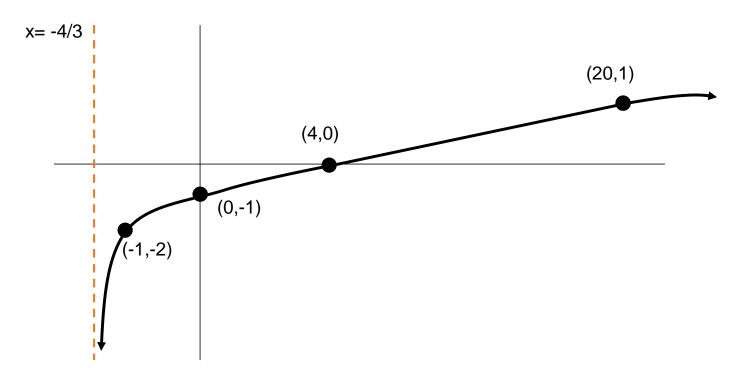
How to select critical points when graphing a logarithm:

You always want the argument of the log (the stuff in parenthesis following the word "log") to be a power of the base of the logarithm.


For:
$$f(x) = log_4 (3x + 4) - 2$$

We want 3x+4 to equal powers of 4, since our log is base 4.

We do this by setting 3x + 4 equal to the powers of 4 and solving for x:

Power of 4	Expression	Equation	Solved for x	Solve for $f(x)$ $f(x) = log_4 (3x + 4) - 2$ (see below for work)	Coordinate to plot on graph
0	4 ⁰ = 1	3x + 4 = 1	x = - 1	f(- 1) = - 2	(-1, -2)
1	4 ¹ = 4	3x + 4 = 4	x = 0	f(0) = - 1	(0, -1)
2	4 ² = 16	3x + 4 = 16	x = 4	f(4) = 0	(4, 0)
3	4 ³ = 64	3x + 4 = 64	x = 20	f(20) = 1	(20, 1)

$$f(-1) = \log_4 (3(-1) + 4) - 2 = \log_4(1) - 2 = 0 - 2 = -2$$

$$f(0) = \log_4 (3(0) + 4) - 2 = \log_4(4) - 2 = 1 - 2 = -1$$

$$f(4) = \log_4 (3(4)x + 4) - 2 = \log_4(16) - 2 = 2 - 2 = 0$$

$$f(20) = \log_4 (3(20)x + 4) - 2 = \log_4(64) - 2 = 3 - 2 = 1$$

