EXAMPLES

1. The double pulley consists of two parts that are attached to one another. It has a weight of 50 lb and a centroidal radius of gyration of $k_{O}=0.6 \mathrm{ft}$ and is turning with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ clockwise. Determine the kinetic energy of the system. Assume that neither cable slips on the pulley.

$$
\begin{aligned}
& \text { The total weight is } W_{T}=110+4 \times 5=130 \mathrm{lb} \\
& I_{w}=m_{w} k^{2}=0.15528 \times 0.3^{2}=0.01398 \mathrm{lb} \cdot \mathrm{ft}^{2} \\
& h=100 \sin 30^{\circ}=50 \mathrm{ft} \\
& T_{1}+\sum U_{1-2}=T_{2} \\
& T_{1}=0 \\
& \sum U_{1-2}=W_{T} h=6500 \mathrm{lb} \cdot f t \\
& T_{2}=4 \times(\underbrace{\frac{1}{2} I_{w} \omega^{2}}_{\text {wheel rotation }}+\underbrace{\frac{1}{2} m_{w} v^{2}}_{\text {wheel translation }})+\underbrace{\frac{1}{2} m_{C} v^{2}}_{\text {body translation }} \\
& T_{2}=4 \times \frac{1}{2} \times\left(0.01398\left(\frac{v}{0.5}\right)^{2}+0.15528 v^{2}\right)+\frac{1}{2} \times 3.4161 v^{2}
\end{aligned}
$$

$\begin{array}{ccc}\text { SOLUTION } & \begin{array}{c}m=4 \mathrm{~kg} \\ W=39.24 \mathrm{~N}\end{array} \\ I_{A}=\frac{1}{3} m \ell^{2}=\frac{1}{3} \times 4 \times 3^{2}=12 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ T_{1}+\sum U_{1-2}=T_{2}\end{array}$
If we consider moments about A then only the rotational energy is needed.
$T_{1}=\frac{1}{2} I_{A} \omega_{1}^{2}=\frac{1}{2} \times 12 \times 6^{2}=216 N \cdot m$
$\sum U_{1-2}=M\left(\theta_{2}-\theta_{1}\right)+F r\left(\theta_{2}-\theta_{1}\right)+W(r / 2)=(-40) \times(-\pi / 2)+$
$(-15) \times 3 \times(\pi / 2)+39.24 \times 1.5=192.39 \mathrm{~N} \cdot \mathrm{~m}$
$T_{2}=\frac{1}{2} I_{A} \omega_{2}^{2}=\frac{1}{2} \times 12 \times \omega_{2}^{2}=6 \omega_{2}^{2}$

$$
408.39=6 \omega_{2}^{2} \quad \Rightarrow \quad \omega_{2}=8.25 \mathrm{rad} / \mathrm{s}
$$

2. The soap-box car has a weght of 110 lb , including the passanger but excluding its four wheels. Each wheel has a weight of 5 lb , radius of 0.5 ft , and a radius of gyration $k=0.3 \mathrm{ft}$, computed about an axis passing through the wheel's axle. Determine the car's speed after it has traveled 100 ft starting from rest. The wheels roll without slipping. Neglect air resistance.
Data:
$W_{C}=110 \mathrm{lb}$
$W_{\mathrm{w}}=5 \mathrm{lb}$
$m_{C}=3.4161$ slug
$m_{\mathrm{w}}=0.15528$ slug
$r_{\mathrm{w}}=0.5 \mathrm{ft}$
$k=0.3 \mathrm{ft}$
$s=100 \mathrm{ft}$
$v_{\mathrm{s}}=?$

SOLUTION

$$
\begin{aligned}
& \quad T_{2}=\underbrace{0.31056 v^{2}}_{\text {wheels rotation }}+\underbrace{0.1118 v^{2}}_{\text {wheels translation }}+1.7081 v^{2} \\
& \quad 0+6500=2.1305 v^{2} \\
& \text { NOTE: } \quad v=55.2 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

If we do not accout for rotational energy then $v=\underset{(8 \% \text { difference })}{59.8} \mathrm{ft}$
3. The 4 kg slender rod is subjected to the force and couple moment. When it is in the position shown it has an angular velocity $\omega_{1}=6 \mathrm{rad} / \mathrm{s}$. Determine its angular velocity at the instant it has rotated downwards 90°. The force is always applied perpendicular to the axis of the rod. Motion occurs in the vertical plane.
Data: $m=4 \mathrm{~kg}$
$W=39.24 N$
$\omega_{2}=$?

CONSERVATION OF ENERGY

If all the forces acting on the system are conservative, then:

$$
T_{1}+V_{1}=T_{2}+V_{2}
$$

Typically $V=V_{g}+V_{e}$ where

Data:
$W=180 \mathrm{lb}$ $m=5.59 \mathrm{slug}$ $w=10 \mathrm{ft}$

$$
\begin{align*}
T_{1}+V_{1} & =T_{2}+V_{2} \\
T_{1} & =0 \\
V_{1} & =0 \tag{8}
\end{align*}
$$

$$
7
$$

Note that the forces F_{x} and F_{y} do not perform any work.
Also, $\left|\mathbf{x}_{G}-\mathbf{x}_{B}\right|=1 \mathrm{ft}$
$T_{2}=\frac{1}{2} I_{G} \omega^{2}+\frac{1}{2} m v_{G}^{2}=$
$\frac{1}{2} \times 29.81 \times \omega^{2}+\frac{1}{2} 5.59 \times\left(1 \times \omega^{2}\right)$
$T_{2}=17.7 \omega^{2}$
$V_{2}=-W h=-180 \times 4=-720 \mathrm{lb} \cdot \mathrm{ft}$

Rotation
$T_{2}+V_{2}=0=17.7 \omega^{2}-720 \Rightarrow \omega=6.3779 \mathrm{rad} / \mathrm{s} \quad v_{y}=0$
$\mathbf{v}_{A}=\mathbf{v}_{B}+\boldsymbol{\omega} \times \mathbf{r}_{A / B}=(6.3779 \mathbf{k}) \times(5 \mathbf{j})$
$\mathbf{v}_{A}=-31.9 \mathbf{i}$
about B , $v_{x}=0$

$$
\mathbf{v}_{A}=-31.9 \mathbf{i}
$$

$$
\begin{aligned}
& T_{1}+V_{1}=T_{2}+V_{2} \\
& T_{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& T_{D}=\underbrace{\frac{1}{2} I_{G_{D}} \omega^{2}}_{\text {diskrotational }}=0.4659 \omega^{2} \quad \begin{array}{ll}
h_{G R}=2.5 f t & v_{G R}=r_{G R} \omega=2.5 \omega \\
h_{G S}=3.5 f t & v_{G S}=r_{C S} \omega=3.5 \omega
\end{array} \\
& T_{R}=\underbrace{\frac{1}{2} I_{G_{R}} \omega^{\text {energy }}}+\underbrace{\frac{1}{2} m_{R} v_{G R}^{2}}=\frac{1}{2} \times 0.00518 \times \omega^{2}+\frac{1}{2} \times 0.06211 \times(2.5 \omega)^{2} \\
& \begin{array}{c}
\begin{array}{c}
\text { rod rotational } \\
\text { energy }
\end{array} \\
\begin{array}{c}
\text { rod translational } \\
\text { energy }
\end{array} \\
\hline
\end{array} \\
& T_{R}=0.19668 \omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {rod }}=-W_{R} h_{G R}=-2 \times 2.5=-5 \mathrm{lb} \cdot f t \\
& V_{\text {sphere }}=-W_{S} h_{G S}=-10 \times 3.5=-35 \mathrm{lb} \cdot f \mathrm{ft} \\
& h_{G R}=3.5 \mathrm{ft} \\
& V_{2}=34.306-5-35=-5.694 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Put all together:

$$
\begin{gathered}
2=2.5803 \omega^{2}-5.694 \\
\omega=1.73 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

IMPULSE AND MOMENTUM
Linear momentum: $\mathbf{L}=m \mathbf{v}_{G}$
Angular Momentum: Consider a particle i
of mass dm in a body rotating with
angular velocity ω and where the point
P has velocity \mathbf{v}_{P}
The vlocity of the particle i is
The "moment" of the particle about P is
$\quad d\left(\mathbf{H}_{P}\right)=\mathbf{r}_{i / P} \times \mathbf{v}_{i}$
In terms of the coordinate components:
$d\left(H_{P}\right) \mathbf{k}=(x \mathbf{i}+y \mathbf{j}) \times d m\left[v_{P x} \mathbf{i}+v_{P y} \mathbf{j}+(\omega \mathbf{k}) \times(x \mathbf{i}+y \mathbf{j})\right]{ }_{13}$

The angular momentum of a body about its center of gravity G is the product of its moment of inertia I and its angular velocity $\boldsymbol{\omega}$.
To find an expression for the angular momentum about an arbitrary point P in terms of G, by the parallel axis theorem:

$$
I_{P}=I_{G}+m\left(\bar{x}^{2}+\bar{y}^{2)}\right.
$$

Substituting in the expression for H_{P} derived above:

$$
\begin{gathered}
\left(H_{P}=-m \bar{y} v_{P x}+m \bar{x} v_{P y}+I_{P} \omega\right) \\
H_{P}=\bar{y} m\left[-v_{P x}+\bar{y} \omega\right]+\bar{x} m\left[v_{P y}+\bar{x} \omega\right]+I_{G} \omega
\end{gathered}
$$

Expressing \mathbf{v}_{G} in terms of \mathbf{v}_{P},
$\mathbf{v}_{G}=\mathbf{v}_{P}+\omega \times \mathbf{r}_{G / P}$ or in terms of components: $v_{G x} \mathbf{i}+v_{G y} \mathbf{j}=v_{P x} \mathbf{i}+v_{P y} \mathbf{j}+(\omega \mathbf{k}) \times(\bar{x} \mathbf{i}+\bar{y} \mathbf{j})$

This yields:

$$
\begin{aligned}
v_{G x} & =v_{P x}-\bar{y} \omega \\
v_{G y} & =v_{P y}+\bar{x} \omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { GENERAL PLANE MOTION: } \\
& L=m v_{G} \\
& H_{G}=I_{G} \omega \text { or } H_{A}=I_{G} \omega+d m v_{G}
\end{aligned}
$$

Principle of Linear Impulse and Momentum

$$
m\left(v_{G}\right)_{1}+\sum \int_{t_{1}}^{t_{2}} \mathbf{F} d t=m\left(v_{G}\right)_{2}
$$

Principle of Angular Impulse and Momentum

$$
I_{G} \omega_{1}+\sum \int_{t_{1}}^{t_{2}} M_{G} d t=I_{G} \omega_{2}
$$

For rotation about a fixed axis O we can also write:

$$
I_{O} \omega_{1}+\sum \int_{t_{1}}^{t_{2}} M_{O} d t=I_{O} \omega_{2}
$$

Since all terms are in the \mathbf{k} direction the scalar equation is

$$
d\left(H_{P}\right)=-d m y v_{P x}+d m x v_{P y}+d m \omega r_{i}^{2}
$$

Integrating over the whole body:
$H_{P}=-(\underbrace{\int_{m} y d m}_{m \bar{y}}) v_{P x}+(\underbrace{\int_{m} x d m}_{m \bar{x}}) v_{P y}+(\underbrace{\int_{m} r_{i}^{2} d m}_{I_{P}}) \omega$
So we get:

$$
H_{P}=-m \bar{y} v_{P x}+m \bar{x} v_{P y}+I_{P} \omega
$$

And if $P=G$

$$
\mathbf{H}_{G}=I_{G} \boldsymbol{\omega}
$$

The equation for H_{P} can then be written as:

$$
H_{P}=-\bar{y} m v_{G x}+\bar{x} m v_{G y}+I_{G} \omega
$$

If the angular momentum is computed about a point P, it is equivalent to the linear momentum $m \mathbf{v}_{G}$ about P plus the angular momentum $I_{G} \boldsymbol{\omega}$.

Let us now examine linear and angular momentum for the three different types of motion under consideration:

$$
\text { TRANSLATION: } \quad L=m v_{G}
$$

$H_{G}=0$
ROTATION ABOUT A FIXED AXIS:

$$
\begin{gathered}
L=m v_{G} \\
H_{G}=I_{G} \omega \text { or } H_{O}=I_{O} \omega
\end{gathered}
$$

ECCENTRIC IMPACT

If two bodies with SMOOTH surfaces collide when their mass centers and velocity are aligned with the line of impact, the result is a central impact and is treated as we did before.

If the line connecting the mass centers does not coincide with the line of impact, as in the case when one of the bodies is rotating about a fixed axis the impact is ECCENTRIC.
In this case, in general two equations need to be solved to determine all the velocities. The first will generally involve the application of conservation of angular momentum and the secon is obtained from the coefficient of restitution.

$$
\left(\mathbf{H}_{O}\right)_{1}=\left(\mathbf{H}_{O}\right)_{2} \quad \text { and } \quad e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}}
$$

Where the velocities are along the line of impact.

EXAMPLES

1. A flywheel has a mass of 60 kg and a radius of gyration of $k_{G}=150 \mathrm{~mm}$ about an axis of rotation pasing through its mass center. If a motor supplies a clockwise torque having a magnitude of $M=(5 t) N \cdot m$, where t is in seconds,
determine the wheel's angular velocity in $t=3 \mathrm{~s}$. Initially the
flywheel is rotating clockwise at $\omega_{1}=2 \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
& \text { Data: } \\
& m=60 \mathrm{~kg} \\
& r_{G}=0.15 \mathrm{~m} \\
& M=-5 t \\
& \omega_{1}=-2 \mathrm{rad} / \mathrm{s} \\
& \omega(t=3 \mathrm{~s})=?
\end{aligned}
$$

$$
I_{G}=60 \times 0.15^{2}=1.35 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\left(\mathbf{H}_{0}\right)_{1}+\int_{0}^{3} \mathbf{M} d t=\left(\mathbf{H}_{0}\right)_{2}
$$

$$
I_{G} \omega_{1}+\int_{0}^{3}(-5 t) d t=I_{G} \omega_{2}
$$

$$
1.35 \times(-2)-\frac{5}{2} 3^{2}=1.35 \omega_{2}
$$

$$
\omega_{2}=18.67 \mathrm{rad} / \mathrm{s}
$$

2. The spool has a mass of 30 kg and a radius of gyration $k_{0}=0.25 \mathrm{~m}$. Block A has a mass of 25 kg , and block B has a mass of 10 kg . If they are released from rest, determine the time required for block A to attain speed of $2 \mathrm{~m} / \mathrm{s}$. Neglect the mass of the ropes.

Data: | SOLUTION |
| :--- |
| $m_{S}=30 \mathrm{~kg}$ |
| $k_{O}=0.25 \mathrm{~m}$ |
| $m_{A}=25 \mathrm{~kg}$ |
| $m_{B}=10 \mathrm{~kg}$ |
| $v_{A}=2 \mathrm{~m} / \mathrm{s}$ |
| $t=?$ |

First calculate I_{O}

$I_{O}=30 \times 0.25^{2}=1.875 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\left(H_{O}\right)_{1}+\sum \int_{0}^{t} M_{O} d t=\left(H_{O}\right)_{2}$

$\left(H_{O}\right)_{1}=0$
$\sum \int_{0}^{t} M_{O} d t=\int_{0}^{t}\left(m_{A} g r_{A}-m_{B} g r_{B}\right) d t=9.81 \times(25 \times 0.3-10 \times 0.18) t$

$$
\sum \int_{0}^{t} M_{o} d t=55.917 t
$$

$$
\left(H_{O}\right)_{2}=r_{A} m_{A}\left(v_{A}\right)_{2}+r_{B} m_{B}\left(v_{B}\right)_{2}+I_{O} \omega
$$

(note that $\mathbf{r}_{A} \times \mathbf{v}_{A}$ and $\mathbf{r}_{B} \times \mathbf{v}_{B}$ have the same sign)
From $v_{A}=r_{A} \omega \Rightarrow \omega=\frac{2}{0.3}=6.6667 \mathrm{rad} / \mathrm{s}$

$$
v_{B}=r_{B} \omega \Rightarrow v_{B}=0.18 \times 6.6667=1.2 \mathrm{~m} / \mathrm{s}
$$

Hence
$\left(H_{O}\right)_{2}=0.3 \times 25 \times 2+0.18 \times 10 \times 1.2+1.875 \times 6.6667=29.66 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$

$$
55.917 t=29.66
$$

$$
t=0.53 \mathrm{~s}
$$

22

