Solving Quadratic and Rational Inequalities:

- 1. Get everything on the left side of the inequality, zero on the right.
 - a) If it's a polynomial fraction, get everything over a common denominator and simplify.
- 2. Find the zeros and where the denominator (if applicable) is zero.
 - a) Graph those points on a number line, using solid dots for $\leq \& \geq$ and open circles for < & > & zero denominator values.
- 3. Choose a point <u>in each interval</u> on your number line.
- 4. Test that chosen point. Only evaluate whether the test point is + or -, not the actual value of the point.
- 4. Write your **answer** in interval notation using the number line and the test values.
 - a) Only write the + intervals if the original problem was $> or \ge 0$
 - b) Only write the intervals if the original problem was $< \text{or} \le 0$

Example:
$$\frac{x+2}{2x-4} \ge 1 \leftarrow \text{first get zero on the left, then a single common fraction.}$$

$$\frac{x+2}{2x-4} \ge 1 \rightarrow \frac{x+2}{2x-4} - 1 \ge 0 \rightarrow \frac{x+2}{2x-4} - 1\left(\frac{2x-4}{2x-4}\right) \ge 0$$

$$\frac{x+2-(2x-4)}{2x-4} \ge 0 \rightarrow \frac{-x+6}{2x-4} \ge 0$$
So, now we have: $\frac{-x+6}{2x-4} \ge 0$
Zeros: $2 \quad 6$
Choose: $0 \quad +3 \quad +7$
Test: $- + -$
Choose: $12 \quad +3 \quad +7$
Test: $- + -$
Answer: $(2,6] \leftarrow \text{since the original problem was } \ge,$
we look for the +'s on our test.

Example:
$$x^{3} + 8x^{2} < 0$$

 $x^{2} (x + 8) < 0$
Zeros: $-8 \quad 0$
Choose: $-9 \quad -1 \quad +1$
Test chosen points:
 $(-9)^{2}(-9+8) = +81(-1) = -$
 $(-1)^{2}(-1+8) = +1(+7) = +$
 $(+1)^{2}(+1+8) = +1(+9) = +$
Answer: $(-\infty, -8) \leftarrow$ since the original problem was <,
look for the -'s on the test.