MOMENT OF INERTIA

In rotational motion, the moment of inertia is the equivalent to the mass in translational motion. It measures the resistance of a body to an Angular Acceleration.
The equivalent equation to $\mathbf{F}=m$ a for a rotating
body is $\mathbf{M}=I \boldsymbol{\alpha}$, where I is the moment of inertia.

$$
I=\int_{m} r^{2} d m=\int_{V} r^{2} \rho d V
$$

Second moment about the z-axis
For constant ρ, we have

$$
I=\rho \int_{V} r^{2} d V
$$

If the axis goes through the center of mass G and is perpendicular to the plane of motion, the moment of inertia is denoted by I_{G}

The units of I are $\mathrm{kg} \cdot \mathrm{m}^{2}$ or slug. ft^{2}

THE PARALLEL AXES THEOREM

If I_{G} is known, the moment of inertia I_{O} about any other parallel axis O is given by

$$
I_{O}=I_{G}+m d^{2}
$$

Where m is the total mass of the body and d is the distance between the parallel axes.

Radius of Gyration

Sometimes the moment of inertia about an axis is given as the Radius of Gyration, k in the form

$$
I=m k^{2} \quad \text { or } \quad k=\sqrt{\frac{I}{m}}
$$

Composite bodies

$I_{G}=\sum_{i=1}^{3}\left(I_{G_{i}}+m_{i} d_{i}^{2}\right)$
$I_{G}=I_{G_{1}}-I_{G_{2}}$

EXAMPLES

1. Determine the moment of inertia of the cylinder shown about the z-axis. The density ρ of the material is constant

SOLUTION

In this type of problem we create what is called a shell element of volume $d V$ as shown in the figure below

The volume of the element is

$$
d V=(2 \pi r)(h)(d r)
$$

and the mass of the element is

$$
d m=\rho d V=\rho(2 \pi r h) d r
$$

Hence $\quad d I_{z}=r^{2} d m=2 \pi \rho h r^{3} d r$ and integrating
$I_{z}=\int_{m} r^{2} d m=2 \pi \rho h \int_{0}^{R} r^{3} d r=\frac{\pi \rho h}{2} R^{4}$

The mass of the cylinder is $m=\int_{m} d m=2 \pi \rho h \int_{0}^{R} r d r=\pi \rho h R^{2}$
So in terms of the mass $\quad I_{z}=\frac{1}{2} m R^{2}$
2. The sphere is formed by revolving the shaded area around the x-axis. Determine the moment of inertia I_{x} and express the result in terms of the total mass m of the sphere. The maerial has a constant density ρ.

$$
d V=\pi y^{2} d x
$$

Now $y^{2}=r^{2}-x^{2}$

$$
d V=\pi\left(r^{2}-x^{2}\right) d x
$$

$$
\text { and } d m=\rho \pi\left(r^{2}-x^{2}\right) d x
$$

and $d m=\rho \pi\left(r^{2}-x^{2}\right) d x$
So the mass m is

$$
m=2 \rho \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x=2 \rho \pi\left(r^{3}-\frac{r^{3}}{3}\right) \quad m=\rho \frac{4}{3} \pi r^{3}
$$

Using the fact that we can look at the ring as a thin cylinder:

$$
\begin{gathered}
d I_{x}=\frac{1}{2} y^{2} d m \\
d I_{x}=\frac{1}{2}\left(r^{2}-x^{2}\right) \times \rho \pi\left(r^{2}-x^{2}\right) d x \\
I_{x}=\frac{1}{2} \rho \pi \int_{0}^{r}\left(r^{2}-x^{2}\right)^{2} d x \\
I_{x}=\frac{8}{15} \rho \pi r^{5} \\
I_{x}=\frac{2}{5} m r^{2}
\end{gathered}
$$

$$
\begin{aligned}
& d(\mathbf{r} \times \mathbf{F})=\mathbf{r} \times d m \mathbf{a} \\
& d \mathbf{M}_{P}=\mathbf{r} \times d m \mathbf{a}
\end{aligned}
$$

If $\boldsymbol{\alpha}$ is the angular acceleration and ω the angular velocity of the body, using $\mathbf{a}=\mathbf{a}_{p}+\boldsymbol{\alpha} \times \mathbf{r}-\omega^{2} \mathbf{r}$
$d \mathbf{M}_{P}=d m \mathbf{r} \times\left(\mathbf{a}_{P}+\boldsymbol{\alpha} \times \mathbf{r}-\omega^{2} \mathbf{r}\right)$

$$
\begin{aligned}
& =d m\left[\mathbf{r} \times \mathbf{a}_{P}+\mathbf{r} \times(\boldsymbol{\alpha} \times \mathbf{r})-\omega^{2}(\mathbf{r} \times \mathbf{r})\right] \\
& =d m\left[\mathbf{r} \times \mathbf{a}_{p}+\mathbf{r} \times(\boldsymbol{\alpha} \times \mathbf{r})\right]
\end{aligned}
$$

In Cartesian coordinates:
$d M_{p} \mathbf{k}=d m\left\{(x \mathbf{i}+y \mathbf{j}) \times\left(a_{P x} \mathbf{i}+a_{p \mathbf{y}} \mathbf{j}\right)+(x \mathbf{i}+y \mathbf{j}) \times[\alpha \mathbf{k} \times(x \mathbf{i}+y \mathbf{j})]\right\}$
$=d m\left(-y a_{P x}+x a_{P y}+\alpha x^{2}+\alpha y^{2}\right) \mathbf{k}$

$$
d M_{P}=d m\left(-y a_{P_{x}}+x a_{P y}+\alpha r^{2}\right)
$$

And integrating over the whole body we get

$$
\begin{aligned}
& M_{P} \equiv \sum M_{P}=a_{P y} \underbrace{\int_{m} x d m}_{m \bar{x}}-a_{P x} \underbrace{\int_{m} y d m}_{m \bar{y}}+\alpha \underbrace{\int_{m} r^{2} d m}_{I_{P}} \\
& \text { Because } \bar{x}=\left(\int_{m} x d m\right) / m \text { and } \bar{y}=\left(\int_{m} y d m\right) / m \\
& \text { Thus } \sum M_{P}=-\bar{y} m a_{P_{x}}+\bar{x} m a_{P y}+I_{P} \alpha
\end{aligned}
$$

If $P=G$, the equation reduces to

$$
\sum M_{G}=I_{G} \alpha
$$

The sum of the moments about the center of mass G of the body due to all external forces is equal to the product of the moment of inertia of the body about the center of mass G times the angular acceleration α of the body.

The sum of the moments of the external forces about a point P are equivalent to the sum of the Kinetic Moments of the components of $m \mathbf{a}_{G}$ about P plus the Kinetic Moment of $I_{G} \boldsymbol{\alpha}$.

The components $m a_{G x} \mathbf{i}$ and $m a_{G y}$ are treated as Sliding Vectors acting anywhere along their line of action.
$\alpha I_{G} \mathbf{k}$ is treated as a Free Vector and can act at any point.

Equations of Motion in Pure Translation

Under translation only all points in a body have the same acceleration $\mathbf{a}=\mathbf{a}_{G}$ and the angular acceleration $\boldsymbol{\alpha}=\mathbf{0}$.

Rectilinear Translation:
In this case all points in the body travel along parallel staright line paths. The equations of motion become:

$$
\begin{aligned}
& \sum F_{x}=m a_{G x} \\
& \sum F_{y}=m a_{G y} \\
& \sum M_{G}=0
\end{aligned}
$$

If the sum of the moments is taken about another point different from G, then the moment $m \mathbf{a}_{G}$ must be taken into account

For example, if a point A as shown in the figure is chosen

