Homework 3

(Due Date: Monday, Feb. 17)

Note: when submitting your solutions include procedures and derivations.

Problem 1.- Given the function f(u, v) which depends on variables u and v with variances σ_u^2 and σ_v^2 , respectively, obtain the variance σ_f^2 of f(u, v) in terms of the variances σ_u^2 and σ_v^2 and the covariance σ_{uv} of u and v for the following cases where a and b are positive constants:

(a) $f = au \pm bv$	(b) $f = \pm auv$	(c) $f = \pm au/v$
(d) $f = au^{\pm b}$	(e) $f = ae^{\pm bu}$	(f) $f = a \ln(\pm bu)$

Find the uncertainty σ_x , in "x" as a function of the uncertainties σ_u , and σ_v , in u and v for the following functions:

(g)
$$x = \frac{1}{2(u+v)}$$
 (h) $x = \frac{1}{2(u-v)}$ (i) $x = \frac{1}{u^2}$ (d) $x = uv^2$ (j) $x = u^2 + v^2$

<u>Note</u>: for cases from (a) to (c) assume that the variables u and v are correlated. For cases from (g) to (j) assume that the variables u and v are not correlated.

Problem 2:

The Doppler shift describes the frequency change when a source of sound waves of frequency "f" moves with a velocity "v" towards an observer at rest as $\Delta f = fv/(u - v)$, where "u" is the velocity of sound. Determine the Doppler shift and its uncertainty for the situation when

 $u = (332 \pm 8) \text{ m/s}$ $v = (0.123 \pm 0.003) \text{ m/s}$ $f = (1000 \pm 1) \text{ m/s}$

What is the quantity that contributes the least and the most to the uncertainty of the Doppler shift?

Problem 3.- The period T of a pendulum is related to its length by the relation

$$T=2\pi\sqrt{\frac{L}{g}}\,,$$

where g is the gravitational acceleration. Suppose you are measuring g from the period and length of the pendulum. You have measured the length of the pendulum to be 1.1325±0.0014 m. You independently measure the period to within an uncertainty of 0.06%, that is $\sigma_T/T=6\times10^{-4}$. What is the

fractional uncertainty in g (σ_g/g), assuming that the uncertainties in L and T are independent and random?

Problem 4.- Niels Bohr showed that the energy (E_n) of the quantum states of a Hydrogen atom are given by:

$$E_n = -2\pi \frac{m e^4}{h^2} \frac{1}{n^2}$$

where *m* is the mass of the electron, *e* is charge and *h* is Planck's constant. *n* is the Principle Quantum Number and is an exact number. Suppose the relative error (σ_u/u) in each of the measured quantities *m*, *e* and *h* is:

<u>Quantity</u>	<u>Rel. Error</u>
т	0.001
е	0.002
h	0.0001

What is the relative error in energy of the third quantum state? Assume all the errors are statistically determined standard deviations of the mean.