EXAMPLES

1. The jet aircraft has a total mass of 22 Mg and a center of mass at G. Initially at take-off the engines provide a thrust of $2 T=4 \mathrm{kN}$ and $T^{\prime}=1.5 \mathrm{kN}$. Determine the acceleration of the plane and the normal reactions on the nose wheel and each of the two wing wheels located at B. Neglect the mass of the wheels and, due to low velocity, neglect any lift caused by the wings.

Data:
$m=22 \times 10^{6} \mathrm{gr}=22 \times 10^{3} \mathrm{~kg} \quad a_{G}=$?
$2 T=4000 N$
$N_{A}=$?
$T^{\prime}=1500 N \quad N_{B}=$?
1
2. The pipe has a length of 3 m and a mass of 500 kg . It is attached to the back of the truck using a 0.6 m long chain $A B$. If the coefficient of kinetic fiction at C is $\mu=0.4$, determine the acceleration of the truck if the angle $\theta=10^{\circ}$

SOLUTION

1) Geometry:

$$
\begin{aligned}
& \sin 10^{\circ}=\frac{a}{3} \Rightarrow a=0.52094 m \\
& \cos 10^{\circ}=\frac{b}{3} \Rightarrow b=2.9544 m
\end{aligned}
$$

1) $\sum F_{x}=m a_{G x} \Rightarrow T^{\prime}+2 T=m a_{G x}$ $1,500+4,000=22,000 a_{G x} \Rightarrow a_{G x}=0.25 \mathrm{~m} / \mathrm{s}^{2}$
2) $\quad \sum F_{y}=m a_{G y}=0 \Rightarrow N_{A}+2 N_{B}-22,000 \times 9.81=0$

$$
N_{A}+2 N_{B}=215,820
$$

3) $\sum M_{G}=0 \Rightarrow$
$N_{A}-N_{B}=1,058.33 \underset{25}{-T^{\prime}(2.5-1.2)-2 T(2.3-1.2)}-2 N_{B} \times 3+N_{A} \times 6=0$
$N_{\text {A }}=72,646 \mathrm{~N}=72.6 \mathrm{kN}$
$N_{B}=71,587 \mathrm{~N}=71.6 \mathrm{kN}$

3. The pipe has a mass of 460 kg and is held in place on the truck bed using the two boards A and B. Determine the greatest acceleration of the truck so that the pipe begins to lose contact at A and the bed of the truck and starts to pivot about B. Assume board B will not slip on the bed of the truck, and the pipe is smooth. Also, what force does board B exert on the pipe during the acceleration?

SOLUTION
6
At the moment of interest
$\alpha=0$ and $\mathbf{N}=0$.

1) Equilibrium in the x - direction
$\sum F_{x}=m a_{x} \Rightarrow P_{x}=m a_{x}$
2) Equilibrium in the y - direction
$\sum F_{y}=m a_{y} \Rightarrow P_{y}-W=0 \Rightarrow P_{y}=4513 \mathrm{~N}$
3) Equilibrium of moments about B
$\sum M_{G}=0 \Rightarrow P_{x} \times 0.4-P_{y} \times 0.3=0 \Rightarrow P_{x}=3384 \mathrm{~N}$
$a_{x}=7.36 \mathrm{~m} / \mathrm{s}^{2}$
1. The arm $B D E$ of the industrial robot manufactured by Cincinnati Milacron is activated by applying the torque of $M=50 \mathrm{~N} \cdot \mathrm{~m}$ to link $C D$. Determine the reactions at the pins B and D when the links are in the position shown and have an angular velocity of $2 \mathrm{rad} / \mathrm{s}$. The uniform arm $B D E$ has a mass of 10 kg and a center of mass at G_{1}. The container held in its grip at E has a mass of 12 kg and a center of mass at G_{2}. Neglect the mass of links $A B$ and $C D$

| | |
| :--- | :--- | :--- |

3) Find D_{y} using equilibrium in the y-direction

$$
B_{y}+D_{y}-W_{1}-W_{2}=-m_{1} a_{G_{1}}-m_{2} a_{G_{2}}
$$

$-567.54+D_{y}-98.1-117.72=-24-28.8$

$$
D_{y}=731 N
$$

4) Find B_{x} using equilibrium in the x-direction. Because at this instant $a_{x}=a_{t}=0$ we have
$B_{x}+D_{x}=0 \Rightarrow B_{x}=-83.3 \mathrm{~N}$

Curvilinear Translation:
In a body subjected to a Curvilinear Translation all the points in the body travel along parallel curvilinear paths.
Here it is convenient to write the equations of motion in normal and tangential coordinates.

$$
\begin{aligned}
& \sum F_{n}=m a_{G n} \\
& \sum F_{t}=m a_{G t} \\
& \sum M_{G}=0
\end{aligned}
$$

If the summation of moments about G is replaced by the summation about another point B then we must account for the kinetic moments

$$
M_{B}=\sum\left(\mathscr{M}_{k}\right)_{B}=e \cdot\left(m a_{G t}\right)-h \cdot\left(m a_{G n}\right)
$$

EXAMPLES

This is a curvilinear translation

1) Element CD: Rotation about fixed point C

$$
\begin{gathered}
a_{D}=\omega^{2} r_{D / C}=2^{2} \times 0.6 \\
a_{D}=2.4 \mathrm{~m} / \mathrm{s}^{2}=a_{G} \\
\sum M_{C}=0 \Rightarrow D_{x} \times 0.6-50=0 \\
D_{x}=83.3 \mathrm{~N}
\end{gathered}
$$

2) In member BDE take $\sum M_{D}=\sum\left(\mathcal{M}_{k}\right)_{D}$, this eliminates D_{y}

$-B_{y} \times 0.22-98.1 \times 0.365-117.72 \times 1.1=(-10 \times 2.4) \times 0.365-(12 \times 2.4) \times 1.1$

$$
B_{y}=-568 N
$$

10
2. The two $3-l b$ rods $E F$ and $H I$ are fixed (welded) to the link $A C$ at E. Determine the normal force N_{E}, the shear force V_{E}, and moment M_{E}, which the bar $A C$ exerts on $F E$ at E if at the instant $\theta=30^{\circ} \operatorname{link} A B$ has an angular velocity $\omega=5 \mathrm{rad} / \mathrm{s}$ and an angular acceleration $\alpha=8 \mathrm{rad} / \mathrm{s}^{2}$ as shown

Data:
$W_{H I}=W_{E F}=3 l b$
$m_{H I}=m_{E F}=0.093168$ slug
$\omega=5 \mathrm{rad} / \mathrm{s}$
$\alpha=8 \mathrm{rad} / \mathrm{s}^{2}$
$N_{E}=$?
$V_{E}=$?
$M_{E}=$?

The bars EFHI are undergoing a curvilinear translation, therefore their angular velocity and acceleration must be zero.

1) Find the position of G :
$G_{y}=0$
$G_{x}=\frac{3 l b \times(-1 f t)+3 l b \times(-2 f t)}{6 l b}=-1.5 f t$
2) Equilibrium in the x-direction:
$\sum F_{x}=N_{E}=2 m a_{G x}$
3) Equilibrium in the y-direction:

$$
\sum F_{y}=-2 W-V_{E}=2 m a_{G y}
$$

4) Equilibrium of moments about G :

$$
\sum M_{G}=M_{E}-V_{E} \times 1.5=0
$$

5) We must have $\mathbf{a}_{G}=\mathbf{a}_{A}$ and we can find \mathbf{a}_{A} :

$\mathbf{a}_{A}=\boldsymbol{\alpha} \times \mathbf{r}_{A / B}-\omega^{2} \mathbf{r}_{A / B} \quad \mathbf{r}_{A / B}=-3 \cos 30^{\circ} \mathbf{i}+3 \sin 30^{\circ}$
$\mathbf{a}_{A}=(8 \mathbf{k}) \times(-2.5981 \mathbf{i}+1.5 \mathbf{j})-5^{2} \times(-2.5981 \mathbf{i}+1.5 \mathbf{j})$
$\mathbf{a}_{A}=53 \mathbf{i}-58.3 \mathbf{j}$

$$
N_{E}=9.87 \mathrm{lb}
$$

$$
V_{E}=-4.86 l b
$$

$$
M_{E}=-7.29 \mathrm{lb} \cdot f t
$$

The moment equation can be replaced by a summation about any point P lying inside or outside the body. In that case we must take into account the moments $\sum\left(\mathcal{M}_{k}\right)_{P}$ due to $I_{g} \alpha$, $m a_{G n}$ and $m a_{G t}$.
In many problems it is convenient to choose moments about O. This eliminates the unknown rection \mathbf{F}_{o}, and the kinetic moments become

$$
\sum M_{O}=\sum\left(\mathcal{M}_{k}\right)_{O}=m r_{G} a_{G t}+I_{G} \alpha
$$

Note that the component $m a_{G n}$ does not appear, because its line of action goes through the point O.
Furthermore, using $a_{G n}=r_{G} \alpha$ we have $\sum M_{O}=r_{G}^{2} m \alpha+I_{G} \alpha$ or $\sum M_{O}=\left(r_{G}^{2} m+I_{G}\right) \alpha$ and from the parallel axis theorem $I_{O}=I_{G}+m r_{G}^{2}$. Therefore we also have $\sum M_{O}=I_{O} \alpha$
2) Equilibrium of moments:

$$
\sum M_{O}=-5 \theta=0.10356 \alpha \Rightarrow \alpha=-48.281 \theta
$$

3) Kinematics: $\quad \alpha d \theta=\omega d \omega$

$$
\begin{gathered}
-\int_{\pi / 2}^{\pi / 4} 48.281 \theta d \theta=\int_{0}^{\omega} \omega d \omega \Rightarrow \frac{1}{2} \omega^{2}=-\left.24.141 \theta^{2}\right|_{\pi / 2} ^{\pi / 4} \\
\omega=9.45 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

2. The lightweight turbine consists of a rotor which is powered from a torque applied at its center. at the instant the rotor is horizontal it has an angular velocity of $15 \mathrm{rad} / \mathrm{s}$ and a clockwise angular acceleration of $8 \mathrm{rad} / \mathrm{s}^{2}$.
Determine the internal normal force, shear force and moment at a section through A. Assume the rotor is a 50 m long slender rod, having a mass of $3 \mathrm{~kg} / \mathrm{m}$.

$$
\begin{aligned}
& \text { b) Weight } B \text { : } \\
& \begin{array}{c}
\sum F_{y}=m_{B} a_{B y} \Rightarrow 5-T=0.15528 \times(\underset{\sim}{1.5 \times \alpha)} \\
T=5-0.23292 \times \alpha
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\alpha=0.826 \mathrm{rad} / \mathrm{s}^{2} \\
\text { Same as before }
\end{gathered}
$$

2) Consider each particle separate.

$$
\begin{aligned}
& \text { a) Spool } \sum_{M} M_{A}=I_{A} \alpha \\
& T \times 1.5=8.7345 \alpha \Rightarrow T=5.823 \alpha
\end{aligned}
$$

