$$
\begin{aligned}
\alpha_{m} & =r_{i} z_{j}-z_{i} r_{j}=0, \beta_{m}=z_{i}-z_{j}=0-0=0 \\
\gamma_{m} & =r_{j}-r_{i}=b-0=b
\end{aligned}
$$

So the shape functions evaluated at $r=b$ and $z=z$

$$
\begin{aligned}
& N_{i}=\frac{1}{b h}(b h+(-h) b+0 \quad z)=0 \\
& N_{j}=\frac{1}{b h}(0+h b+(-b) z)=\frac{1}{b h}(h b-b z) \\
& N_{m}=\frac{1}{b h}(0+0 b+b z)=\frac{1}{b h}(b z) \\
& \left\{f_{s}\right\}=\int_{0}^{h}\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\frac{1}{b h}(h b-b z) & 0 \\
0 & \frac{1}{b h}(h b-b z) \\
\frac{1}{b h}(b z) & 0 \\
0 & \frac{1}{b h}(b z)
\end{array}\right]\left\{\begin{array}{c}
\frac{p_{0} z}{h} \\
0
\end{array}\right\} 2 \pi d z \\
& =\frac{2 \pi b}{b h} \int_{0}^{h}\left\{\begin{array}{c}
0 \\
0 \\
p_{0} b z-\frac{p_{0} b z^{2}}{h} \\
0 \\
\frac{p_{0} b z^{2}}{h} \\
0
\end{array}\right\} d z=\frac{2 \pi}{h}\left\{\begin{array}{c}
0 \\
0 \\
\frac{p_{0} b z^{2}}{2}-\frac{p_{0} 0 z^{3}}{3 h} \\
0 \\
\frac{p_{0} b z^{3}}{3 h} \\
0
\end{array}\right\} \\
& =\frac{2 \pi}{h}\left\{\begin{array}{c}
0 \\
0 \\
\frac{p_{0} b h^{2}}{6} \\
0 \\
\frac{p_{0} b h^{2}}{3} \\
0
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
f_{s 1 x} \\
f_{s 1 y} \\
f_{s 2 x} \\
f_{s 2 y} \\
f_{s 3 x} \\
f_{s 3 y}
\end{array}\right\}=2 \pi b\left\{\begin{array}{c}
0 \\
0 \\
\frac{p_{0} h}{6} \\
0 \\
\frac{p_{0} h}{3} \\
0
\end{array}\right\}
\end{aligned}
$$

Equation to be evaluated is $\left\{f_{B}\right\}=\frac{2 \pi \bar{r} A}{3}\left\{\begin{array}{c}\bar{R}_{B} \\ Z_{B} \\ \bar{R}_{B} \\ Z_{B} \\ \bar{R}_{B} \\ Z_{B}\end{array}\right\}$

$$
\begin{aligned}
\bar{r} & =4+2 \times \frac{2}{3} \Rightarrow \bar{r}=5.333 \mathrm{in} . \\
Z_{B} & =0.283 \frac{\mathrm{lb}}{\mathrm{in.}^{3}} \\
\bar{R}_{B} & =w^{2} \rho \bar{r}=\left[20 \frac{\mathrm{rev} .}{\min }\left(2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}\right) \frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right]^{2} \frac{\left(0.283 \frac{\mathrm{lb}}{\mathrm{in} .3}\right)}{\left(32.2 \times 12 \frac{\mathrm{lb}}{\mathrm{in} .3}\right)}[5.333 \mathrm{~m}] \\
\bar{R}_{B} & =0.01712 \frac{\mathrm{lb}}{\mathrm{in.}^{3}} \\
\frac{2 \pi \bar{r} A}{3} & =\frac{2}{3} \pi(5.333 \mathrm{in} .)\left(2 \mathrm{in.}^{2}\right)=22.34 \mathrm{in.}^{3}
\end{aligned}
$$

So

$$
\begin{aligned}
f_{B 1 r} & =(22.34)(0.01712)=0.382 \mathrm{lb} \\
f_{B 1 z} & =(-22.34)(0.283)=-6.32 \mathrm{lb} \\
f_{B 2 r} & =(22.34)(0.01712)=0.382 \mathrm{lb} \\
f_{B 3 z} & =(-22.34)(0.283)=-6.32 \mathrm{lb} \\
f_{B 3 r} & =(22.34)(0.01712)=0.382 \mathrm{lb} \\
f_{B 3 z} & =(-22.34)(0.283)=-6.32 \mathrm{lb}
\end{aligned}
$$

(a) Element Figure 9.4 a

The equation to be evaluated is $\{\sigma\}=[D][B\}\{d\}$

$$
\begin{aligned}
& r_{i}=0, z_{i}=0, r_{j}=2, z_{j}=0, r_{m}=1, z_{m}=3 \\
& \alpha_{i}=6, \alpha_{j}=0, \alpha_{m}=0, \beta_{i}=-3, \beta_{j}=3, \beta_{m}=-3, \\
& \gamma_{i}=-1, \gamma_{j}=-1, \gamma_{m}=2 \\
& \bar{r}=1, \bar{z}=1, A=\frac{1}{2}(3)(2)=3 \mathrm{in.}^{2}
\end{aligned}
$$

Figure 9.4a
$[\bar{B}]=\frac{1}{6}\left[\begin{array}{cccccc}-3 & 0 & 3 & 0 & -3 & 0 \\ 0 & -1 & 0 & -1 & 0 & 2 \\ 2 & 0 & 2 & 0 & -1 & 0 \\ -1 & -3 & -1 & 3 & 2 & -3\end{array}\right]$
$[D]=\frac{30 \times 10^{6}}{(1+0.25)(1-0.5)}\left[\begin{array}{cccc}0.75 & 0.25 & 0.25 & 0 \\ 0.25 & 0.75 & 0.25 & 0 \\ 0.25 & 0.25 & 0.75 & 0 \\ 0 & 0 & 0 & 0.25\end{array}\right]$

$$
\begin{gathered}
{[D]=\frac{E}{(1+v)(1-2 v)}\left(\begin{array}{cccc}
1-v & v & v & 0 \\
v & 1-v & v & 0 \\
v & v & 1-v & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right)} \\
{[k]=\left(\begin{array}{cccccc}
8.577 \times 10^{8} & 1.759 \times 10^{8} & -3.738 \times 10^{8} & -8.796 \times 10^{7} & 4.398 \times 10^{7} & -8.796 \times 10^{7} \\
1.759 \times 10^{8} & 4.618 \times 10^{8} & -8.796 \times 10^{7} & -6.597 \times 10^{7} & -3.519 \times 10^{8} & -3.958 \times 10^{8} \\
-3.738 \times 10^{8} & -8.796 \times 10^{7} & 1.561 \times 10^{9} & -3.519 \times 10^{8} & 3.958 \times 10^{8} & 4.398 \times 10^{8} \\
-8.796 \times 10^{7} & -6.597 \times 10^{7} & -3.519 \times 10^{8} & 4.618 \times 10^{8} & 1.759 \times 10^{8} & -3.958 \times 10^{8} \\
4.398 \times 10^{7} & -3.519 \times 10^{8} & 3.958 \times 10^{8} & 1.759 \times 10^{8} & 6.158 \times 10^{8} & 1.759 \times 10^{8} \\
-8.796 \times 10^{7} & -3.958 \times 10^{8} & 4.398 \times 10^{8} & -3.958 \times 10^{8} & 1.759 \times 10^{8} & 7.917 \times 10^{8}
\end{array}\right)}
\end{gathered}
$$

9.7 (a)

(a)

From Problem 9.6 (a), we have $[D][\bar{B}]$
$\therefore\{\sigma\}=[D][\bar{B}]\{d\}$

$$
\begin{aligned}
\left\{\begin{array}{c}
\sigma_{r} \\
\sigma_{z} \\
\sigma_{\theta} \\
\tau_{r z}
\end{array}\right\} & =\frac{210 \times 10^{3} \mathrm{MPa}}{(1250)(1.25)}\left[\begin{array}{cccccc}
-25 & -12.5 & 50 & 0 & 12.5 & 12.5 \\
0 & -37.5 & 25 & 0 & 12.5 & 37.5 \\
25 & -12.5 & 50 & 0 & 37.5 & 12.5 \\
-12.5 & -12.5 & 0 & 12.5 & 12.5 & 0
\end{array}\right]\left\{\begin{array}{c}
0.05 \\
0.03 \\
0.02 \\
0.02 \\
0 \\
0
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-84 \\
-84 \\
252 \\
-101
\end{array}\right\} \mathrm{MPa}
\end{aligned}
$$

(b)

(b)

From Problem 9.6 (b), we have $[D][\bar{B}]$

$$
\therefore\left\{\begin{array}{l}
\sigma_{r} \\
\sigma_{z} \\
\sigma_{\theta} \\
\tau_{r z}
\end{array}\right\}=\frac{210 \times 10^{3}}{(1500)(1.25)}\left[\begin{array}{cccccc}
-37.5 & 0 & 52.5 & -15 & 7.5 & 15 \\
-7.5 & 0 & 22.5 & -45 & 7.5 & 45 \\
7.5 & 0 & 37.5 & -15 & 22.5 & 15 \\
0 & -15 & -15 & 15 & 15 & 0
\end{array}\right]\left(\begin{array}{c}
0.05 \\
0.03 \\
0.02 \\
0.02 \\
0 \\
0
\end{array}\right\}=\left\{\begin{array}{c}
-103 \\
-103 \\
112 \\
-73
\end{array}\right\} \mathrm{MPa}
$$

(c)

$$
\begin{aligned}
u_{i} & =0.00005 \quad w_{i}=0.00003 \\
u_{j} & =0.00002 \quad w_{j}=0.00002 \\
u_{m} & =0 \quad w_{m}=0 \\
\{d\} & =\left(\begin{array}{c}
u_{i} \\
w_{i} \\
u_{j} \\
w_{j} \\
u_{m} \\
w_{m}
\end{array}\right) \\
\left(\begin{array}{c}
\sigma_{r} \\
\sigma_{z} \\
\sigma_{\theta} \\
\tau_{r z}
\end{array}\right) & =[D][B]\{d\} \\
\sigma_{r} & =-2.87 \times 10^{9} \mathrm{~Pa} \\
\sigma_{z} & =-2.45 \times 10^{9} \mathrm{~Pa} \\
\sigma_{\theta} & =3.57 \times 10^{9} \mathrm{~Pa} \\
\tau_{r z} & =-1.89 \times 10^{9} \mathrm{~Pa}
\end{aligned}
$$

9.8 No, not in general, as the axisymmetric elements are rings, not plane quadrilaterals or triangles. So axisymmetric nodes are actually nodal circles whereas plane stress elements have node points.
9.9 No, the element circumferential strain is a function of r and z (see Equation (9.1.15).
9.10 Make $u_{r}=0$ for all nodes acting on the axis of symmetry.
9.11 How would you evaluate circumferential strain ε_{θ} at $r=0$?

From text Equation (9.1.15)

$$
\begin{align*}
& \varepsilon_{\theta}=\frac{a_{1}}{r}+a_{2}+\frac{a_{3} z}{r} \tag{1}\\
& \varepsilon_{r}=a_{2} \tag{2}
\end{align*}
$$

Also from text Equation (9.1.1e)

$$
\begin{equation*}
\varepsilon_{\theta}=\frac{u}{r} \tag{3}
\end{equation*}
$$

Note: Without the arc (inside radius), we have a 90° re-entrant corner where stress is approaching infinity. We have a singularity in the linear-elastic solution based on linear theory of elasticity. Therefore, we need the arc as in good practice or elastic-plastic model where an upper bound on the corner stress is the yield strength of the material.

