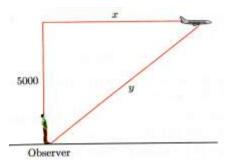
Supplement 12 Implicit Differentiation and the Chain Rule


- 1. An offshore oil well is leaking oil onto the ocean surface, forming a circular oil slick about .005 meters thick. If the radius of the slick is r meters, then the volume of oil spilled is $V = .005\pi r^2$ cubic meters. Suppose that the oil is leaking at <u>a constant rate of</u> 20 cubic meters per hour. Find the rate at which the radius of the oil slick is increasing at a time when the radius is 50 meters.
- 2. Animal physiologists have determined experimentally that the weight, W (in kilograms), and the surface area, S (in square meters) of a typical horse are related by the empirical equation,

 $S = 0.1W^{\tilde{3}}$. How fast is the surface area of a horse increasing at a time when the horse weighs 350 kg and is gaining weight <u>at the rate of</u> 200 kg per year?

- 3. Suppose that a tiny, experimental, kitchen appliance company's monthly sales and advertising expenses are approximately related by the equation, xy 6x + 20y = 0, where x is dollars spent on advertising and y is dishwashers sold. Currently, the company is spending \$10 dollars on advertising and is selling 2 dishwashers. If the company plans to increase monthly advertising expenditures <u>at the rate of</u> \$1.50 per month, how fast will sales rise?
- 4. Suppose that the price, p (in dollars), and the weekly sales, x (in thousands of units), of a certain commodity satisfy the demand equation, $2p^3 + x^2 = 4500$. Determine the rate at which sales are changing at a time when x = 50, p = 10, and the price is <u>falling</u> at the rate of \$.50 per week.
- 5. Suppose that the price, p (in dollars), and the demand, x (in thousands of units), of a commodity satisfy the demand equation, 6p + x + xp = 94. How fast is the demand changing at a time when x = 4, p = 9, and the price is rising <u>at the rate of </u>\$2/week?
- 6. Suppose that in Boston, the wholesale price, p, of oranges (in dollars per crate), and the daily supply, x crates, are related by the equation, px + 7x + 8p = 328. If there are 4 crates available today at a price of \$25, and if the supply is changing <u>at the rate of</u> -0.3 crates per day, at what rate is the price changing?

- 7. Under certain conditions (called adiabatic expansion) the pressure, P, and the volume, V, of a gas such as oxygen satisfy the equation, P⁵V⁷ = k, where k is a constant. Suppose that at some moment, the volume of the gas is 4 liters, the pressure is 200 units, and the pressure is increasing <u>at</u> the rate of 5 units per second. Find the (time) rate at which the volume is changing.
- 8. The volume, V, of a spherical cancer tumor is given by, $V = \frac{\pi x^3}{6}$, where x is the diameter of the tumor. A physician estimates that the diameter is growing <u>at the rate of</u> 0.4 mm per day, at a time when the diameter is already 10 mm. How fast is the volume of the tumor changing at that time?
- 9. Referring to the accompanying diagram, suppose that the foot of a 10' ladder is being pulled along the ground that <u>the rate of</u> 3 ft./sec. How fast is the top end of the ladder sliding down the wall at the time when the foot of the ladder is 8 feet from the wall? (Pythagorean Theorem: a² + b² = c²)

10. An airplane flying at 390 ft./sec. $\left(\frac{dx}{dt}\right)$ at an altitude of 5000 feet flew directly over an observer. Referring to the accompanying diagram, how fast is the distance from the observer to the airplane $\left(\frac{dy}{dt}\right)$ changing at the time when the airplane is 13,000 feet (y = 13,000) from the observer?

Answers	
	10. 360 ft./sec.
9. –4 ft./sec. (negative means sliding DOWN)	
	չեն/տա ո 02․ 8
7. –0.07 liters/sec or DECREASING at $\frac{1}{14}$ liters/sec	
	увь\08. \$.9
	5. – 2 thousand units/week
	4. 3 thousand units/week
${f 3.}~{1\over 5}$ dishwasher\month (sales will rise by 20%)	
	<mark>2.</mark> ۱.89 m²/yr.
	ן. 4 0 m/hr.