GENERAL PLANE MOTION

If an inertial $x-y$ coordinate system is chosen, the three equations of motion may be written as:

$$
\begin{aligned}
& \sum F_{x}=m a_{G x} \\
& \sum F_{y}=m a_{G y} \\
& \sum M_{G}=I_{G} \alpha
\end{aligned}
$$

In some problems it is more convenient to sum moments about a point P different from G (e.g. to eliminate unknown forces). In this case the three equations of motion become:

$$
\begin{aligned}
& \sum_{F_{x}=m a_{6 x}} \\
& F_{y}=m a_{G y} \\
& \sum M_{p}=\sum\left(M_{k}\right)_{p}
\end{aligned}
$$

Here we have four unknowns, $F, N, a_{G x}$, and α.
Therefore we need one more equation.

$$
\begin{array}{ll}
\text { Case 1: No Slip } & \\
\text { No slip occurs if } \\
\text { and in this case: } & F \leq \mu_{s} N \\
& a_{G}=\alpha r
\end{array}
$$

Case2: Slip
If $F>\mu_{\mathrm{s}} N$ we must "re-work" the problem because there is slip. In this case α and a_{G} are not independent of each other. The extra relation is

$$
F=\mu_{k} N
$$

EXAMPLES

$\sum M_{G}=I_{G} \alpha \Rightarrow-50 \times 0.25+F_{A} \times 0.4=9 \alpha$
So independently of whether we have slip or no-slip:

$$
\begin{align*}
& F_{A}=100 a_{G x} \tag{1}\\
& N_{A}=931 \tag{2}\\
& 0.4 F_{A}-9 \alpha=12.5 \tag{3}
\end{align*}
$$

3) Assuming No-Slip: $\quad a_{G x}=0.4 \alpha$

$$
\begin{align*}
& \alpha=0.5 \mathrm{rad} / \mathrm{s}^{2} \tag{4}\\
& a_{G x}=0.2 \mathrm{~m} / \mathrm{s}^{2} \\
& N_{A}=931 \mathrm{~N} \\
& F_{A}=20 \mathrm{~N}
\end{align*}
$$

4) Check if the no-slip assumption is correct:

$$
\left(F_{A}\right)_{\max }=\mu_{s} N_{A}=0.2 \times 931=186.2>F_{A} \text { OK }
$$

Frictional Rolling Problems

This is a special class of problems involving wheels, cylinders or similar bodies that roll on a rough plane surface.
Furthermore, it may not be known if the body rolls without slipping or if it slides as it rolls.

Consider a homogeneous disk of mass m
and subjected to a known horizontal force P.

From the equations of motion we get:

$$
\begin{aligned}
& \sum F_{x}=m a_{G x} \rightarrow P-F=m a_{G x} \\
& \sum F_{y}=m a_{G y} \rightarrow N-W=0 \\
& \sum M_{G}=I_{G} \alpha \rightarrow F \cdot r=I_{G} \alpha
\end{aligned}
$$

1. The spool has a mass of 100 kg and a radius of gyration $k_{G}=0.3 \mathrm{~m}$. If the coefficients of static and dynamic friction at A are $\mu_{s}=0.2$ and $\mu_{k}=0.15$, respectively determine the angular acceleration of the spool if $P=50 \mathrm{~N}$ and is directed upwards.

1) First find the moment of inertia

$$
I_{G}=m k_{G}^{2}=100 \times 0.3^{2}=9 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

2) Equilibrium equations

$$
\begin{aligned}
& \sum F_{x}=m a_{G x} \Rightarrow F_{A}=100 a_{G x} \\
& \sum F_{y}=0 \Rightarrow 50+N_{A}-981=0
\end{aligned}
$$

2. The wheel has a weight of 30 lb and a radius of gyration of $k_{G}=0.6 \mathrm{ft}$. If the coefficients of static and dyamic friction between the wheel and the plane are $\mu_{s}=0.2$ and $\mu_{k}=0.15$, determine the maximum angle θ of the inclined plane so that the wheel rolls without slipping

$$
\begin{aligned}
& \text { Data: } \\
& W=30 \mathrm{lb} \\
& m=0.931 \\
& \mu_{\mathrm{s}}=0.2 \\
& \mu_{k}=0.15 \\
& \theta_{\max }=?
\end{aligned}
$$

$$
m=0.93168 \mathrm{slug}
$$

SOLUTION

1) Moment of Inertia:

$$
I_{G}=m k_{G}^{2}=0.93168 \times 0.6^{2}=0.3354 \mathrm{slug} \cdot \mathrm{ft}^{2}
$$

2) Equilibrium Equations:

$\sum F_{x}=m a_{G x} \Rightarrow F_{\mu}-W \sin \theta=m a_{G x}$
$\sum F_{y}=0 \Rightarrow-W \cos \theta+N=0$
$\sum M_{G}=I_{G} \alpha \Rightarrow F_{\mu} \times r=I_{G} \alpha$

3) For no-slip $a_{G x}=r \alpha$ and $\max \theta$ occurs when $F_{\mu}=\mu_{s} N$ The equilibrium equations become:

$$
\begin{align*}
0.2 N-30 \sin \theta & =0.93168 \times(1.25 \alpha) \\
N & =30 \cos \theta \tag{2}\\
0.2 N \times 1.25 & =0.3354 \alpha \tag{3}
\end{align*}
$$

From (3) $\alpha=\frac{0.2 \times 1.25}{0.3354} N=0.74538 \times 30 \cos \theta=22.361 \cos \theta$

$$
\text { From (1) } 6 \cos \theta-30 \sin \theta=-26.042 \cos \theta \Rightarrow \tan \theta=1.0681
$$

$$
\theta_{\max }=46.9^{\circ} \quad\left(N=20.5 \mathrm{lb}, a_{G x}=19.1 \mathrm{ft} / \mathrm{s}^{2}, \alpha=15.3 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

3. Along strip of paper is wrapped into two rolls, each having a mass of 8 kg . Roll A is pin supported about its center whereas roll B is not centrally supported. If B is brought into contact with A and released from rest, determine the initial tension in the paper between the rolls and the angular acceleration of each roll. For the calculation, assume the rolls to be approximated by cylinders.

$$
\begin{aligned}
& \text { Data: } \\
& m_{A}=m_{B}=8 \mathrm{~kg} \\
& W_{A}=W_{B}=78.48 \mathrm{~N} \\
& r_{A}=r_{B}=0.09 \mathrm{~m}
\end{aligned}
$$

SOLUTION

Initially we must have $\omega_{A}=\omega_{B}=0$

2) Roll A: $\quad \sum M_{A}=I_{A} \alpha_{A} \Rightarrow-T \times 0.09=-0.0324 \alpha_{A}$ $T=0.36 \alpha_{A}$
3) Roll B :

$$
\sum F_{y}=m a_{B y} \Rightarrow T-W=m a_{B y}
$$

$$
\begin{equation*}
T-78.48=-8 a_{B y} \tag{2}
\end{equation*}
$$

4. A slender bar of mass m and length ℓ rests on an ledge as shown. Find the length x that maximizes the angular acceleration α when the bar is let go from rest in the horizontal position and without slip.

SOLUTION
$\operatorname{FBD} \int_{\left.\left\lvert\, \begin{array}{ll}-1 & \mathbf{W}\end{array}\right.\right) \quad a_{G y}=x \alpha}$

1) Equilibrium in the y-direction:
$\sum F_{y}=N-m g=-m a_{G y}=N=m g-m x \alpha$

$$
\begin{gather*}
\sum M_{B}=I_{B} \alpha_{B} \Rightarrow \operatorname{Tr}=I_{B} \alpha_{B} \Rightarrow 1.5 T=0.0324 \alpha_{B} \\
T=0.36 \alpha_{B} \tag{3}
\end{gather*}
$$

4) We need one more equation, look at the kinematics:

$$
\mathbf{a}_{D}=\mathbf{a}_{C}=-\alpha_{A} r \mathbf{j}=-0.09 \alpha_{A} \mathbf{j}
$$

$$
\mathbf{a}_{B}=\mathbf{a}_{D}+\boldsymbol{\alpha}_{B} \times \mathbf{r}_{B / D}
$$

$$
-a_{B} \mathbf{j}=-0.09 \alpha_{A} \mathbf{j}+\left(\alpha_{B} \mathbf{k}\right) \times(-0.09 \mathbf{i})
$$

$$
\begin{equation*}
a_{B}=0.09 \times\left(\alpha_{A}+\alpha_{B}\right) \tag{4}
\end{equation*}
$$

From (1) and (3) $\alpha_{B}=-\alpha_{A}=\alpha$
Substituting in (4) $a_{B}=0.18 \alpha$
Replacing into (2) $0.36 \alpha-78.48=-8 \times(0.18 \alpha)$

$$
\begin{gathered}
\alpha=4.36 \mathrm{rad} / \mathrm{s}^{2} \quad a_{B}=7.85 \mathrm{~m} / \mathrm{s}^{2} \\
T=1.57 \mathrm{~N}
\end{gathered}
$$

2) Moments about G :

$$
\sum M_{G}=-I_{G} \alpha \Rightarrow-N x=-I_{G} \alpha
$$

3) Substitute (1) into (2) and maximize.
$(m g-m x \alpha) x=I_{G} \alpha \rightarrow\left(m x^{2}+I_{G}\right) \alpha=m g x$
Differentiate α with respect to x :
$2 m x \alpha+\left(m x^{2}+I_{G}\right) \frac{d \alpha}{d x}=m g$

$$
\begin{equation*}
\frac{d \alpha}{d x}=\frac{m g-2 m x \alpha}{m x^{2}+I_{G}}=0 \Rightarrow x=\frac{g}{2 \alpha} \tag{3}
\end{equation*}
$$

4) Solve the equations

From (1): $N=m g-m \frac{g}{2 \alpha} \alpha \Rightarrow \quad N=\frac{m g}{2}$ 12

Kinetic energy of a planar rigid body:

1) Translational kinetic energy:

$$
T=\frac{1}{2} m v_{G}^{2}
$$

2) Rotation about a fixed axis

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}
$$

Or from $v_{G}=r_{G} \omega$ we have $T=\frac{1}{2}\left(I_{G}+m r_{G}^{2}\right) \omega^{2}$ so using the parallel axis theorem

$$
T=\frac{1}{2} m I_{O} \omega^{2}
$$

3) Kinetic Energy in General Plane Motion

Note: Because the energy is a scalar, the total

REVIEW: Work of a Force.
Work of a variable force \mathbf{F} :
$\mathrm{U}_{\mathrm{F}}=\int_{S} \mathbf{F} \cdot d \mathbf{r}=\int_{S} F \cos \theta d s$

$$
T=\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \omega^{2}
$$ kinetic energy for a system of connected rigid bodies is the SUM of the kinetic energies of each of the moving parts

Work of a constant force:
$U_{F_{C}}=\left(F_{C} \cos \theta\right) s$

Work of a Weight:

$$
U_{W}=-W \Delta y
$$

Work of a Spring Force:
$U_{s}=-\left(\frac{1}{2} k s_{2}^{2}-\frac{1}{2} k s_{1}^{2}\right)$

The work done by a moment M when a plane body rotates an angle from θ_{1} to θ_{2} measured in radians is

$$
U_{M}=\int_{\theta_{1}}^{\theta_{2}} M d \theta
$$

If the moment \mathbf{M} is constant, then $U_{M}=M\left(\theta_{2}-\theta_{1}\right)$
The Principle of Work and Energy

$$
T_{1}+\sum U_{1-2}=T_{2}
$$

Remains the same, but now the kinetic energy also contains rotational energy, and the work includes the work done by moments.
If we have several rigid bodies connected by pins, inextensible cables or in mesh with each other, the principle applies to the entire system, and the work done by internal forces cancels²8ut.

