution of heat radiation. According to Maxwell’s electromagnetic theory,
glowing bodies like the sun radiate a spectrum of light and heat frequencies. After identify-
ing a function which describes the energy distribution of glowing bodies empirically,24 Heat
radiation is based on a model of vibrating molecules which emit heat energy by changing
vibrational energy states. Planck discovered that the experimental energy distribution could
be explained only by restricting the molecular energy states to discrete values.25 In revolu-
tionary contrast to classical mechanics, which would permit a continuous distribution of
energy states, Planck found that vibrational energies were restricted to the values

En = nhν (5. 25)

where ν is the frequency of vibration, n is a positive integer, called a quantum number, and h
is a constant, now called Planck’s constant, with value 6. 626076 x 10−34 J s. Light emitted at

23 Max Karl Ernst Ludwig Planck (German, 1858-1947) already had an established career as a thermody-
namicist when he discovered an empirical equation that describes the spectrum of hot glowing bodies. Over the
winter vacation of 1900 he spent the most arduous weeks of his life deducing that the equation required discrete
or quantized motion of the oscillator model he used to describe the generation of the light spectrum. When Ein-
stein announced through independent analysis in 1905 that space was quantized, Planck retracted the quantum
hypothesis. In 1913 he wrote: ‘‘That [Einstein] may sometimes have missed the target in his speculations, as, for
example, in his theory of light quanta, cannot really be held against him.’’ After being awarded the Nobel Prize
in physics in 1918, Planck relented. One of his Planck’s sons was executed by the Nazis for attempting to as-
sassinate Hitler.

23 Latin: quantus, how much, mechanicus, machine.
24 That is, trying educated guesses.
25 The restriction resulted from retaining a finite integration interval (dx), rather than allowing the Newtonian

calculus limiting value of zero.
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frequency ν is due to a transition between adjacent energy states:

∆E = En+1 − En = hν (5. 26)

The reason radiation appears continuous to the most sensitive detectors is because of the
small magnitude of Planck’s constant.

In 1905 Einstein identified the kinetic energies of photoelectrons (electrons ejected from
active metals by ultraviolet light) with ∆E of Eq. (5.26). Einstein’s contribution26 was to
suggest that the radiation field (that is, space), or light itself is discrete (quantized). Einstein’s
‘‘hunks’’ electromagnetic energy were later dubbed light photons27 by G. N. Lewis. Eqs.
(5.25) and (5.26), which may be referred to as the Einstein-Planck equations, reflect a dual
nature of light. One side describes a discrete energy (photon) form and the other a field-based
frequency (wave) form.28

5.8. Wav e Mechanics
Wa ve mechanics was developed from a synthesis of field and quantum mechanics by

Erwin Schr"odinger29 in 1925. We will sketch how the quantum mechanical wav e equation is
related to classical wav e phenomena. Although the proper context is advanced mathematics,

26 Apparently totally independent of Planck’s, as indicated by the fact that Einstein’s publication makes only
a passing reference to Planck’s work as if an afterthought, perhaps suggested by a reviewer.

27 Greek: photos for light + on for stuff.
28 A simple observation demonstrates the particle nature of light; starlight is so dim that according to classi-

cal field mechanics if light were solely a wav e phenomenon, it would take more than a lifetime for the eye to ab-
sorb enough energy to detect the light from a star, yet bundles of energy delivered by particles of light may be
detected instantly. Another simple observation demonstrates the wave nature of light; squinting at a point
source of light produces interference patterns of alternating light and dark regions as the light passes through al-
ternate paths around the eyelashes, characteristic of the interaction of wav es.

Note that neither a wav e nor particle model of existence (or some combination) can be complete since each
requires spatial extension, hence some form of substructure. Without attempting to explain any apparent contra-
dictory nature of duality we will simply accept it as an hypothesis.

29 Erwin Schr"odinger (Austrian, 1887-1961) Nobel Prize in physics, 1933. Wrote What is Life in 1944, ex-
plaining the roles of statistics, uncertainty, entropy and stars in biology. Dev eloped wav e mechanics following a
suggestion of Einstein.
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we will simplify the discussion to limit the mathematics to algebra as much as possible. This
will not be an actual derivation because the wav e equation is now considered a fundamental
law of nature, the same way that Newton’s Second Law of mechanics, F = ma, is fundamen-
tal to classical mechanics. In fact, the wav e equation is more fundamental than Newton’s
equation since it gives the same results as classical mechanics for macroscopic objects, yet is
capable of describing the behavior of the smallest particles, which classical mechanics is not.
Before we can discuss the quantum aspects of wav es, we must first understand something
about wav es in general.

The first step in making the transition from classical wav e phenomena to quantum wav e
phenomena uses the Planck-Einstein equation (Eq. 5.26) and the Einstein special relativity
proportionality between energy and mass, ∆E = mc2, to relate the wav elength of light to its
velocity:

∆E = hν =
hc
λ

= mc2 (5.27)

Louis DeBroglie30 made the bold leap of generalizing the last equality to include matter as
well (replacing c with v):

mvλ = h (5.28)

Solving this equation, called the de Broglie equation, for velocity and Substituting into the
definition of kinetic energy, KE, relates kinetic energy to wav elength:

KE =
1
2

mv2 =
m
2

(
h

mλ
)2 =

h2

2mλ2
(5.29)

The connection to the wav e equation, Eq. 4.12, is made through λ : solve Eq. 4.12 for λ and
substitute into Eq. (5.29).

KE = −
h2∇2ψ
8π 2mψ

(5.30)

Using the fact that the sum of the kinetic and potential energy, PE, equals the total energy, E,
we have (multiplying through by ψ to clear it from the denominator, and factoring ψ out on

30 Louis Victor Pierre Raymon Duc de Broglie (French, 1892-1977) an influential prince and scientist who
promoted duality. Awarded the Nobel Prize in physics in 1929.
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the left hand side)

(−
h2

8π 2m
∇2 + PE)ψ = Eψ , (5. 31)

which is Schr"odinger’s quantum mechanical wave equation. Various systems are distin-
guished by the forms of their potential energy. Schr"odinger’s equation, being a differential
equation, yields wav e functions (eigenfunctions) and constants (eigenvalues) for its solutions.

The algorithm for solving Schr"odinger’s equation is easy to state: insert the form of the
potential energy into the equation and solve for the eigenfunctions. Introducing boundary
constraints on the eigenfunctions generates eigenvalues just as for classical wav e motion. For
a simple one-dimensional harmonic oscillator (like a guitar string), the potential energy fol-
lows Hooke’s Law, PE = kr2, corresponding to a restoring force proportional to the displace-
ment. The interactions in atoms an molecules are principally electronic attractions and repul-

sions, which obey Coulombs Law, PE = Σ
qiqj

rij
, where the sum is over all pairs of charged

particles (electrons and nuclei) with charges qi and qj separated by distance rij.
Although it is fairly simple to write Schr"odinger’s equation for an atom or molecule,

solving it is another matter. Solutions in terms of known functions are not available for any
but the simplest systems, and it must be solved numerically. Programs to implement the
numerical solution to Schr"odinger’s equation involve literally tens of thousands of lines of
code and tax the most sophisticated super computers for anything but the simplest molecules.
It is indeed fortunate that simplifying approximations to Schr"odinger’s equation lead to
meaningful results for complicated systems.

5.9. QED, etc
Einstein sought to unify gravitation with electromagnetism as Maxwell had unified elec-

tricity and magnetism, but didn’t succeed. New forces, strong and weak nuclear forces have
been added to the list and the search for a ‘‘grand unified filed theory’’ or ‘‘theory of every-
thing’’ continues. The synthesis of quantum mechanics and electromechanics, called quan-
tum electrodynamics, or QED, has proven useful in explaining a wide variety of physics phe-
nomena.
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Summary
The foundation for physics is mathematics. The first field of mathematical physics is

mechanics, which describes the state and motion of physical bodies. The measure of change
is force and energy. Equations of motion for force are second-order differential equations,
while equations of motion for energy are first-order differential equations. Kinetic energy is
an universal form for all systems (dependent on the coordinate system). Systems are distin-
guished by the forms of their interaction potential energies. Physics has evolved from
descriptions of relatively slow macroscopic bodies to descriptions of fast microscopic bodies,
using relativistic and quantum mechanics, respectively. Field mechanics describes wav e phe-
nomena and a synthesis of all mechanics is the major goal of physics.
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MECHANICS EXERCISES

1. On July 6, 1994 Leroy Burrell ran 100 m in 9.85 s. What was his average speed in
mi/hr?

2. What is the final speed of a dragster race car which travels 1/4 mi in 8.0 s from a
standing start?

3. How much kinetic energy in kJ has a 150 lb person running 25 mi/hr, and how far
would they hav e to fall in the Earth’s gravitational field to acquire that amount of
energy?

4. What is the form of the potential energy for an harmonic oscillator?
5. What is the speed at the bottom of the swing of a child who has been lifted 2

meters and released?
6. If energy is conserved, how can a person on a swing ‘‘pump’’ themselves higher?

MECHANICS EXERCISE HINTS

1. Consider the definition.
2. Assuming constant acceleration, it is possible to show that average velocity, v, is

the average of the final and initial velocities:31

v =
vf + vi

2

31 From the definition of the average of a function of one variable, the average of the velocity over time is:
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3. Newton could work this problem.
4. Harmonic oscillators follow Hooke’s Law.
5. The result is independent of the mass of the child.
6. Consider the source.


