Chapter 15

15.1

$$
\begin{aligned}
{\left[k^{(1)}\right]=\frac{A E}{60}\left[\begin{array}{rr}
1 & 2 \\
-1 & -1 \\
-1 & 1
\end{array}\right], } & {\left[k^{(2)}\right]=\frac{A E}{60}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] } \\
\left\{f^{(1)}\right\}=\left\{\begin{array}{r}
-E \alpha T A \\
E \alpha T A
\end{array}\right\}, & \left\{f^{(2)}\right\}=\left\{\begin{array}{r}
-E \alpha T A \\
E \alpha T A
\end{array}\right\} \\
\{F\} & =[K]\{d\} \text { becomes } \\
\left\{\begin{array}{c}
-E \alpha T A \\
0 \\
E \alpha T A
\end{array}\right\} & =\frac{A E}{60}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1}=0 \\
u_{2} \\
u_{3}
\end{array}\right\}
\end{aligned}
$$

Solving

$$
\begin{aligned}
u_{2} & =\alpha T L \\
& =\left(7 \times 10^{-6}\right)\left(50^{\circ} \mathrm{F}\right)(60 \mathrm{in} .) \\
& =0.021 \mathrm{in} . \\
u_{3} & =2 \alpha T L=0.042 \mathrm{in} .
\end{aligned}
$$

Reactions and actual nodal forces

$$
\begin{aligned}
\{F\} & =[K]\{d\}-\left\{F_{0}\right\} \\
\left\{\begin{array}{l}
F_{1 x} \\
F_{2 x} \\
F_{3 x}
\end{array}\right\} & =\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left(\frac{A E}{L}\right)\left\{\begin{array}{c}
0 \\
\alpha T L \\
2 \alpha T L
\end{array}\right\}-\left\{\begin{array}{c}
-E \alpha T A \\
0 \\
E \alpha T A
\end{array}\right\} \\
\left\{\begin{array}{l}
F_{1 x} \\
F_{2 x} \\
F_{3 x}
\end{array}\right\} & =\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\} \\
\sigma^{(1)} & =\sigma^{(2)}=\frac{0}{4 \text { in. }^{2}}=0
\end{aligned}
$$

$$
\left[k^{(1)}\right]=\frac{A E}{1.5}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right], \quad\left[k^{(2)}\right]=\frac{A E}{1.5}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

$$
\left\{f^{(1)}\right\}=\left\{f^{(2)}\right\}=\left\{\begin{array}{r}
-E \alpha T A \\
E \alpha T A
\end{array}\right\}
$$

Global equations

$$
\frac{A E}{1.5}\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1}=0 \\
u_{2} \\
u_{3}=0
\end{array}\right\}=\left\{\begin{array}{c}
-E \alpha T A \\
0 \\
E \alpha T A
\end{array}\right\}
$$

Solving

$$
\begin{aligned}
\frac{A E}{1.5}\left(2 u_{2}\right) & =0 \\
u_{2} & =0
\end{aligned}
$$

Forces in elements

$$
\begin{aligned}
\left\{\begin{array}{l}
f_{1 x}^{(1)} \\
f_{2 x}^{(1)}
\end{array}\right\} & =\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\left\{\begin{array}{r}
-E \alpha T A \\
E \alpha T A
\end{array}\right\}=\left\{\begin{array}{r}
E \alpha T A \\
-E \alpha T A
\end{array}\right\} \\
E \alpha T A & =(210 \mathrm{GPa})\left(12 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)\left(-20^{\circ} \mathrm{C}\right) \times\left(1 \times 10^{-2} \mathrm{~m}^{2}\right) \\
& =-504 \mathrm{kN} \\
\therefore f_{1 x}^{(1)} & =-504 \mathrm{kN}, f_{2 x}^{(1)}=504 \mathrm{kN}
\end{aligned}
$$

FBD element 1

$$
\begin{aligned}
& \stackrel{504 \mathrm{kN}}{\longleftrightarrow} \xrightarrow{504 \mathrm{kN}} \\
& \sigma^{(1)}=\frac{504 \mathrm{kN}}{1 \times 10^{-2} \mathrm{~m}^{2}}=50,400 \mathrm{KPa} \\
& =50.4 \mathrm{MPa} \\
& \text { Similarly } \\
& \sigma^{(2)}=50.4 \mathrm{MPa} \\
& F_{1 x}=-504 \mathrm{kN}, F_{3 x}=504 \mathrm{kN}
\end{aligned}
$$

15.3

$$
\left\{\begin{array}{l}
f_{1 x} \\
f_{1 y} \\
f_{3 x} \\
f_{3 y}
\end{array}\right\}=\left[\begin{array}{cccc}
0.707 & -0.707 & 0 & 0 \\
0.707 & 0.707 & 0 & 0 \\
0 & 0 & 0.707 & -0.707 \\
0 & 0 & 0.707 & 0.707
\end{array}\right]\left\{\begin{array}{c}
f_{1 x}^{\prime}=-21,000 \\
0 \\
21,000 \\
0
\end{array}\right\}
$$

$$
f_{1 x}=-14,850 \mathrm{lb}, \quad f_{1 y}=-14,850 \mathrm{lb}
$$

$$
f_{3 x}=14,850 \mathrm{lb}, \quad f_{3 y}=-14,850 \mathrm{lb}
$$

Boundary conditions

$$
\begin{aligned}
u_{2} & =v_{2}=u_{3}=v_{3}=u_{4}=v_{4}=0 \\
\left\{\begin{array}{l}
F_{1 x}=-14,850 \\
F_{1 y}=14,850
\end{array}\right\} & =500000\left[\begin{array}{ll}
1.354 & 0.354 \\
0.354 & 1.354
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right\}
\end{aligned}
$$

Solving

$$
-u_{1}=v_{1}=-0.01753 \mathrm{in.}
$$

By Equation (14.1.57)

$$
\left.\begin{array}{rl}
\sigma^{(1)} & =\frac{E}{L}\left[\begin{array}{llll}
-C & -S & C & S
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}-\{0\} \\
\sigma^{(1)} & =\frac{30 \times 10^{6}}{120 \mathrm{in} .}\left[\begin{array}{lll}
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
0.01753 \\
-0.01753 \\
0 \\
0
\end{array}\right\} \\
\sigma^{(1)} & =4350 \mathrm{psi}(\mathrm{~T}) \\
\sigma^{(2)} & =\frac{E}{L}\left[\begin{array}{llll}
-C & -S & C & S
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{3} \\
v_{3}
\end{array}\right\}-E \alpha T \\
& =\frac{30 \times 10^{6}}{120 \sqrt{2}}\left[\begin{array}{lll}
-0.707 & -0.707 & 0.707 \\
0.707
\end{array}\right]\left\{\begin{array}{c}
0.01753 \\
-0.01753 \\
0 \\
0
\end{array}\right\}
\end{array}\right\}
$$

$$
\begin{aligned}
& \sigma^{(2)}=-6150 \mathrm{psi}(\mathrm{C}) \\
& \sigma^{(3)}=4350 \mathrm{psi}(\mathrm{~T})
\end{aligned}
$$

15.4

$$
\left\{f^{\prime(1)}\right\}=\left\{\begin{array}{l}
f_{1 x}^{\prime} \\
f_{2 x}^{\prime}
\end{array}\right\}=\left\{\begin{array}{r}
-E \alpha T A \\
E \alpha T A
\end{array}\right\}=\left\{\begin{array}{r}
-12600 \\
12600
\end{array}\right\} \mathrm{lb}
$$

$$
\begin{aligned}
\{f\} & =[T]^{T}\left\{f^{\prime}\right\} \\
\left\{\begin{array}{l}
f_{1 x} \\
f_{1 y} \\
f_{2 x} \\
f_{2 y}
\end{array}\right\} & =\left[\begin{array}{cccc}
\frac{1}{2} & \frac{-\sqrt{3}}{2} & 0 & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \\
0 & 0 & \frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left\{\begin{array}{l}
f_{1 x}^{\prime}=-12600 \\
f_{1 y}^{\prime}=0 \\
f_{2 x}^{\prime}=12600 \\
f_{2 y}^{\prime}=0
\end{array}\right\} \\
f_{1 x} & =-6300 \mathrm{lb} \\
f_{1 y} & =-10912 \mathrm{lb} \\
f_{2 x} & =6300 \mathrm{lb} \\
f_{2 y} & =10912 \mathrm{lb}
\end{aligned}
$$

Boundary conditions

$$
u_{2}=v_{2}=u_{3}=v_{3}=u_{4}=v_{4}=0
$$

Global equations

$$
\sigma^{(2)}=\frac{30 \times 10^{6}}{120}\left[\begin{array}{llll}
0 & - & 1 & 0
\end{array}\right]\left\{\begin{array}{c}
-0.0291 \\
-0.0095 \\
0 \\
0
\end{array}\right\}-0
$$

$$
\sigma^{(2)}=2375 \mathrm{psi}(\mathrm{~T})
$$

$$
\sigma^{(3)}=\frac{30 \times 10^{6}}{\frac{2(120)}{\sqrt{3}}}\left[\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{1}{2} \frac{\sqrt{3}}{2}\right]\left\{\begin{array}{c}
-0.0291 \\
-0.0095 \\
0 \\
0
\end{array}\right\}-0
$$

$$
\sigma^{(3)}=-1370 \mathrm{psi}(\mathrm{C})
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
F_{1 x}=-6300 \\
F_{1 y}=-10912
\end{array}\right\}=\frac{\left(2 \mathrm{in.}^{2}\right)\left(30 \times 10^{6}\right)}{120 \mathrm{in} .}\left[\begin{array}{cc}
\frac{\sqrt{3}}{4} & 0 \\
0 & 1+\frac{3 \sqrt{3}}{4}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right\} \\
& -6300=216,506 u_{1} \quad u_{1}=-0.0291 \mathrm{in} . \\
& -10912=1,149,519 v_{1} \quad v_{1}=-0.0095 \mathrm{in} . \\
& \sigma^{(1)}=\frac{E}{L}\left[\begin{array}{llll}
-C & -S & C & S
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2}
\end{array}\right\}-E \alpha T \\
& =\frac{30 \times 10^{6}}{\frac{2(120)}{\sqrt{3}}}\left[-\frac{1}{2} \frac{-\sqrt{3}}{2} \frac{1}{2} \frac{\sqrt{3}}{2}\right]\left\{\begin{array}{c}
-0.0291 \\
-0.0095 \\
0 \\
0
\end{array}\right\} \\
& -30 \times 10^{6} \times 7 \times 10^{-6} \times 30^{\circ} \mathrm{F} \\
& \sigma^{(1)}=(216506)(0.0228)-6300 \\
& =-1370 \mathrm{psi}(\mathrm{C})
\end{aligned}
$$

$$
\begin{aligned}
\beta_{m} & =y_{i}-y_{j}=0-0=0, \quad \gamma_{m}=x_{j}-x_{i}=6-0=6 \\
\left\{f_{T}\right\} & =\frac{\left(7.0 \times 10^{-6}\right)\left(30 \times 10^{6}\right)(1)\left(100^{\circ} \mathrm{F}\right)}{2(1-0.3)}\left\{\begin{array}{r}
-4 \\
-6 \\
4 \\
0 \\
0 \\
6
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-90,000 \\
60,000 \\
0 \\
0 \\
90,000 \mathrm{lb}
\end{array}\right\}
\end{aligned}
$$

15.16

$$
\begin{aligned}
& \begin{aligned}
& \\
& \text { E }=210 \mathrm{GPa} \\
& v=0.25 \\
& \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\
& t=0.01 \mathrm{~m} \\
& T=-20^{\circ} \mathrm{C}
\end{aligned} \\
& \left\{f_{T}\right\}=\frac{\alpha E t T}{2(1-v)}\left\{\begin{array}{c}
\beta_{i} \\
\gamma_{i} \\
\beta_{j} \\
\gamma_{j} \\
\beta_{m} \\
\gamma_{m}
\end{array}\right\} \\
& \beta_{i}=-0.4 \mathrm{~m} \quad \gamma_{i}=-0.4 \mathrm{~m} \\
& \beta_{j}=0.4 \mathrm{~m} \\
& \gamma_{j}=0 \\
& \beta_{m}=0 \\
& \gamma_{m}=0.4 \mathrm{~m} \\
& \left\{f_{T}\right\}=\frac{\left(12 \times 10^{-6}\right)\left(210 \times 10^{9}\right)(0.01)\left(-20^{\circ} \mathrm{C}\right)}{2(1-0.25)}\left\{\begin{array}{c}
-0.4 \\
-0.4 \\
0.4 \\
0 \\
0 \\
0.4
\end{array}\right\} \\
& \left\{f_{T}\right\}=\left\{\begin{array}{c}
134.4 \\
134.4 \\
-134.4 \\
0 \\
0 \\
-134.4
\end{array}\right\} \mathrm{kN}
\end{aligned}
$$

15.17

Thermal force matrix
Element 1

$$
\begin{aligned}
& i=1, j=2, m=5 \\
& \beta_{i}=y_{j}-y_{m}=0-10=-10, \\
& \beta_{j}=y_{m}-y_{i}=10-0=10, \\
& \beta_{m}=y_{i}-y_{j}=0-0=0, \\
& \gamma_{j}=x_{i}-x_{j}=0-20=-20 \\
&\left\{f_{T}^{(1)}\right\}=\frac{\left(12.5 \times 10^{-6}\right)\left(10 \times 10^{6}\right)(1)(50)}{2(1-0.3)}\left\{\begin{array}{r}
-10 \\
-20 \\
10 \\
-20 \\
0 \\
40
\end{array}\right\} \\
&\left\{f_{T}^{(1)}\right\}=\left\{\begin{array}{r}
-x_{i}=40-0=40 \\
44643 \\
-89286 \\
0 \\
178572
\end{array}\right\}
\end{aligned}
$$

Element 2

$$
\begin{array}{rlrl}
i & =2, j=3, m=5 & \\
\beta_{i} & =20-10=10, & \gamma_{i}=20-40=-20 \\
\beta_{j} & =10-0=10, & \gamma_{j}=40-20=20 \\
\beta_{m} & =0-20=-20, & \gamma_{m}=40-40=0 \\
\left\{f_{T}^{(2)}\right\} & =4464.3\left\{\begin{array}{c}
10 \\
-20 \\
10 \\
20 \\
-20 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
44643 \\
-89286 \\
44643 \\
89286 \\
-89286 \\
0
\end{array}\right\}
\end{array}
$$

Element 3

$$
\begin{aligned}
i & =3, j=4, m=5 & & \\
\beta_{i} & =20-10=10 & & \gamma_{j}=20-0=20 \\
\beta_{j} & =10-20=-10 & & \gamma_{j}=40-20=20 \\
\beta_{m} & =20-20=0 & & \gamma_{m}=0-40=-40
\end{aligned}
$$

$$
\left\{f_{T}^{(3)}\right\}=4464.3\left\{\begin{array}{r}
10 \\
20 \\
-10 \\
20 \\
0 \\
-40
\end{array}\right\}=\left\{\begin{array}{c}
44643 \\
89286 \\
-44643 \\
89286 \\
0 \\
-178572
\end{array}\right\}
$$

Element 4

$$
\left.\left.\begin{array}{rl}
i=4, j=1, m=5 \\
\beta_{i} & =0-10=-10 \\
\beta_{j} & =10-20=-10
\end{array} \quad \begin{array}{r}
\gamma_{i}=20-0=20 \\
\beta_{m}
\end{array}=20-0=20 \quad \begin{array}{r}
\gamma_{m}=0-0=0
\end{array}\right] \begin{array}{r}
-10 \\
20 \\
-10 \\
-20 \\
20 \\
0
\end{array}\right\}=\left\{\begin{array}{r}
-44643 \\
89286 \\
-44643 \\
-89286 \\
89286 \\
0
\end{array}\right\}
$$

By direct superposition, we have

$$
\begin{aligned}
&\left\{\begin{array}{c}
-89,286 \\
-178,572 \\
89,286 \\
-178,572 \\
89,286 \\
178,572 \\
-89,286 \\
178,572 \\
0 \\
0
\end{array}\right\}=\frac{10 \times 10^{6}}{4.16}\left[\begin{array}{cccccccccc}
3 & 2 & 0.1 & 0.2 & 0 & 0 & -0.1 & -0.2 & -3 & -2 \\
& 6 & -0.2 & 2.6 & 0 & 0 & 0.2 & -2.6 & -2 & -6 \\
& & 3 & -2 & -0.1 & 0.2 & 0 & 0 & -3 & 2 \\
& & & 6 & -0.2 & -2.6 & 0 & 0 & 2 & -6 \\
& & & 3 & 2 & 0.1 & 0.2 & -3 & -2 \\
& & \\
& \times\left\{\begin{array}{c}
\\
v_{1}=0 \\
\vdots \\
\vdots \\
u_{5} \\
v_{5}
\end{array}\right\}
\end{array}\right. \\
& \\
& u_{1}=0 \\
&
\end{aligned}
$$

Solving

$$
\begin{aligned}
& 0=\frac{10 \times 10^{6}}{4.16} 12 u_{s} \Rightarrow u_{s}=0 \\
& 0=\frac{10 \times 10^{6}}{4.16} 24 v_{s} \Rightarrow v_{s}=0
\end{aligned}
$$

Stresses

$$
\begin{aligned}
\{\sigma\} & =\left\{\sigma_{L}\right\}-\left\{\sigma_{T}\right\} \\
\left\{\sigma_{L}\right\} & =[D][B]\{d\}=0 \text { as }\{d\}=\underline{0} \\
\therefore \quad\{\sigma\} & =-\left\{\sigma_{T}\right\}=-[D]\left\{\varepsilon_{T}\right\}
\end{aligned}
$$

Element 1

$$
\begin{aligned}
\{\sigma\} & =-\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{c}
\alpha T \\
\alpha T \\
0
\end{array}\right\} \\
\left\{\begin{array}{c}
\alpha_{x} \\
\alpha_{y} \\
\tau_{x y}
\end{array}\right\} & =\frac{-10 \times 10^{6}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
1-0.3^{2} \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]\left\{\begin{array}{c}
6.25 \times 10^{-4} \\
6.25 \times 10^{-4} \\
0
\end{array}\right\}}{} \\
& =\left\{\begin{array}{c}
-8929 \\
-8929 \\
0
\end{array}\right\} \mathrm{psi}
\end{aligned}
$$

Since $[D]$ and $\left\{\varepsilon_{T}\right\}$ are same for all elements, all element stresses are equal.

Based on use of symmetry

$$
\begin{aligned}
u_{s} & =v_{s}=0 \text { (Also see solution to Problem 15.17) } \\
\therefore \quad\{\sigma\} & =\left\{\sigma_{L}\right\}-\left\{\sigma_{T}\right\}=[D][B]\{d\}-[D]\left\{\varepsilon_{T}\right\} \\
\{\sigma\} & =-[D]\left\{\varepsilon_{T}\right\}
\end{aligned}
$$

All stresses in elements are equal

$$
\begin{aligned}
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} & =\frac{-E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{c}
\alpha T \\
\alpha T \\
0
\end{array}\right\} \\
& =\frac{-210 \times 10^{9}}{1-0.25^{2}}\left[\begin{array}{ccc}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & \frac{1-0.25}{0}
\end{array}\right]\left\{\begin{array}{c}
12 \times 10^{-6}(-20) \\
12 \times 10^{-6}(-20) \\
0
\end{array}\right\}
\end{aligned}
$$

