
4. A 4 kg disk A is mounted on arm $B C$, which has a negligible mass. If a torque of $M=\left(5 e^{0.5 t}\right) N \cdot m$, where t is in seconds, is applied to the arm at C, determine the angular velocity of $B C$ in $2 s$ starting from rest. Solve the problem assuming that:
(a) The disk is set on a smooth bearing at B so that it rotates with curvilinear translation.
(b) The disk is fixed to the shaft $B C$.
(c) The disk is given an initial freely spinning angular velocity of $\omega_{D}=(-80 \mathrm{k}) \mathrm{rad} / \mathrm{s}$

SOLUTION

$I_{G}=\frac{1}{2} m r^{2}=\frac{1}{2} \times 60 \times 0.6^{2}=0.0072 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

$$
\begin{aligned}
& H_{G}: I_{G} \omega_{1}+\int_{0}^{4}(P+F) r d t=I_{G} \omega_{2} \\
& \quad(2+F) \times 0.6 \times 4=0.2795 \omega_{2} \quad \text { FBD } \\
& \quad 8+4 F=0.46583 \omega_{2}(2)
\end{aligned}
$$

Adding (1) and (2) $16=1.3975 \omega_{2}$

$$
\omega_{2}=11.45 \mathrm{rad} / \mathrm{s}
$$

$\left.\left.\begin{array}{l}\sum F_{x}=m a_{G x} \\ \sum M_{G}=I_{G} \alpha\end{array}\right\} \Rightarrow \begin{array}{c}\text { Alternatively } \\ P-F=m r \alpha \\ (P+F) r=I_{G} \alpha\end{array}\right\} \Rightarrow\left\{\begin{array}{l}2-F=0.93168 \alpha \\ 2+F=0.46583 \alpha\end{array}\right.$
Solving $F=0.66667 \mathrm{lb}$ and $\alpha=2.8622 \mathrm{rad} / \mathrm{s}^{2}$

$$
\omega_{2}=\int_{0}^{4} \alpha d t=\int_{0}^{4} 2.8622 d t=11.45
$$

2
(a) Smooth bearing, disk in pure translation:

$$
\begin{gathered}
\left(\mathrm{H}_{\mathrm{C}}\right)_{1}+\int_{0}^{2} M_{C} d t=\left(\mathrm{H}_{\mathrm{C}}\right)_{2} \\
0+\int_{0}^{2} 5 e^{0.5 t} d t=m r v_{B}=m r^{2} \omega_{\mathrm{BC}} \\
\frac{5}{0.5}\left(e^{1}-e^{0}\right)=4 \times 0.25^{2} \omega \Rightarrow \omega=68.7 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

(b) Fixed disk, rigid body rotation:

$$
\begin{gathered}
\int_{0}^{2} 5 \mathrm{e}^{0.5 \mathrm{t}} \mathrm{dt}=m r^{2} \omega+I_{G} \omega \\
17.183=4 \times 0.25^{2} \omega+0.0072 \omega \Rightarrow \omega=66.8 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

(c) Spinning freely: (also smooth bearing)

$$
I_{0} \omega_{0}+17.183=0.25 \omega+I / \omega_{0} \Rightarrow \omega=68.7 \mathrm{rad} / \mathrm{s}
$$

4. The slender rod has a mass m and is suspended at its end A by a cord. If the rod receives a horizontal blow giving it an impulse I at its bottom B, determine the location y of the point P about which the rod appears to rotate during the impact.

$$
\begin{aligned}
& \text { SOLUTION } \\
& I_{G}=\frac{1}{12} m \ell^{2}
\end{aligned}
$$

Linear momentum: $\quad m\left(v_{G x}\right)_{1}+\mathrm{I}=m\left(v_{G x}\right)_{2}$
Angular momentum : $\quad I_{G} \omega_{1}+(\ell / 2) \mathrm{I}=I_{G} \omega_{2}$
$\left(v_{G x}\right)_{1}=\omega_{1}=0 \Rightarrow\left\{\begin{array}{c}\mathrm{I}=m\left(v_{G x}\right)_{2} \\ \frac{\ell}{2} \mathrm{I}=\frac{1}{12} m \ell^{2} \omega_{2}\end{array} \Rightarrow\left\{\begin{array}{l}\left(v_{G x}\right)_{2}=\frac{\mathrm{I}}{m} \\ \omega_{2}=\frac{6 \mathrm{I}}{m \ell}\end{array}\right.\right.$
 1 5

$$
\mathbf{v}_{P}=\mathbf{v}_{G}+\boldsymbol{\omega} \times \mathbf{r}_{P / G}=v_{G x} \mathbf{i}+(\omega \mathbf{k}) \times(d \mathbf{j})
$$

$$
0=\left(v_{G x}\right)_{2}-\omega_{2} d
$$

$$
d=\frac{\left(v_{G X}\right)_{2}}{\omega_{2}}=\frac{\mathrm{I} / m}{6 \mathrm{I} / m \ell}=\frac{\ell}{6}
$$

$$
y=\frac{\ell}{2}+\frac{\ell}{6}=\frac{2 \ell}{3}
$$

5. The platform swing consists of a 200 lb flat plate suspended by four rods of negligible weight. When the swing is at rest, the 150 lb man jumps off the platform when his center of gravity G is 10 ft from the pin at A. This is done with a horizontal velocity of $5 \mathrm{ft} / \mathrm{s}$, measured relative to the swing at the level of G. Determine the angular velocity he imparts to the swing just after jumping off.

$$
\begin{aligned}
& \quad \text { SOLUTION } \\
& I_{P O}=\frac{1}{12} m d^{2}=\frac{1}{12} \times 6.21 \times 4^{2} \\
& I_{P O}=8.28 \text { slug } \cdot \mathrm{ft}^{2} \\
& I_{P A}=I_{P O}+m_{P} d_{O A}^{2} \\
& I_{P A}= 8.28+6.21 \times 11^{2} \\
& I_{P A}= 759.7 \text { slug } \cdot \mathrm{ft}^{2}
\end{aligned}
$$

Data:

$W_{P}=200 \mathrm{lb}$
$W_{M}=150 \mathrm{lb}$
${ }^{111} m_{P}=6.21 \mathrm{slug}$
$m_{M}=4.658$ slug
$v_{G M}=5 \mathrm{ft} / \mathrm{s}$
$\omega_{P}=$?
6. The pendulum consists of a 5 lb slender rod $A B$ and a 10 lb wooden block. A projectile weighing 0.2 lb is fired into the center of the block with a velocity of $1000 \mathrm{ft} / \mathrm{s}$. If the pendulum is initially at rest, and the projectile imbeds itself into the block, Determine the angular velocity of the pendulum just after impact.
SOLUTION
$I_{R A}=\frac{1}{3} m \ell^{2}=\frac{1}{3} \times 0.15528 \times 2^{2}$
$I_{R A}=0.207 \mathrm{slug} \cdot \mathrm{ft}^{2}$
$I_{B A}=\frac{1}{6} m d^{2}+m r^{2}$
$=(0.31677+0.00621) \times\left(\frac{1}{6} \times 1^{2}+2.5^{2}\right)$
$I_{B A}=2.0326 \mathrm{slug} \cdot f t^{2}$
(in $I_{B A}$ the mass includes both the block and the projectile)
7. The pendulum consists of a 10 lb solid ball and 4 lb rod. If it is released from rest when $\theta_{1}=0$, determine the angle θ_{2} after the ball strikes the wall, rebounds, and the pendulum swings up to the point of momentary rest. Take $e=0.6$.

Data:
$W_{B}=10 \mathrm{lb}$
$W_{R}=4 l b$
$m_{B}=0.31056$ slug
$m_{R}=0.12422$ slug
$\omega_{1}=0$
$e=0.6$
$I_{G(B)}=\frac{2}{5} m_{B} r_{B}^{2}=\frac{2}{5} \times 0.31056 \times 0.3^{2}=0.01118 \mathrm{slug} \cdot \mathrm{ft}^{2}$
$I_{A(R)}=\frac{1}{3} m_{R} \ell^{2}=\frac{1}{3} \times 0.12422 \times 2^{2}=0.16563$ slug $\cdot f t^{2}$
$I_{A(B)}=I_{G(B)}+m_{B} r_{B / A}^{2}=0.01118+0.31056 \times 2.3^{2}=1.654 \mathrm{slug} \cdot \mathrm{ft}^{2}$
$I_{A}=I_{A(R)}+I_{A(B)}=1.8197 \mathrm{slug} \cdot f t^{2} \quad 11$

$$
\begin{aligned}
& \quad\left(H_{A}\right)_{1}=\left(H_{A}\right)_{2} \\
\left(H_{A}\right)_{1}= & r_{B / A} m_{p}\left(v_{p}\right)_{1} \\
= & 2.5 \times 0.00621 \times 1000 \\
\left(H_{A}\right)_{1}= & 15.525 \mathrm{slug} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
\left(H_{A}\right)_{2}= & I_{R A} \omega+I_{B A} \omega \\
= & 0.207 \omega+2.0326 \omega \\
\left(H_{A}\right)_{2}= & 2.2396 \omega \\
& \omega=6.93 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Note: If we neglect the mass of the projectile in block B we get $I_{B A}=1.9927$ and $\omega=7.06$ (a 1.7% difference)

2) Velocity just after impact with the wall, central impact:

$$
\text { line of impact } \quad e=\frac{\left(v_{B x}\right)_{2}-\left(v_{\text {wall }}\right)_{2}}{\left(v_{\text {wall }}\right)_{1}-\left(v_{B x}\right)_{1}}=-\frac{\left(v_{B x}\right)_{2}}{\left(v_{B x}\right)_{1}} \Rightarrow\left(v_{B X}\right)_{2}=-0.6 \times(-9.1169)
$$

$$
\left(v_{B x}\right)_{2}=5.4701 \mathrm{ft} / \mathrm{s}, \omega_{2}=2.3783 \mathrm{rads}
$$

$$
\begin{gathered}
\text { Datum } T_{2}+V_{2}=T_{3}+V_{3} \\
\frac{1}{2} I_{A} \omega_{2}^{2}+\frac{1}{2} m v_{G}^{2}-W r_{G / A}=0-W r_{G / A} \sin \theta_{2} \\
\frac{1}{2} \times 1.8197 \times 2.3783^{2}+\frac{1}{2} \times 0.43478 \times(1.92858 \times 2.3783)^{2} \\
\quad-14 \times 1.92858=-14 \times 1.92858 \times \sin \theta_{2}
\end{gathered}
$$

$$
\begin{gathered}
-17.2801=-27 \sin \theta_{2} \\
\sin \theta_{2}=0.64 \\
\theta_{2}=39.8^{\circ}
\end{gathered}
$$

8. The plank has a weight of 30 lb , center of gravity at G, and it rests on the two sawhorses A and B. If the end D is raised $2 f t$ above the top of the sawhorses and is released from rest, determine how high end C will rise from the top of the sawhorses after the plank falls so that it rotates clockwise about A, stikes and pivots on the saw horses at B, and rotates clockwise off the sawhorses at A.

Data:
$W=30 \mathrm{lb}$
$m=0.93168$ slug

SOLUTION
$\sin \theta=\frac{2}{6} \Rightarrow \theta=19.47^{\circ}$
$h=1.5 \sin \theta=0.5 \mathrm{ft}$
$I_{G}=\frac{1}{12} m \ell^{2}=6.2888 \mathrm{slug} \cdot \mathrm{ft}^{2}$
$I_{A}=I_{G}+m d^{2}=6.2888+0.93168 \times 1.5^{2}=8.3851 \mathrm{slug} \cdot \mathrm{ft}^{2}$

1) Velocity right before striking sawhorse B :

$$
\begin{gathered}
T_{0}+V_{0}=T_{1}+V_{1} \\
0+W h=\frac{1}{2} I_{A} \omega_{1}^{2}+0 \Rightarrow 30 \times 0.5=0.5 \times 8.3851 \omega_{1}^{2}
\end{gathered}
$$

$$
\omega_{1}=-1.8915 \mathrm{rad} / \mathrm{s}
$$

2) Velocity right after the plank strikes sawhorse B:

$$
\begin{gathered}
\left(H_{A}\right)_{1}=\left(H_{A}\right)_{2} \\
I_{A} \omega_{1}+d m\left(v_{G}\right)_{1}=I_{A} \omega_{2}+d m\left(v_{G}\right)_{2} \\
8.3851 \times(-1.8915)-1.5 \times 0.93168 \times[(-1.8915) \times 1.5]= \\
8.3851 \times \omega_{2}+1.5 \times 0.93168 \times\left(1.5 \times \omega_{2}\right) \\
\omega_{2}=-\omega_{1}=1.892 \Rightarrow \theta_{2}=\theta_{1}
\end{gathered}
$$

This happens because the losses at impact in B have not been taken into account. For this we need to add in the left hand side the term $\int_{0}^{t} 2 d F d t$ which is the impulse due to deformation when the plank hits the sawhorse B. However we have no iformation about this force F.
9. The uniform plate weights 40 lb and is supported by a roller at A.If a horizontal force $F=70 \mathrm{lb}$ is suddenly applied to the roller, determine the acceleration of the center of mass of the roller at the instant the force is applied. The plate has a moment of inertia about its center of mass of $I_{G}=0.414 \mathrm{slug} \cdot \mathrm{ft}^{2}$. Neglect the weight of the roller.

$$
\bar{y}=\frac{h}{3}=\frac{2 \sqrt{3}}{3}=1.1547 \mathrm{ft}
$$

1) $\quad \sum F_{x}=F=m a_{G x} \Rightarrow 70=1.2422 a_{G x}$ $a_{G x}=56.352 \mathrm{ft} / \mathrm{s}^{2}$

Data:
$W=40 \mathrm{lb}$
$m=1.2422$ slug $I_{G}=0.414 \operatorname{slug} \cdot \mathrm{ft}^{2}$
2) $\sum M_{A}=0=-m a_{G x} \bar{y}+I_{G} \alpha$
$-1.2422 \times 56.352 \times 1.1547+0.414 \alpha=0$
10. The 15 kg cylinder is rotating with an angular velocity of $40 \mathrm{rad} / \mathrm{s}$. If a force $F=6 \mathrm{~N}$ is applied to link $A B$, as shown, determine the time needed to stop the rotation. The coefficient of kinetic friction etween $A B$ and the cylinder is $\mu_{k}=0.4$.

> Data:
> $m=15 \mathrm{~kg}$
> $\omega=40 \mathrm{rad} / \mathrm{s}$
> $F=6 \mathrm{~N}$
> $\mu_{k}=0.4$

SOLUTION

To find \mathbf{N} take moments about B to avoid finding those reactions.

1) $\sum M_{B}=F \times 0.9-N \times 0.5=0$

19

2) $\quad\left(\mathbf{H}_{C}\right)_{1}+\int_{0}^{t} \mathbf{M}_{C} d t=0$

$$
\left(H_{C}\right)_{1}=I_{C} \omega
$$

$$
I_{C}=\frac{1}{2} m r^{2}=\frac{1}{2} \times 15 \times 0.15^{2}=0.16875 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
I_{C} \omega+\int_{0}^{t}\left(F_{\mu} r\right) d t=0
$$

$$
0.1688 \times 40-\int_{0}^{t}(4.32 \times 0.15) d t=0
$$

$$
6.752-6.48 t=0 \Rightarrow t=10.42 s
$$

