Symbol	What it is	How it is read	How it is used	Sample expression
\oint	Line integral sign	The line integral of ...	integration	$\oint_{\text {F }} \cdot \mathrm{dx}$
\iint_{s}	Surface integral sign	The surface integral of ...	integration	$\iint_{\mathrm{s} F(x, y, z)} d x d y$
Π	Product sign	The product of ...	Product of three up to infinitely many values	$\prod_{n=1}^{\infty} \frac{1}{n}$
!	Exclamation	... factorial	Product of all positive integers up to a certain value	$5!=120$
\% 0	Per mil symbol	... per mil ...	Proportion	$0.032=32 \%$
:	Colon, ratio sign	.. is to ... such that it is true that .	Division or ratio, symbol following logical quantifier or used in defining a set	$\begin{gathered} 2: 4=20: 40 \\ \exists_{x}: x>4 \text { and } x<5 \\ \forall x: x<0 \text { or } x>-1 \\ S=\{x: x<3\} \end{gathered}$
1	Vertical line	... such thatit is true that ..	Symbol following logical quantifier or used in defining a set	$\begin{gathered} \exists_{x \mid x>4 \text { and } x<5} \\ \forall_{x \mid x<0 \text { or } x>-1} \\ S=\{x \mid x<3\} \end{gathered}$
::	Double colon	... averaged with ...	arithmetic mean	$3:: 11=7$
(]	Hybrid brackets	... the half-open interval ...	Denotes a half-open interval	$(3,5]$
[)	Hybrid brackets	... the half-open interval ...	Denotes a half-open interval	$[3,5)$
\{ \}	Curly brackets	... the quantity the set ...	Denotes a quantity or a set	$E=\{2,4,6,8, \ldots\}$
\exists	Existential quantifier	For some ... There exists a(n) ...	Logical statements	$\exists_{x}: x>4$ and $x<5$
V	Universal quantifier	For all ... For every ...	Logical statements	$\forall_{x}: x<0$ or $x>-1$
\neg	Logical negation	not ...	Logical statements	$\neg(\neg \mathrm{A}) \Longleftrightarrow \mathrm{A}$

	symbol			
\cdots		implies ... If ... then ...	Logical statements	$\mathrm{A} \Longrightarrow \mathrm{B}$
\Leftrightarrow	logical equivalence symbol	is logically equivalent to ... if and only if .	Logical statements	$A \Longleftrightarrow$ B
\therefore	Three dots	... therefore it follows that ...	Logical statements or mathematical proofs	$\begin{gathered} x=y \text { and } y=z \\ \therefore x=z \end{gathered}$
ϵ	Element-of symbol	... is an element of a set ...	Sets	$a \in \mathrm{~A}$
\notin	Not-element-of symbol	... is not an element of a set ...	Sets	$b \notin \mathrm{~A}$
\subseteq	Subset symbol	... is a subset of ...	Sets	$\mathrm{A} \subseteq \mathrm{B}$
\bigcirc	Proper subset symbol	... is a proper subset of ...	Sets	$\mathrm{A} \subset \mathrm{B}$
U	Union symbol	... union ...	Sets	$A \cup B=B \cup A$
ก	Intersection symbol	... intersect intersected with ...	Sets	$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
\varnothing	Null symbol	The null set The empty set	Sets	$\bar{\nabla}=\{ \}$
\aleph	Hebrew aleph (uppercase)	Aleph ...	Transfinite cardinal	$\aleph_{1}+\aleph_{0}=\aleph_{1}$
Ω	Greek omega (uppercase)	... omega ...	Volume of an object Ohms (resistance)	$R_{2}=330 \Omega$
N, N	Enhanced or bold N	The set of natural numbers	Number theory Set theory	$N=\{0,1,2,3, \ldots\}$
\mathcal{Z}, \mathbf{Z}	Enhanced or bold Z	The set of integers	Number theory Set theory	$\begin{gathered} \mathbb{Z}=\{0,1,-1,2,-2,3,- \\ 3, \ldots\} \end{gathered}$
$\mathscr{Q}, \boldsymbol{Q}$	Enhanced or bold Q	The set of rational numbers	Number theory Set theory	$\begin{gathered} \mathbb{Q}=\{a / b \mid a \text { and } b \text { are } \\ \text { in } \mathbb{Z}\} \end{gathered}$
$\boldsymbol{R}, \boldsymbol{R}$	Enhanced or bold R	The set of real numbers	Number theory Set theory	What is the cardinality of R ?

