EXAMPLES

1. The jet aircraft has a total mass of 22 Mg and a center of mass at G. Initially at take-off the engines provide a thrust of $2T = 4 \text{ kN}$ and $T' = 1.5 \text{ kN}$. Determine the acceleration of the plane and the normal reactions on the nose wheel and each of the two wing wheels located at B. Neglect the mass of the wheels and, due to low velocity, neglect any lift caused by the wings.

Data:

$\begin{align*}
\text{m} &= 22 \times 10^3 \text{ kg} \\
2T &= 4000 \text{ N} \\
T' &= 1500 \text{ N}
\end{align*}$

Solution

1) Geometry:

$\sin 10^\circ = \frac{a}{3} \Rightarrow a = 0.52094 \text{ m}$

$\cos 10^\circ = \frac{b}{3} \Rightarrow b = 2.9544 \text{ m}$

2) Forces:

$\sum F_x = ma_{Gx} \Rightarrow \quad T' + 2T = ma_{Gx}$

$1500 + 4000 = 22000 a_{Gx} \Rightarrow \quad a_{Gx} = 0.025 \text{ m/s}^2$

$\sum F_y = ma_{Gy} = 0 \Rightarrow \quad N_A + 2N_B = 22000 \times 9.81 = 0$

$N_A + 2N_B = 215,820$

$3) \sum M_G = 0 \Rightarrow \quad -T(2.5 - 1.2) \quad -T(2.3 - 1.2) \quad -2N_B \times 3 + N_A \times 6 = 0$

$N_A - N_B = 1,058.33$

$N_A = 72,646 \text{ N} \quad N_B = 71,587 \text{ N}$

$\text{2. The pipe has a length of 3 m and a mass of 500 kg. It is attached to the back of the truck using a 0.6 m long chain AB. If the coefficient of kinetic friction at C is } \mu = 0.4,$

$determine the acceleration of the truck if the angle $\theta = 10^\circ$ with the road as shown.

Data:

$\begin{align*}
L_{CA} &= 3 \text{ m} \\
L_{AB} &= 0.6 \text{ m} \\
\mu &= 0.4 \\
W &= 4905 \text{ N} \\
m &= 500 \text{ kg}
\end{align*}$

Solution

1) Geometry:

$\sin 10^\circ = \frac{a}{3} \Rightarrow a = 0.52094 \text{ m}$

$\cos 10^\circ = \frac{b}{3} \Rightarrow b = 2.9544 \text{ m}$

2) Forces:

$\sum F_x = ma_{Gx} \Rightarrow \quad -\mu N_C + T \cos 52.98^\circ = ma_{Gx}$

$-0.4N_C + 0.60209T = 500a_{Gx}$

(1)

$\sum F_y = 0 \Rightarrow \quad N_C - W + T \sin 52.98^\circ = 0$

3) Moments:

$\sum M_C = \sum (M_k)_C$

$-W(1.5 \cos 10^\circ) + 3(T \sin 42.98^\circ) = -ma_{Gx}(1.5 \sin 10^\circ)$

$2.0452T - 72.457 = -130.23a_{Gx}$

(3)

Solving the equations $T = 3.39 \text{ kN}$, $N_C = 2.2 \text{ kN}$

$a_{Gx} = 2.33 \text{ m/s}^2$

3. The pipe has a mass of 460 kg and is held in place on the truck bed using the two boards A and B. Determine the greatest acceleration of the truck so that the pipe begins to lose contact at A and the bed of the truck and starts to pivot about B. Assume board B will not slip on the bed of the truck, and the pipe is smooth. Also, what force does board B exert on the pipe during the acceleration?

Data:

$\begin{align*}
m &= 460 \text{ kg} \\
W &= 4512.6 \text{ N}
\end{align*}$
At the moment of interest $\alpha = 0$ and $N = 0$.

1) Equilibrium in the x - direction
\[
\sum F_x = ma_x \Rightarrow P_x = ma_x
\]

2) Equilibrium in the y - direction
\[
\sum F_y = ma_y \Rightarrow P_y - W = 0 \Rightarrow P_y = 4513 \text{ N}
\]

3) Equilibrium of moments about G
\[
\sum M_G = 0 \Rightarrow P_x \times 0.4 - P_y \times 0.3 = 0 \Rightarrow P_x = 3384 \text{ N}
\]
\[a_x = 7.36 \text{ m/s}^2\]

Curvilinear Translation:
In a body subjected to a Curvilinear Translation all the points in the body travel along parallel curvilinear paths.

Here it is convenient to write the equations of motion in normal and tangential coordinates.
\[
\sum F = ma, \quad \sum F = ma, \quad \sum M_G = 0
\]

If the summation of moments about G is replaced by the summation about another point B then we must account for the kinetic moments
\[
\sum M_b = \sum (M_b)_{a} = e \cdot (ma_{a}) - h \cdot (ma_{a})
\]

EXAMPLES

1. The arm BDE of the industrial robot manufactured by Cincinnati Milacron is activated by applying the torque of 50 Nm to link CD. Determine the reactions at the pins B and D when the links are in the position shown and have an angular velocity of 2 rad/s.

Data:
- $m_{a1} = 10 \text{ kg}$
- $m_{a2} = 12 \text{ kg}$
- $M = 50 \text{ Nm}$
- $\omega = 2 \text{ rad/s}$

This is a curvilinear translation

1) Element CD: Rotation about fixed point C
\[a_C = \omega^2 r_{D/C} = 2^2 \times 0.6 \text{ m/s}^2\]
\[a_D = 2.4 \text{ m/s}^2\]
\[\sum M_C = 0 \Rightarrow D_x \times 0.6 - 50 = 0 \Rightarrow D_x = 83.3 \text{ N}\]

2) In member BDE take $\sum M_D = \sum (M_D)_{a}$, this eliminates D_x.
\[W_1 = 10 \times 9.81 = 98.1 \text{ N}\]
\[W_2 = 12 \times 9.81 = 117.72 \text{ N}\]
\[-B_x \times 0.22 - 98.1 \times 0.365 - 117.72 \times 1.1 = (-10 \times 2.4) \times 0.365 - (12 \times 2.4) \times 1.1\]
\[B_x = -568 \text{ N}\]

3) Find D_y using equilibrium in the y-direction
\[B_y + D_y - W_1 - W_2 = -m_1a_{o1} - m_2a_{o2}\]
\[-567.54 + D_y - 98.1 - 117.72 = -24 - 28.8\]
\[D_y = 731 \text{ N}\]

4) Find B_y using equilibrium in the x-direction. Because at this instant $a_x = a_y = 0$ we have
\[B_x + D_x = 0 \Rightarrow B_y = -83.3 \text{ N}\]

2. The two 3-lb rods EF and HI are fixed (welded) to the link AC at E. Determine the normal force N_E, the shear force V_E, and moment M_E, which the bar AC exerts on FE at E if at the instant $\theta = 30^\circ$ link AB has an angular velocity $\omega = 5 \text{ rad/s}$ and an angular acceleration $\alpha = 8 \text{ rad/s}^2$ as shown.

Data:
- $W_{HI} = W_{EF} = 3 \text{ lb}$
- $m_{EF} = 0.093168 \text{ slug}$
- $\omega = 5 \text{ rad/s}$
- $\alpha = 8 \text{ rad/s}^2$
- $N_E = ?$
- $V_E = ?$
- $M_E = ?$

SOLUTION
The bars EFHI are undergoing a curvilinear translation, therefore their angular velocity and acceleration must be zero.

1) Find the position of G:

\[G_x = 0 \]
\[G_y = \frac{3lb \times (-1 ft) + 3lb \times (-2 ft)}{6lb} = -1.5 ft \]

2) Equilibrium in the x-direction:

\[\sum F_x = N_E = 2ma_{Gx} \]

3) Equilibrium in the y-direction:

\[\sum F_y = -2W - V_E = 2ma_{Gy} \]

4) Equilibrium of moments about G:

\[\sum M_G = M_E - V_E \times 1.5 = 0 \]

5) We must have \(\mathbf{a}_G = \mathbf{a}_x \) and we can find \(\mathbf{a}_x \):

\[\mathbf{a}_x = \mathbf{a} \times \mathbf{r}_{4/B} - \mathbf{a} \mathbf{r}_{4/B} = -3\cos30^\circ \mathbf{i} + 3\sin30^\circ \mathbf{j} \]
\[\mathbf{a}_x = (8k) \times (-2.5981\mathbf{i} + 1.5\mathbf{j}) - 5^2 \times (-2.5981\mathbf{i} + 1.5\mathbf{j}) \]
\[\mathbf{a}_x = 531 - 58.3 \mathbf{j} \]

The moment equation can be replaced by a summation about any point P lying inside or outside the body. In that case we must take into account the moments due to \(\sum I_m \) due to \(I_\alpha \), \(ma_{Gx} \) and \(ma_{Gy} \).

In many problems it is convenient to choose moments about \(O \). This eliminates the unknown rection \(F_O \), and the kinetic moments become

\[\sum M_O = \sum (M_k) = m\omega_a + I_\alpha \]

Note that the component \(ma_{Gx} \) does not appear, because its line of action goes through the point \(O \).

Furthermore, using \(a_{Gx} = \mathbf{r}_a \mathbf{\alpha} \) we have \(\sum M_O = \mathbf{r}_a \mathbf{\alpha} + I_\alpha \) or \(\sum M_O = (\mathbf{r}_a^2 + I) \mathbf{\alpha} \) and from the parallel axis theorem \(I_\alpha = I + m\mathbf{\alpha}^2 \). Therefore we also have \(\sum M_O = I_\alpha \)

2) Equilibrium of moments:

\[\sum M_O = -5\theta = 0.10356\alpha \Rightarrow \alpha = -48.281\theta \]

3) Kinematics:

\[\int_{t/2}^{t/4} 48.281\theta d\theta = \frac{\theta^2}{2} = -24.141\theta^2 \]
\[\theta = 9.45 \text{ rad/s} \]

2. The lightweight turbine consists of a rotor which is powered from a torque applied at its center. At the instant the rotor is horizontal it has an angular velocity of 15 rad/s and a clockwise angular acceleration of 8 rad/s^2. Determine the internal normal force, shear force and moment at a section through A. Assume the rotor is a 50 m long slender rod, having a mass of 3 kg/m.
3. The cord is wrapped around the inner core of the spool. If a 5 lb block is suspended from the cord and released from rest, determine the spool's angular velocity when t = 3 s. Neglect the mass of the cord. The spool has a weight of 180 lb and the radius of gyration about the axle A is $r_A = 1.25$ ft. Solve the problem in two ways, first by considering the "system" consisting of the block and spool, and then by considering the block and spool separately.

SOLUTION

First calculate the Moment of Inertia about A:

$I_A = m_A k_A^2 = 5.590 \times 1.25^2$

$I_A = 8.7345 \text{slug} \cdot \text{ft}^2$

Data:

- $W_A = 180 \text{lb}$
- $W_B = 5 \text{lb}$
- $m_B = 5.5901 \text{slug}$
- $m_B = 0.15528 \text{slug}$
- $k_A = 1.25 \text{ft}$
- $\omega(3s) = ?$

1) Consider the whole system:

$\sum M_A = \sum (M_i)_A$

$W_A r_A = m_B \omega^2 + I_A \omega$

$5 \times 1.5 = 0.15528 \times 1.5^2 \omega + 8.7345 \omega$

$\omega = 0.82564 \text{ rad} / \text{s}$

$\omega = \omega_B + \omega_t = 0.82564 \times 3 \Rightarrow \omega = 2.48 \text{ rad} / \text{s}$

2) Consider each particle separately.

a) Spool

$\sum M_A = I_A \omega$

$T \times 1.5 = 8.7345 \omega \Rightarrow T = 5.823 \omega$

b) Weight B:

$\sum F_y = m_B a_B \Rightarrow 5 - T = 0.15528 \times 1.5 \omega$

$T = 5 - 0.23292 \times \omega$

Solving the system:

$\omega = 0.826 \text{ rad} / \text{s}$

Same as before