

3/27/2012

And integrating over the whole body we get

$$M_{P} \equiv \sum M_{P} = a_{Py} \int_{m} x \, dm - a_{Px} \int_{m} y \, dm + \alpha \int_{m} r^{2} dm$$
Because $\overline{x} = \left(\int_{m} x \, dm\right) / m$ and $\overline{y} = \left(\int_{m} y \, dm\right) / m$
Thus $\sum M_{P} = -\overline{y} \, m a_{Px} + \overline{x} \, m a_{Py} + I_{P} \alpha$
If $P = G$, the equation reduces to
 $\sum M_{G} = I_{G} \alpha$

The sum of the moments about the center of mass *G* of the body due to all external forces is equal to the product of the moment of inertia of the body about the center of mass G times the angular acceleration α of the body.

We must remember that $m\mathbf{a}_G$ and $I_G\mathbf{\alpha}$ are not force or couple moments. These are the *Effects* of forces and couples acting on the body

In scalar form, there are three independent equations of planar motion:

$$\sum F_x = ma_{Gx}$$

$$\sum F_y = ma_{Gy}$$

$$\sum M_G = \alpha I_G \text{ or } \sum M_P = \sum (\mathcal{M}_k)_P$$
This underscores the need to always draw the free bod diagram to account for $\sum F_x, \sum F_y, \sum M_G \text{ or } \sum M_P$.
We should also always draw the kinetic diagram to account for the terms ma_{Gx}, ma_{Gy} and αI_G .

Equations of Motion in Pure Translation Under translation only all points in a body have the same acceleration $\mathbf{a} = \mathbf{a}_G$ and the angular acceleration $\boldsymbol{a} = \mathbf{0}$. Rectilinear Translation: In this case all points in the body travel along parallel staright line paths. The equations of motion become: $\sum_{c} F_x = m a_{Gx}$ $\sum_{c} F_y = m a_{Gy}$ $\sum_{c} M_G = \mathbf{0}$ If the sum of the moments is taken about another point different from *G*, then the moment $m\mathbf{a}_G$ must be taken into account 18

